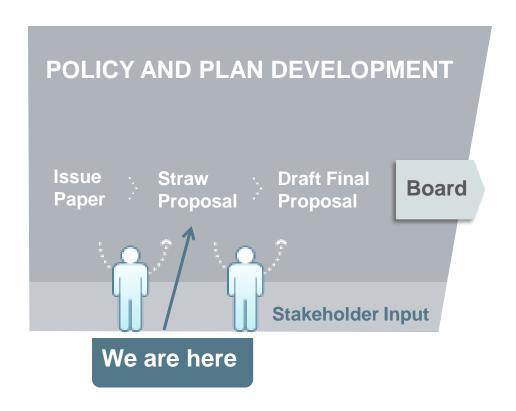


Flexible Resource Adequacy Criteria and Must-Offer Obligation

October 9, 2013

Karl Meeusen, Ph.D.

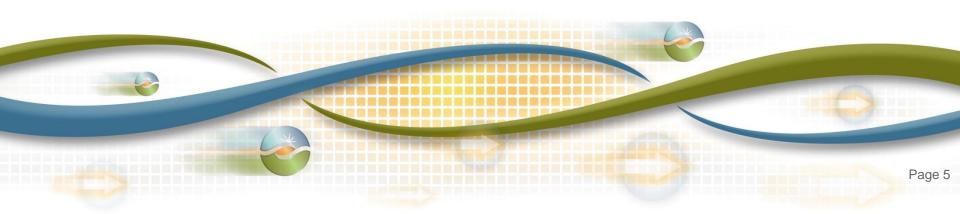
Market Design and Regulatory Policy Lead



Stakeholder Meeting – Agenda – 10/09/13

Time	Topic	Presenter
10:00 – 10:05	Introduction	Tom Cuccia
10:05 – 10:15	Overview and Meeting Objective	Karl Meeusen
10:15 – 10:45	Proposal for Allocating ISO System Flexible Capacity Requirements	
10:45 – 12:15	Flexible Capacity Must-Offer Obligation	Carrie Bentley
12:15 – 1:15	Lunch	
1:15 – 2:45	Flexible Capacity Availability Incentive Mechanism: Standard Flexible Capacity Product	Karl Meeusen
2:45 - 3:00	Break	
3:00 – 3:50	Proposed Flexible Capacity Backstop Procurement Authority	Karl Meeusen
3:50 – 4:00	Next Steps	Tom Cuccia

ISO Policy Initiative Stakeholder Process

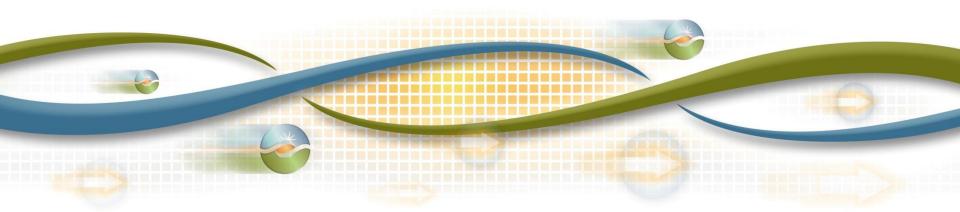

Flexible Resource Adequacy Criteria and Must-Offer Obligation: Third Revised Straw Proposal

Karl Meeusen, Ph.D.

Market Design and Regulatory Policy Lead

Overview and Meeting Objectives

Initiative scope includes ISO tariff changes to address ISO system flexible capacity requirements


- Stakeholder process targeted to be completed by December 2013 for 2015 RA Compliance
- Initiative scope includes:
 - ISO study process and methodology to determine flexible capacity requirements
 - Allocation of flexible capacity requirements
 - RA showings of flexible capacity to the ISO
 - Flexible capacity must-offer obligation (availability requirements)
 - Flexible capacity availability incentive mechanism and capacity substitution
 - Backstop procurement of flexible capacity

Process and Study Methodology for Determining Flexible Capacity Procurement Requirements

Karl Meeusen Market Design and Regulatory Policy Lead

Flexible capacity requirement assessment process

January

- → Receive CEC load forecast used for TPP expansion plan
- Receive updated RPS build-out data from the LSEs
- Publish annual FCR assumptions paper

February

ISO stakeholder meeting to discuss assumptions Stakeholder comments, and posting of comments with ISO response

March

- Draft LCR and FCR study completed followed by Local & flexible capacity needs stakeholder meeting
- Publish draft final LCR & FCR needs study

April

ISO stakeholder meeting to discuss LCR / FCR results followed by stakeholders comments

May/June

- Final 2014 LCR & FCR study posted
- CPUC proposed and final annual RA decision incorporating LCR and FCR procurement obligations

July

LSEs receive Year-Ahead obligation

August

 Revised load forecasts and renewable build-outs for following RA compliance year

September

- LSEs receive revised RA and flexible capacity obligation
- Final NQC and EFC Lists issued by the ISO

October

Year-ahead showing of system, local, and flexible capacity (show 100% local and 90% system and flexible)

Monthly Showings

- T-45 days: Month-ahead showings, including local and flexible true-up
- T-25 days: ISO notifies LSEs and suppliers of any deficiencies of system, local, and or flexible capacity
 - T-11 days: Final opportunity for LSEs to demonstrate to the ISO that any identified deficiencies have been cured

The specific study assumption will be considered in the ISO's annual flexible capacity requirement assessment

- The flexible capacity requirement assessment will consider:
 - Load forecasts
 - Renewable portfolio build-outs
 - Production profiles for intermittent resources
 - Load modifying demand side programs (i.e. DR not bid into the ISO and impacts of dynamic rates)

