

## WestConnect 2019 Annual Interregional Information

Annual Interregional Coordination Meeting February 19, 2019



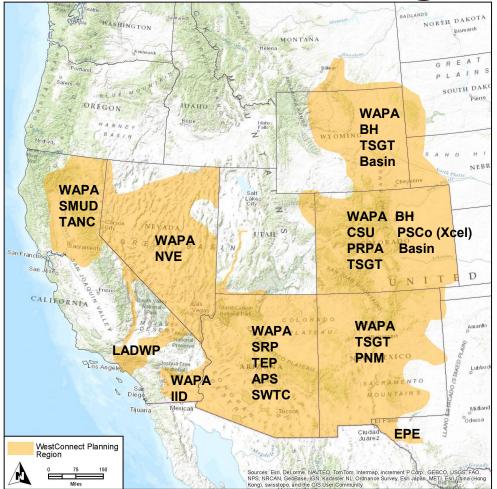
## Topics

- WestConnect Regional Planning Overview
- > 2018-19 Regional Planning Cycle
  - Model Development
  - Regional Transmission Needs Assessment
  - Scenario Studies
- Interregional Transmission Project Submittals
- Upcoming Meetings



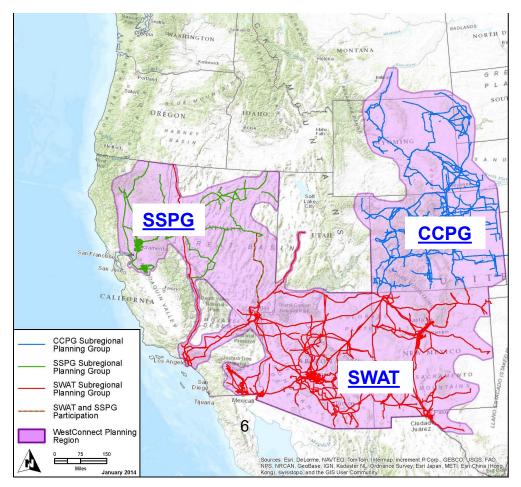
# WestConnect Regional Planning Overview

Charlie Reinhold, WestConnect Project Manager



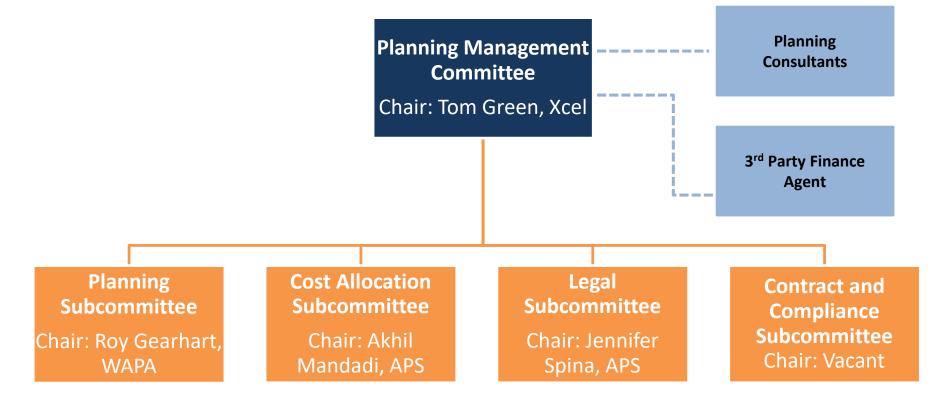

### **Regulatory Update**

- Regional Compliance Filings
  - All tariff revisions related to the regional planning requirements of Order 1000 were fully accepted by FERC on January 21, 2016
  - On August 8, 2016 the 5<sup>th</sup> Circuit Court of Appeals vacated FERC's compliance orders related to mandates regarding the role of the non-jurisdictional utilities in cost allocation
    - On <u>November 16, 2017</u> FERC upheld its previously compliance orders and provided further explanation as to why its mandates will ensure just and reasonable rates between public and non-public utility transmission providers in the WestConnect region
    - > FERC's decision is back in front of the 5th Circuit on appeal



