# CAISO's SB350 Evaluation Plan

Ratepayer Impact Analysis

PRESENTED TO:

**SB350 CAISO Stakeholder Meeting** 

PRESENTED BY:

Judy Chang
Hannes Pfeifenberger

February 8, 2016



# **SB350 Study Process**

Portfolios Economic

Economic

Environmental

# Ratepayer Impact Analysis: Assumptions and Methodology

# Topics to be covered:

- Framework for estimating operating and investment cost savings (in addition to renewable integration savings)
- Simulations assumptions and methodology

## Key areas for stakeholder input

- Brattle' proposed approach will be used to analyze the potential impact on CA ratepayers, does the approach omit any category of potential impact that should be included?
- Are the methodology and assumptions to estimate the potential impact on CA ratepayers reasonable? If not, please describe your concerns.

# Ratepayer Benefits of Regional Market

Expanding the CAISO into a regional "Day-2" market offers a number operating and investment cost savings over the current market design, for California and the Rest of Market (even compared to further expansion of the EIM).

- Operating Cost Savings are associated with:
  - De-pancaking of regional transmission charges for all transactions
  - Full real-time imbalance market (vs. EIM using only a portion of the grid)
  - <u>Day-ahead</u> market and regionally-optimized <u>unit commitment</u>
  - Consolidated "Balancing Areas" and <u>integrated ancillary services</u> markets
- Investment Cost Savings are associated with:
  - Regionally uniform and integrated <u>resource adequacy</u> construct
  - Regional <u>flexible resource</u> procurement
  - More efficient utilization of the existing transmission system
  - Reduced overbuild of renewable portfolio caused by curtailment
  - Access to lower-cost renewable resources

# Ratepayer Impact Associated with Regional Market Operating Cost Savings

## **De-Pancaking of Transmission Charges**

- Concept: Eliminate "pancaking" of multiple transmission charges (38 BAs in WECC)
- Operating Cost Savings: Improves utilization of existing grid, reducing production costs by allowing import of power from lower-cost generating units from other areas
- <u>Example</u>: MISO Day-1 market (through 2005, MISO first de-pancaked transmission without centralized markets)

#### **Real-Time Imbalance Market**

- <u>Concept</u>: Imbalance market dispatches resources in real time subject to available transmission capacity
- Operating Cost Savings:
  - Improves real-time coordination across region; improve dispatch of lower-cost resources
  - Reduces cost of real-time balancing of uncertain load and variable generation
  - Increases utilization of available transmission capabilities
  - Reduces renewable generation curtailments

### Examples:

- EIM: utilizes a <u>portion</u> of the transmission grid
- SPP's Energy Imbalance System: Used the entire grid (T charges fully de-pancaked)

# Ratepayer Impact Associated with Regional Market Operating Cost Savings (cont'd)

## **Day-2 Energy Market**

- Concept: Real-time and day-ahead markets; optimized day-ahead unit commitment
- Operating Cost Savings:
  - Optimizing unit commitment and dispatch on a day-ahead basis
  - Balance real-time load and supply uncertainty over region
  - Maximizes utilization of available transmission capabilities
  - Further reduces curtailments of renewable generation
- Examples: CAISO, SPP IM, MISO, PJM, NYISO, ISO-NE

## **Integrated Ancillary Service Markets**

- <u>Concept</u>: Consolidate "Balancing Areas" and implement market-based procurement of most ancillary services (regulation, spinning and non-spinning reserves)
- Operating Cost Savings:
  - Allows procurement of ancillary services (A/S) from lowest-cost providers
  - Reduced total A/S requirements by spreading variability over larger region
  - Further reduces curtailments of renewable generation from imbalances
- Examples: CAISO, SPP, MISO, PJM, NYISO, ISO-NE

# Ratepayer Impact Associated with Regional Market Investment Cost Savings

## **Regionally-Integrated Resource Adequacy Construct**

- Concept: Uniform, region-wide resource adequacy standard
- Investment Cost Savings:
  - Taking advantage of region-wide load and resource diversity reduces the required planning reserve margin and associated generating capacity
  - Efficient use of all available resource in the region
- <u>Example</u>: MISO, PJM, NYISO, ISO-NE, SPP (in progress)

## **Regional Procurement of Flexible Resources**

- Concept: Region-wide procurement of flexible resources
- Investment Cost Savings:
  - Taking advantage of region-wide load and resource diversity reduces requirement to procure higher-cost flexible units to balance net load variability
  - Improved access to existing flexible resources
- <u>Example</u>: CAISO flexible resource requirement (accepted in ER14-1574)

# Ratepayer Impact Associated with Regional Market Investment Cost Savings (cont'd)

### **Reduced Renewable Overbuild**

- Concept: Curtailment of renewable resources due to insufficient power system flexibility requires overbuilding the renewable portfolio to ensure compliance with the RPS. Improved day-ahead commitment, real-time balancing, and integrated ancillary services markets reduces renewable curtailment in highrenewable generation future.
- Investment Cost Savings: Reduced curtailment increases effective renewable capacity factors, lowering capacity needed to meet RPS
- <u>Example</u>: Western SPP, Western MISO, Europe

### **Access to Lower-Cost Renewable Resources**

- <u>Concept</u>: Improved utilization of existing grid with local balancing, and regional and inter-regional transmission expansions allow renewable resource development in lower-cost and/or higher-capacity-factor locations
- Investment Cost Savings: Same renewable energy production with reduced overall capital cost
- Examples: Western SPP, Western MISO, ERCOT