ISO flexible capacity requirement calculation

Methodology

Flexibility Requirement_{MTHy}= Max[(3RR_{HRx})_{MTHy}] + Max(MSSC, 3.5%*E(PL_{MTHy})) + ϵ Where:

 $Max[(3RR_{HRx})_{MTHy}]$ = Largest three hour contiguous ramp starting in hour x for month y

E(PL) = Expected peak load

MTHy = Month y

MSSC = Most Severe Single Contingency

 ε = Annually adjustable error term to account for load forecast errors and variability

Flexible capacity counting rules

Start-up time greater than 90 minutes

EFC = Minimum of (NQC-Pmin) or (180 min * RRavg)

Start-up time less than 90 minutes

EFC = Minimum of (NQC) or (Pmin + (180 min – SUT) * RRavg)

Where:

EFC: Effective Flexible Capacity

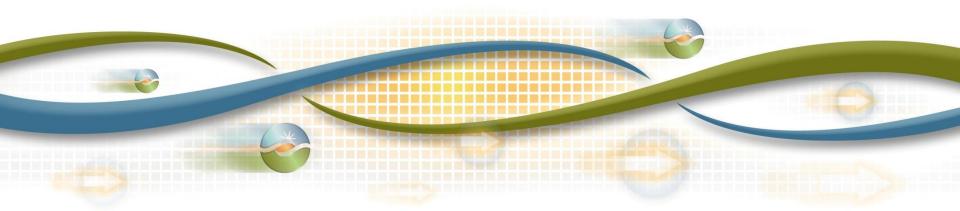
NQC: Net Qualifying Capacity

SUT: Start up Time

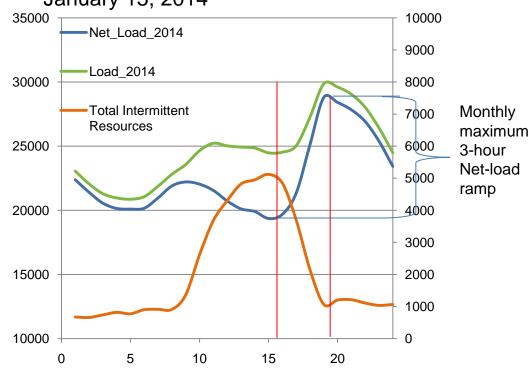
RRavg: Average Ramp Rate

Additional flexible capacity counting rules

- MSG resources measured based on 1x1 configuration
- Hydro resource will qualify as flexible capacity for the amount of output its physical storage capacity allows it to provide as energy equivalent for 6 hours
- Demand response resources must be able to provide at least 3 hours of load reduction.
- At this time, intertie resources that are not dynamically scheduled or pseudo-tied into the ISO may not count as flexible capacity resources
 - The ISO may consider the inclusion of intertie resources in a future enhancement


LSEs will make annual and monthly flexible capacity procurement demonstrations

- LSEs required to demonstrate
 - 90 percent monthly flexibility procurement obligations yearahead
 - Future needs may require LSEs demonstrate that 100 percent of their flexible capacity has been procured yearahead
 - 100 percent of flexibility procurement obligation in monthly showing
- Submission to ISO in addition to local regulatory authority
- The ISO is not proposing changes to existing resource adequacy replacement requirement for planned generator outages at this time


Proposal for Allocating ISO System Flexible Capacity Requirements

Allocating flexible is based on contribution to system's monthly maximum 3-hour net-load ramp

- 3-maximum ramp used is the coincident 3-hour maximum ramp
 - Not each individual LSE's or LRA's maximum 3-hour ramp
- ISO must assess the proper level of granularity to use when determining each LSE's contribution to requirement
 - Reach an equitable allocation at a reasonable cost

Forecasted Load and Net load Curves: January 15, 2014

Flexible capacity requirement is split into its two component parts to determine the allocation

- Maximum of the Most Severe Single Contingency or 3.5 percent of forecasted coincident peak
 - Allocated to LRA based on peak-load ratio share
- The maximum 3-hour net load ramp using changes in
 - Load
 - Wind output
 - Solar PV
 - Solar thermal
 - Distributed energy resources

The ISO will decompose the largest 3-hour net load ramp into five components to determine the LRA's final allocation*

- Δ Load LSE's percentage of average load change during daily coincident maximum 3-hour load ramps x total change in ISO load
- Δ Wind Output Percent of total wind contracted x total change in wind output
- Δ Solar PV Percent of total solar PV contracted x total change in solar PV output
- Δ Solar Thermal Percent of total solar thermal contracted x total change in solar thermal output

Allocation** = Δ Load – Δ Wind Output – Δ Solar PV – Δ Solar Thermal

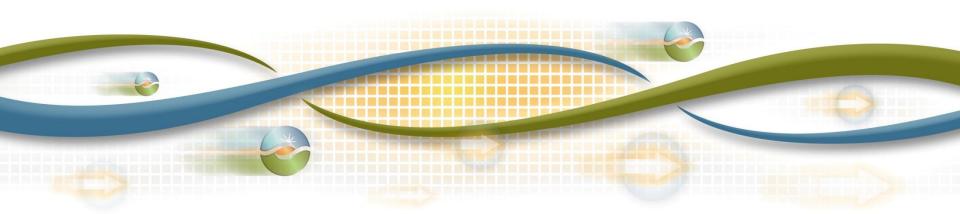
* The ISO is still assessing the feasibility of seasonal allocation factors ** DG component captured in Δ Load

Calculating **\Delta** Load

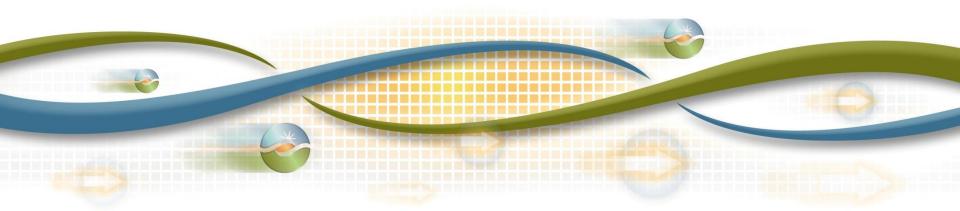
- Δ Load LSE's percentage of average load change during daily coincident maximum 3-hour load ramps x total change in ISO load
 - Daily maximum 3-hour load ramp identified
 - Contribution of each LSE determined for each day as a percent of the total maximum 3-hour load ramp
 - The average contribution for the month is calculated using the daily contribution

The ISO is still considering other allocation options

- The ISO is still assessing the viability of using
 - Historic average daily maximum 3-hour net-load ramps
 - Time of day system maximum 3-hour load ramps (morning vs. evening ramps)
- Seasonal allocations for all components
 - The ISO is examining the data to assess the homogeneity of LSEs' contributions in each season
 - Would mean 2-4 allocation factors for each component instead of 12

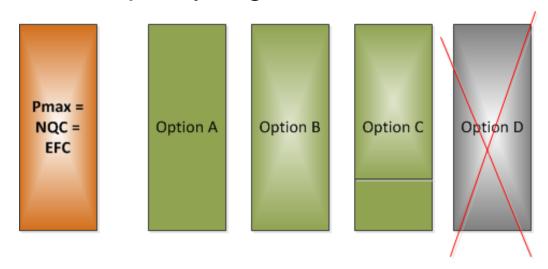


Flexible Capacity Must-Offer Obligation


Carrie Bentley

Senior Market Design and Policy Specialist

Resource adequacy capacity plan designation

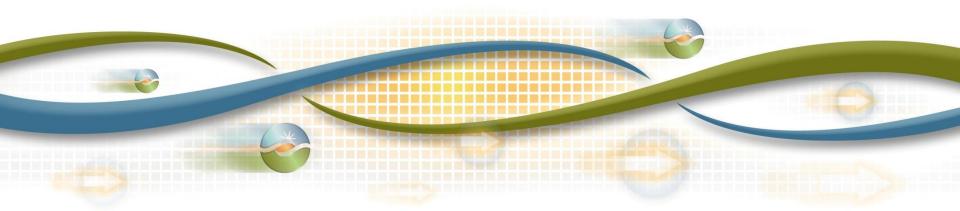

Resource adequacy plan designations

In a provided resource adequacy plan, the resource can be designated under:

Option A: All capacity is generic RA only

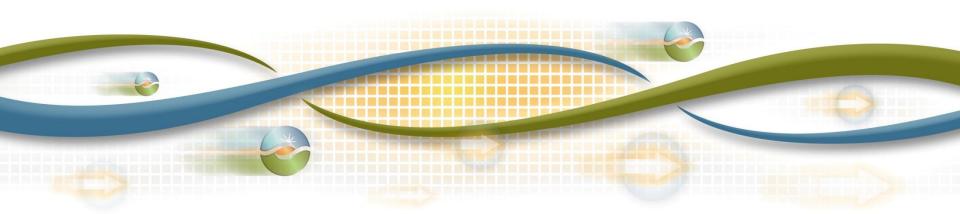
Option B: All capacity is generic AND flexible RA

Option C: All capacity is generic and some is flexible



Option D: All capacity as only flexible RA is not possible

Must-offer obligation (MOO)

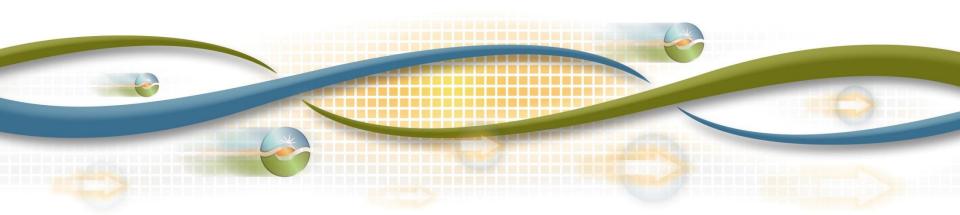

Must-offer obligation topics

- 1. Flexible resource adequacy capacity
- 2. Dispatchable gas-fired resources
- 3. Demand response resources
- 4. Storage resources
- 5. Variable energy resources