# Quantification of Operation and Investment Cost Savings of Market Integration

| Cost Savings / Source of Benefits | Captured by Expanding CAISO into a Regional RTO? | Proposed Approach to Quantify Benefit |
|-----------------------------------|--------------------------------------------------|---------------------------------------|
| <b>Operating Cost Savings</b>     |                                                  |                                       |
| De-Pancaking – Partial            | EIM                                              | [already captured by EIM]             |
| De-Pancaking – Full               | ✓                                                | Production Cost Model                 |
| RT Imbalance Market – Partial     | EIM                                              | [already captured by EIM]             |
| RT Imbalance Market – Full        | $\checkmark$                                     | Other studies/qualitatively           |
| Day-ahead Market and Unit Comm.   | ✓                                                | Production Cost Model                 |
| Integrated AS Market              | ✓                                                | Production Cost Model                 |
| Investment Cost Savings           |                                                  |                                       |
| Integrated Resource Adequacy      | ✓                                                | Load Diversity Estimation             |
| Flexible Resource Procurement     | ✓                                                | Other studies/qualitatively           |
| Reduced Renewables Overbuild      | ✓                                                | RESOLVE Model                         |
| Lower-Cost Renewable Resources    | ✓                                                | RESOLVE Model                         |

# Ratepayer Impact Associated with Regional Market Production Cost Simulations: Methodology

### We will conduct nodal market simulations to estimate:

- Production cost savings associated with de-pancaking, unit commitment, and dispatch, which will be a part of the <u>ratepayer benefits</u>
- Changes in generation and associated emissions of GHG and other air pollutants will be carried through to the environmental impacts analysis

## **Modeling Framework:**

- Simulating WECC with and without Regional Market for near-term and longer-term
  - Production cost savings for 2020 will demonstrate near-term benefits of regional market prior ramp-up of renewable generation and Clean Power Plan (CPP)
  - A 50% California RPS scenario for 2030 will to highlight additional impact associated with higher renewable resource procurement and CPP compliance in rest of WECC
- Estimating the impact on California (ratepayer impact) and rest of WECC (production cost savings)
- Simulations will also yield emissions (GHG, NOx, SOx) for environmental analysis

# Ratepayer Impact Associated with Regional Market

# Production Cost Simulations: Methodology (cont'd)

# Day-Ahead Unit Commitment

- De-pancaked transmission & scheduling charges
- Full grid utilization
- Reduced operating reserves
- Regionally optimized <u>unit</u> <u>commitment</u>
- Reduced additional commitment hurdle

## Day-Ahead Market Dispatch

- De-pancaked transmission & scheduling charges
- Full grid utilization
- Reduced operating reserves
- Regionally optimized <u>unit</u> <u>dispatch</u>
- Avoided bilateral transaction cost

## Intra-Day Adjustments

- De-pancaked transmission & scheduling charges
- Full grid utilization
- Reduced operating reserves
- Adjusted unit commitment and real-time bids
- Avoided bilateral transaction cost

# Real-Time Market Dispatch

- De-pancaked transmission & scheduling charges
- Full grid utilization
- Reduced operating reserves
- Regionally optimized unit dispatch
- Reduced A/S needs
- Resolved uncertainties

# **Proposed Scope of Production Cost Simulations**

(without forecast errors, renewable uncertainty, real-time outages, etc.)

**EIM** 

# Ratepayer Impact Associated with Regional Market Production Cost Simulations: Methodology (cont'd)

## We will develop and compare results for three cases:

- 1. Business-As-Usual (BAU): Assumes no regional market
- 2. WECC-wide Market with BAU Procurement: Simulated by removing the hurdle rates among current balancing authorities and allowing for reserve sharing across a larger footprint
- **3. WECC-wide Market with Regional Procurement:** Consistent with E3's approach, assumes additional out-of-state renewables available to meet 50% RPS in California

The market simulations will capture a large portion of wholesale power costs (Day-Ahead energy and reserves) with many costs to be estimated outside of the model (cost of RPS, other capital costs for generation and transmission, Real-Time markets)

- We will estimate the needed operating reserve requirements under each case
- The RPS portfolios will be incorporated into the simulations
- Changes in production costs will be translated into ratepayer impacts through a calculation of utility revenue requirements

# Ratepayer Impact Associated with Regional Market Production Cost Simulations: Assumptions

## **Model Used:**

- Power Systems Optimizer "PSO" production cost simulation model (developed by Polaris Systems Optimization, Inc.; provides option to model real-time/uncertainty in future)
- Baseline input assumptions: Same as those developed for CAISO's Gridview model used to support its 2015–2016 Transmission Planning Process—already vetted by ISO's stakeholders (TEPPC 2024 Common Case V1.5 as a starting point; released April 2015)

## **Updates to TEPPC case:**

- Load, CA-GHG prices, and gas prices based on CEC forecast
- 33% RPS portfolio provided by CPUC
- Updates to transmission topology (to include all ISO approved projects) and to transmission constraints (from LCR and reliability studies)
- Update hurdle rates to reflect (a) most recent tariff rates; (b) additional bilateral trade "friction" across balancing areas; (c) GHG hurdle rate for CA imports
- Frequency response requirements and reserves (regulation & load following)
- 50% RPS scenarios (discussed later) to capture additional production cost savings in a high renewables environment
- Carbon constraints, coal retirements, and renewables for rest of WECC based on recent TEPPC long-term policy cases

# Questions to Stakeholders & Discussion

- Brattle' proposed approach will be used to analyze the potential impact on CA ratepayers, does the approach omit any category of potential impact that should be included?
- Are the methodology and assumptions to estimate the potential impact on CA ratepayers reasonable? If not, please describe your concerns.