Flexible resource adequacy capacity must-offer rules

Must-offer obligation for flexible capacity

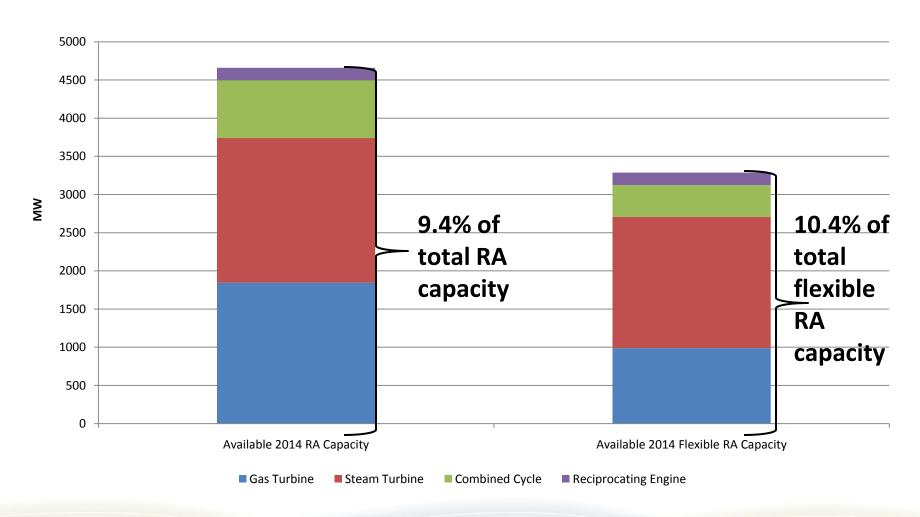
- Submit economic bids for energy in day-ahead and realtime markets from 5:00AM - 10:00PM
 - ISO optimization will respect daily limitations
- Remain subject to generic RA must-offer obligation from 10:00PM - 5:00AM
- Specialized must-offer rules for:
 - Dispatchable gas-fired resources
 - Demand response
 - Storage
 - Variable energy resources


Reason for must-offer obligation for flexible capacity

- RA principle: If no other resources are bid into the market, the market should be able to operate using RA resources alone
- Generic RA does not mandate economic bids, which are needed to provide efficient and market-based system flexibility
 - LSEs secure flexible resources to meet net load ramp and load following requirements
 - Flexible ramping product initiative (in progress) will explicitly procure flexible ramping to meet interval to interval system ramping requirements

Must-offer requirements for flexible resource adequacy dispatchable gas-fired use-limited resources

Dispatchable gas-fire resources must-offer requirements


- Description of use-limited dispatchable gas-fired resources
- 2. Use-limited flexible RA rule proposal
- 3. Opportunity cost methodology
- 4. Economic withholding
- 5. Hard stops

Description: Use-limited dispatchable gas-fired resources

- Resources with monthly or annual physical limitations mandated for environmental reasons by a regulatory entity
- Have a verifiable use-plan filed with the ISO
- Currently, under generic RA rules the ISO relies on the scheduling coordinator to bid in resources when available

Description: Use-limited dispatchable gas-fired resource capacity

Proposal: Rules to manage use-limited resources

- Must offer: Submit economic bids into both the day-ahead and real-time markets in all hours from 5:00A - 10:00P
- Market management: Use-limited resources will be given additional control over their start-up and minimum load bid costs in order to manage use-limitations through the market
- Hard stops: Use-limited resources may submit a SLIC ticket, i.e. a "hard stop"
- SFCP: Subject to specialized SFCP rules that will be reviewed in SFCP section

Proposal: Use-limited must-offer requirement issues

- Proposed: Submit economic bids into both the day-ahead and real-time markets in all hours from 5:00AM - 10:00PM Current RA: Manage use by not submitting bids
- Identified challenges with submitting economic bids :
 - The ISO may dispatch the resource at the wrong time and cause the resource not to be available during a high ramping need period
 - Resources may be dispatched in a manner where it is no longer available to economically bid in and therefore would be penalized by the flexible capacity incentive mechanism

Proposal: Incorporate market based solution

- Allow resources to incorporate an opportunity cost into their start-up, minimum load, and energy bid
 - Allow daily bidding of start-up and minimum load costs up to this amount
 - Allow a monthly registered cost of up to 150% of this amount
- Goal of including opportunity cost is to optimize the resources availability over a month or year
- Goal is not to ensure the resource is available throughout entire must-offer requirement and/or standard flexible incentive mechanism threshold levels

Opportunity cost methodology: Energy bid costs

- The ISO allows a resource to bid in up to a bid cap of \$1,000/MWh and in the event of local market power, is mitigated to its default energy bid
- Current rules allow a resource to establish a default energy bid that reflects the resource's opportunity cost of being dispatched given a limited number of run hours
- Opportunity cost methodology for dispatchable gas-fired use-limited resources revised to include additional constraints

Opportunity cost methodology: Energy bid cost limitations

- Incorporating the opportunity cost into the energy bid cost without changing rules related to default energy bids, start-up costs, and minimum load costs would result in a less efficient dispatch:
 - Market power mitigation: the current default energy bid opportunity cost methodology only uses a single uselimitation (run hours) so is less accurate
 - Commitment to minimum load: the market optimization may still commit the resource up to minimum load based on start-up and minimum load costs

Opportunity cost methodology: Start-up and minimum load bid costs

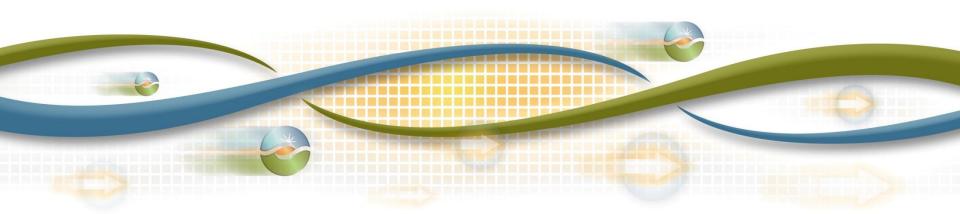
- Current rule: Two options
 - (1) Proxy option- calculated daily by the ISO
 - (2) Registered option- registered monthly at up to 150% of the proxy cost
- Proposed rule: Three options
 - (1) Proxy option- calculated daily by the ISO
 - (2) Registered option- registered monthly at up to 150% of the proxy cost <u>plus opportunity cost</u>
 - (3) Bid option- bid in daily by scheduling coordinator up to proxy cost plus opportunity cost adder

Opportunity cost methodology: Proof of concept

- Whether successful dependent on ability to accurately calculate opportunity cost
- ISO testing proof of concept
- If opportunity cost methodology was used in t1, how well would this have worked in t2
 - Uses 2013 data
 - Uses actual resource use-limitations

Economic withholding

- Economic withholding fundamentally entails bidding above variable costs
- Use-limitations legitimize the incorporation of opportunity cost as a variable cost of production
- Necessary conditions for economic withholding if opportunity cost is incorrect:
 - The opportunity cost is sufficiently high, AND
 - Calculation is controlled by the supplier, AND
 - Leveraged to benefit the suppliers portfolio.

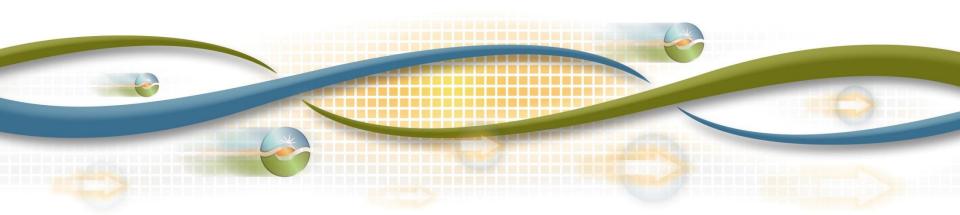

Hard stops

- A hard stop is essentially going on outage or derate, typically through a SLIC normal card
- There is no bid insertion, so in the day-ahead a resource would only have to not bid in order to not be picked up by the ISO
- In real-time; however, if a resource has a day-ahead schedule, not bidding would cause the day-ahead schedule to become the equivalent of a self-schedule
- Therefore, hard stops will be available for dispatchable gas-fired use-limited resources in the real-time as a means to control production

Flexible resource adequacy demand response must-offer rules

Demand response must-offer rules

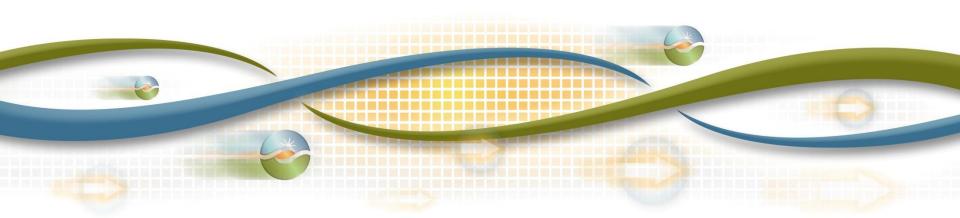
- Must submit economic bids into both day-ahead and real-time markets on all non-holiday weekdays for either,
 - 7:00AM 12:00PM or 3:00PM 8:00PM
- Must be able to provide at least 3 hours of load reduction
- Daily limitations can be specified in ISO's Master File



Demand response bidding rules

- The ISO is not proposing to change the following rules for demand response:
 - Daily limitations will be respected by ISO optimization
 - PDR does not have a start-up or minimum load cost
 - PDR is not subject to local market power mitigation
- Therefore,
 - PDR can manage limitations through energy bids
 - No need to include opportunity cost in start-up or minimum load cost

Flexible resource adequacy storage mustoffer rules

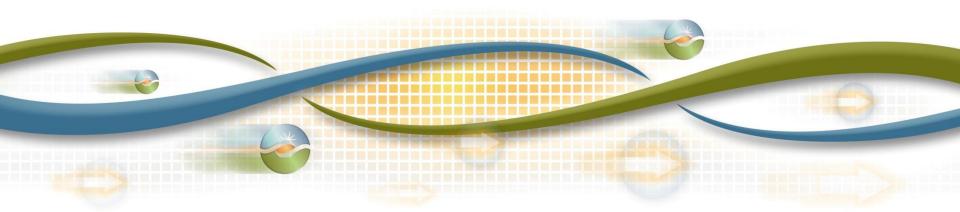


Storage must-offer rules

- The ISO proposes that storage resources (excluding pump storage) that provide flexible capacity either:
 - Submit economic regulation bids for the time period from 5:00am –10:00pm as a regulation energy management resource, or
 - 2. Select one of the must-offer obligations outlined for demand response resources
- Options are designed to allow the SC of the resource to select the must-offer obligation that works best with the specific storage technology

Flexible resource adequacy variable energy resources must-offer rules

Variable energy resources must-offer rules

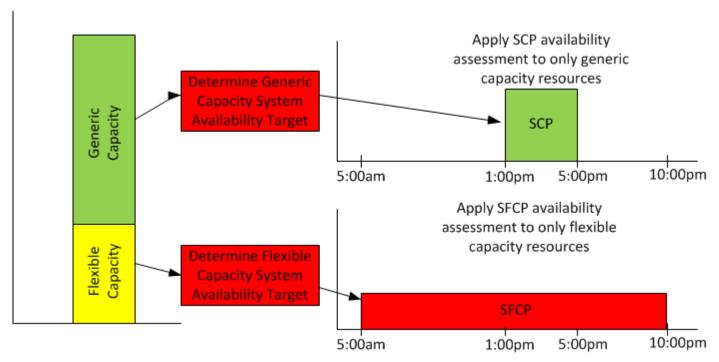

- Not all dispatchable variable energy resources are able to provide flexibility during all hours
 - Solar PV can only provide flexible capacity during the daytime hours
- Setting a flexible capacity must-offer obligation from 5:00am –10:00pm unworkable for these resources
- Specialized must-offer periods for Solar PV, Solar Thermal, and Wind

Flexible Capacity Availability Incentive Mechanism: Standard Flexible Capacity Mechanism (SFCP)

Karl Meeusen Market Design and Regulatory Policy Lead

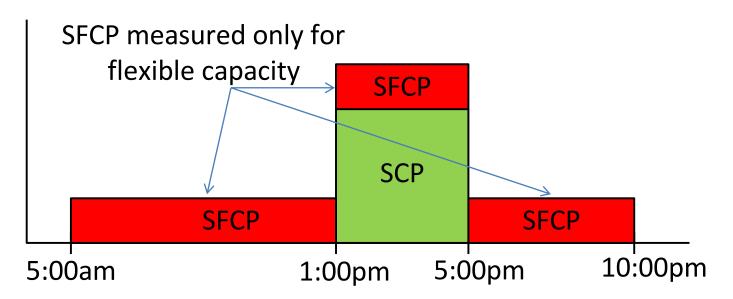
ISO believes an availability incentive mechanism is superior approach to bid insertion rules for flexible capacity

- Availability incentive mechanism (SFCP) based on economic bids
- Compliance with must-offer obligation can be ensured through this mechanism
 - Positive affirmation flexible capacity is available, e.g. demand response bids
 - Allows for use-limitations or need for self-scheduling that market cannot model
- Anticipate implementing no later than the 2016 RA compliance year

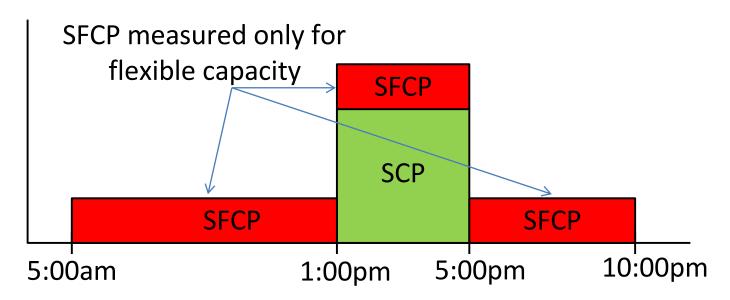


Options considered three primary approaches for the SFCP

- Bucket method: Evaluates the availability of generic capacity and flexible capacity in completely separate "buckets"
- Adder method: Would calculate the SCP and SFCP independently, resources would be subject to/ eligible for an incentive mechanism for both
- Worse-of method: Would calculate the SCP and SFCP independently, but would only charge the resource the worse of the SCP or the SFCP
- The adder method is the ISO's preferred approach


Example: The Bucket Method

- A MW is either flexible or generic
- If the capacity is flexible, availability is measured only relative to other flexible capacity and only SFCP charge/credits apply
- SCP availability will be assessed relative to only other generic MWs (flexible MWs will be removed from the SCP assessment)


Example: The Adder Method

- The <u>SCP</u> is measured <u>for all RA capacity</u> and does not consider flexibility capacity availability rules
- The <u>SFCP</u> is measured <u>for only flexible RA capacity</u> and does not consider generic capacity availability rules
- A resource that self schedules would be available under SCP, but not SFCP
- A resource that is on forced outage would be considered unavailable under both the SCP and SFCP
- Resources <u>subject to both SCP and SFC charges</u>

Example: The Worse-of Method

- The <u>SCP</u> is measured <u>for all RA capacity</u> and does not consider flexibility capacity availability rules
- The <u>SFCP</u> is measured <u>for only flexible RA capacity</u> and does not consider generic capacity availability rules
- A resource that self schedules would be available under SCP, but not SFCP
- A resource that is on forced outage would be considered unavailable under both the SCP and SFCP
- Resources <u>subject only to the greater of the SCP or SFCP charge</u>

The ISO prefers the adder method

- Most accurately reflects
 - relative values of generic capacity and
 - additional value of flexible capacity
- Subject to less overlap
- More accurate values availability
 - Considers a self-scheduled resource to be available for generic but not for flexible
 - SFCP appropriately value additional benefit of economic over self schedule

The ISO prefers the adder method (cont.)

- Does not require rules to determine if an outage or derate impacts flexible or generic capacity
 - Resource's bidding activity would demonstrate what portion of the capacity is out
- Can easily be transitioned to use a price signal received from a reliability services auction

The bucket method

- Treats flexible capacity that is self-scheduled the same as a flexible capacity completely unavailable because of an outage
- Requires explicit provisions that address how outages and derates are counted (i.e. Is affected capacity flexible or generic?)
 - The options include
 - A pro-rata split,
 - The outage/derate would be allocated to one bucket or the other or
 - The SC could choose how the outage/derate is allocated.
- Without explicit rules to allocate outage to flexible or generic capacity, may provide an adverse incentive to report as many outages as possible as flexible capacity outages.

The "worse-of" method

- Only applies charges for not providing one service, not two
- Splitting the pool of non-availability charges into two pools also reduces the incentives for resources to overperform relative to the system target for either SCP or SFCP
- Muting performance incentives may reduce the effectiveness of the SCP or SFCP in ensuring resources are available

Pricing the flexible capacity adder

- Considered three options for setting the flexible capacity adder:
 - The CPM rate
 - Designed to value genic capacity, not clear this is the correct price to value flexible capacity availability.
 - The average \$/kw-yr equivalent for the flexi-ramp constraint
 - Extremely wide spread of values depending on the assumptions
 - The publically available CPUC data for RA contract prices
 - Based on prices from CPUC's bilateral capacity market

The ISO proposes to use the CPUC RA contract price data

- Uses CPUC's 2010 and 2011 RA report (most recent published report)
- Compared the difference between the average price for system capacity with the 85th percentile for ISO system capacity.
 - Assumes lower quality capacity will have a lower price, while newer and higher quality capacity (i.e. more flexible capacity) will receive a slightly higher capacity price

The ISO proposes to use the CPUC RA contract price data (cont.)

- The difference between these two values is
 - \$18.48/kw-yr (2010)
 - \$19.44/kw-yr (2011)
- The ISO proposes to start with the 2011 RA data and add a consistent growth factor (\$0.96/kw-yr) to account price increases from 2011 to present.
- The resulting proposed flexible capacity adder is \$23.25/kw-yr

The funding and incentives for the flexible capacity availability incentive mechanism

- Flexible capacity availability incentive mechanism would be self-funded
 - Resources with availability measurements less than 2.5% of the monthly target charge the applicable flexible capacity backstop price
 - Resources that exceed monthly target flexible capacity availability value plus 2.5% will be credited from these charges based on their performance
 - Initial dead bands will start at +/- 3.5% system target while historic SFCP data is compiled
- Flexible capacity incentive mechanism would not draw funds from the existing SCP

California ISO

Flexible capacity availability incentive mechanism must ensure flexible capacity is available in both day-ahead and real-time markets

- Compliance in both day-ahead and real-time markets in each of these markets is important
 - Unit commitments in the day-ahead market
 - System balancing in the real-time market
- ISO proposes use the <u>minimum</u> of the MW of capacity economically bid into the day-ahead or real-time markets
- Measurement based on resource's must-offer obligation
 - For example:
 - Non-use-limited measured on 17 hour availability
 - DR measured on 5 hour availability

Substitution of flexible capacity on forced outage

- Flexible capacity resources forced out during a month may provide substitute capacity to cover the outage
- Any substitute capacity must be received and approved by the ISO prior to the close of the IFM
- Must provide substitute capacity to address the loss of both generic capacity and flexible attribute to avoid SCP and SFCP non-availability charges.
 - Substitute for flexible capacity need not come from the same resource that substitute for generic capacity
- If resource on outage is providing local capacity, it will still be required to replace the local capacity

When SFCP does not apply

- Generally, failure to submit an economic bid for the flexible capacity quantity for any reason will be considered unavailable under SFCP
- The following are exceptions to this rule
 - Long-start resources that are scheduled in the dayahead market Resources on planned and approved outages
 - Resources that have reached a daily use-limitation
 - Resources that have reached a monthly use limitation, subject to availability thresholds

The minimum SFCP availability thresholds

- The minimum availability thresholds are
 - Economically bid-in up to that point all of its flexible capacity for at least 90% of Standard Flexible Capacity Product hours,
 - Economically bid in at least 20 days over the month
 - The ISO will consider all outages in determining if a resource has crossed this threshold
 - a resource that is on a planned outage for 15 days would not be able to meet this threshold in a given month
- If both of the conditions are met, then the resource is exempt from the SFCP for the remainder of the month.

Flexible capacity availability incentive mechanism formula

The ISO proposes to measure compliance with MOO using the following formula:

Example 1 of Standard Flexible Capacity Mechanism Calculation

- A resource sells 100 MW flexible capacity for the month of June (510 hours)
- Economically bids 75 MW everyday from 5:00 a.m. through 10:00 p.m.

SFCP Availability_{MTH_y}

 $= \frac{\sum_{i,j} [Min(MW\ bid\ into\ hour\ i\ on\ day\ j\ into\ DAM, MW\ bid\ into\ hour\ i\ on\ day\ j\ into\ RTM)]}{Compliance\ hours\ in\ the\ month\ *Flexible\ capacity\ provided}$

$$=\frac{75*17*30}{17*30*100}=75\%$$

Example 2 of Standard Flexible Capacity Mechanism Calculation

- A resource sells 100 MW flexible capacity for the month of June (510 hours)
- Economically bids 75 MW 25 days from 5:00 a.m. through 10:00 p.m.
- Is on a planned outage for 5 days

$$=\frac{75*17*25}{17*25*100}=75\%$$

Example 3 of Standard Flexible Capacity Mechanism Calculation

- A resource sells 100 MW flexible capacity for the month of June (510 hours)
- Economically bids 100 MW 25 days from 5:00 a.m. through 10:00 p.m.
- Is on a forced outage for 5 days

$$= \frac{100*17*25}{17*30*100} = 83.33\%$$

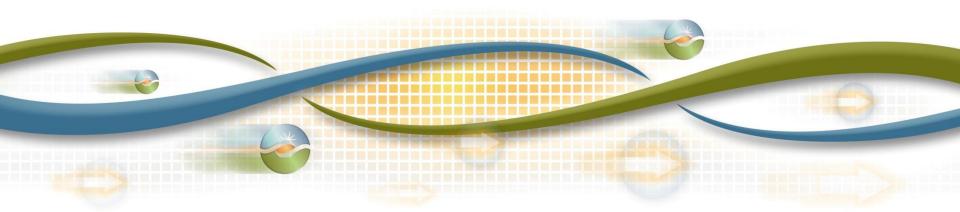
Example 4 of Standard Flexible Capacity Mechanism Calculation

- A DR resource sells 10 MW flexible capacity for the month of June (80 hours)
- Economically bids 7.5 MW 17 days from 5:00 a.m. through 10:00 p.m.
- Reaches monthly use-limitation after day 18

$$=\frac{7.5*5*18}{5*18*10}=75\%$$

The interaction of SCP and SFCP in the adder methodology

SCP Target	90 (87.5-92.5)
SFCP Target	85 (82.5-87.5)


Resource	SCP Availability	SFCP Availability	SCP charge or credit	SFCP charge or credit	Net Availability Credit or Charge
Resource 1	93	90	Credit	Credit	SCP Credit + SFCP Credit
Resource 2	85	90	Charge	Credit	SFCP Credit - SCP Charge
Resource 3	95	80	Credit	Charge	SCP Credit - SFCP Charge
Resource 4	85	80	Charge	Charge	-SCP Charge - SFCP Charge

Proposed Flexible Capacity Backstop Procurement Authority

Karl Meeusen Market Design and Regulatory Policy Lead

New backstop procurement authority to address deficiencies in an LSE's flexible capacity requirement

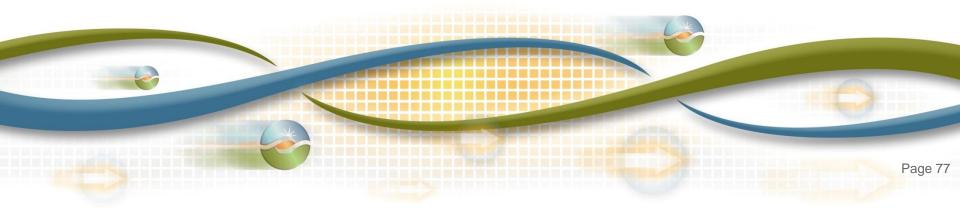
- ISO proposes backstop procurement authority that allows for backstop designations when:
 - An LSE has insufficient flexible capacity in either its annual or monthly Resource Adequacy Plan and
 - There is an overall net deficiency in meeting the total system annual or monthly flexibility requirements

The adder method will apply to backstop capacity

- SFCP and flexible capacity backstop procurement should be priced using a similar mechanism
- Any flexible capacity backstop procurement will use a method similar to the adder method
 - Should provide a greater incentive for LSE's to ensure flexible capacity RA showings have sufficient flexible capacity
 - May reduce the cost of backstop procurement for flexible capacity
 - LSE's can provide uncommitted flexible capacity to meet flexible capacity backstop procurement needs.
- LSE will have 30 days to cure any deficiencies

Reliability Services Action will ultimately be primary backstop procurement mechanism

- Would provide market based mechanism to procure flexible capacity shortfalls
- Will likely have to maintain mechanism similar to CPM for more limited circumstances
- Compliments adder method by providing market based value for flexible capacity



Next Steps

- Comments on straw proposal
 - Comments Template posted October 10, 2013
 - Due October 16, 2013
 - Submit comments to fcp@caiso.com
- Board of Governors
 - February 2014

Appendix

Example of Allocated 3-hour net load ramp: Evening Ramp

ISO flexible capacity needs assessment	
Δ load	4,500
Δ wind	-2,000
Δ solar PV	-2,500
Δ solar thermal	-1,000
Total flexible capacity need	10,000

	LRA 1	LRA 2	LRA 3	LRA 4
Percent Monthly average load change	35%	30%	20%	15%
Percent of total wind contracted	40%	20%	25%	15%
Percent of total Solar PV contracted	30%	35%	15%	20%
Percent of total Solar Thermal contracted	70%	20%	0%	10%

LSE	Load contribution	Wind contribution	Solar PV contribution	Solar Thermal contribution	Total contribution
LRA 1	.35 x 4,500 = 1,575 MW	.40 x -2,000 = -800 MW	.30 x -2,500 = -750 MW	.70 x -1,000 = -700 MW	1,400+800+750+700= 3,825
LRA 2	.30 x 4,500 = 1,350 MW	.20 x -2,000 = -400 MW	.35 x -2,500 = -875 MW	.20 x -1,000 = -200 MW	1,200+400+875+200= 2,825
LRA 3	.20 x 4,500 = 900 MW	.25 x -2,000 = -500 MW	.15 x -2,500 = -375 MW	.00 x -1,000 = 0 MW	800+500+375+0= 1,775
LRA 4	.15 x 4,500 = 675 MW	.15 x -2,000 = -300 MW	.20 x -2,500 = -500 MW	.10 x -1,000 = -100 MW	600+300+500+100= 1,575
Total	4,500	-2,000	-2,500	-1,000	10,000

Example of Allocated 3-hour net load ramp: Morning Ramp

ISO flexible capacity needs assessment	
Δ load	7,500
Δ wind	-2,000
Δ solar PV	2,500
Δ solar thermal	1,000
Total flexible capacity need	6,000

	LRA 1	LRA 2	LRA 3	LRA 4
Peak Load Ratio Share	35%	30%	20%	15%
Percent of total wind contracted	40%	20%	25%	15%
Percent of total Solar PV contracted	30%	35%	15%	20%
Percent of total Solar Thermal contracted	70%	20%	0%	10%

LSE	Load contribution	Wind contribution	Solar PV contribution	Solar Thermal contribution	Total contribution
LRA 1	.35 x 7,500 =	.40 x -2,000 =	.30 x 2,500 =	$.70 \times 1,000 =$	2,625+800-750-700=
	2,625 MW	-800 MW	750 MW	700 MW	1,975
LRA 2	$.30 \times 7,500 =$.20 x -2,000 =	.35 x 2,500 =	.20 x 1,000 =	2,250+400-875-200=
	2,250 MW	-400 MW	875 MW	200 MW	1,575
LRA3	.20 x 7,500 =	.25 x -2,000 =	.15 x 2,500 =	.00 x 1,000 =	1,500+500-375-0=
	1500 MW	-500 MW	375 MW	0 MW	1,625
LRA 4	.15 x 7,500 =	.15 x -2,000 =	.20 x 2,500 =	$.10 \times -1,000 =$	1,125+300-500-100=
	1,125 MW	-300 MW	500 MW	100 MW	825
Total	7,500	-2,000	2,500	1,000	6,000