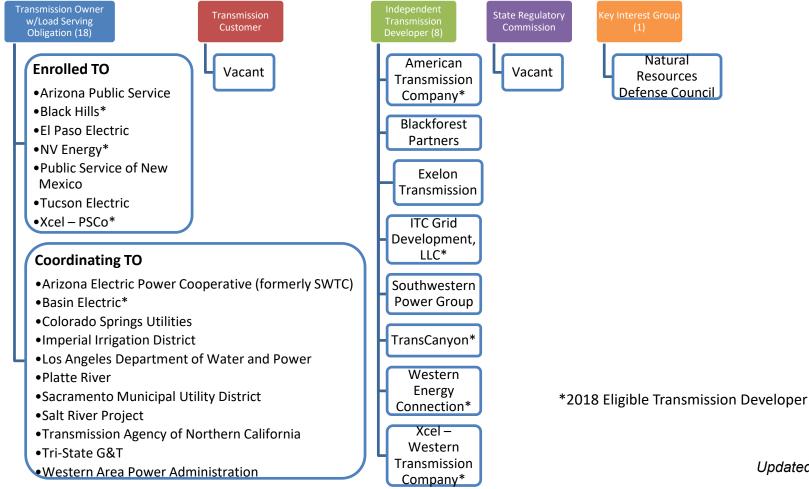

### WestConnect Planning Region






### WestConnect Subregional Planning Groups






### **PMC Organization**



### MESTCONNEC, REGIONAL PLANNING

### PMC Membership as of 12/21/2016



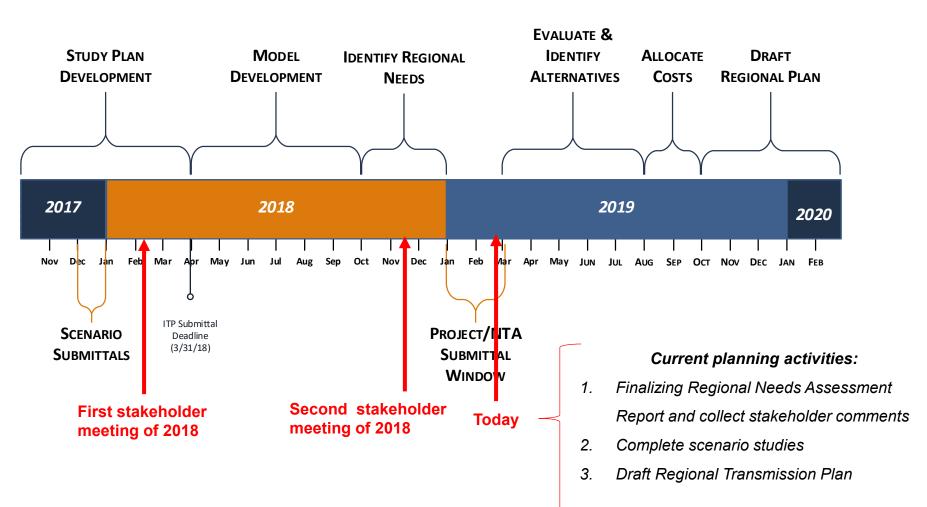


### **PMC Activities**

- Monthly in-person meetings held at rotating member facilities
  - > 2019 Meeting Schedule is available on the WestConnect Calendar
- Manages the Regional Transmission Planning Process
- Currently developing the scenario studies as outlined in the <u>2018-19</u> <u>Regional Study Plan</u>



### 2018-2019 Regional Planning Cycle Update


### Roy Gearhart, Planning Subcommittee Chair, WAPA

# **Planning Update Topics**

- 1. Summarize completed 2018-19 planning tasks:
  - ➢ Study Plan
  - Model Development Report
- 2. Review results of Regional Needs Assessment
  - Study work is complete
  - > Documentation is being finalized and will be available for stakeholder comment
- Summary of Scenario studies and current status
   ➤ Key assumptions and study methods
  - Schedule for completion
- 4. Next steps and schedule for remainder of 2018-19 planning cycle
   ➢ Drafting of 2018-19 Regional Transmission Plan
- 5. Interregional Notes
- 6. Opportunities for stakeholder engagement



### 2018-19 Process Update





# **Two Key Planning Tasks are Complete**

### • 2018-19 Study Plan was approved by PMC on March 14, 2018

- > Numerous iterations and public drafts made available to stakeholders for comment
- Final version is available on WestConnect website
- Identifies reliability and economic Base Cases (which inform the Regional Assessment), the Base Transmission Plan, and the scope of the Regional Assessments
- Includes two information-only scenario studies: CAISO export condition and load stress (both reliability assessments)
- 2018-19 Model Development Report was approved by the PMC on January 16, 2019
  - > In this cycle, the actual study models were approved individually as they were prepared/finalized
  - The report summarizes the key assumptions in the models used to perform the regional needs assessment



### **Base Transmission Plan**

- Base Transmission Plan is the transmission network topology that is reflected in the regional planning models.
  - Base Transmission Plan = *Planned* TO Projects + *High probability* ITD Projects
- Inclusion is based on project information gathered in WestConnect's Transmission Plan Project List for the 2018-19 cycle – this was collected in early 2018
- The Model Development Report will provide details about what the 2018-19 Base Transmission Plan represents

| Type of Project                  | Number of Projects | Transmission Line<br>Project Miles | Planned Investment<br>(\$K) |         |  |
|----------------------------------|--------------------|------------------------------------|-----------------------------|---------|--|
| Substation                       | 61                 | N/A                                | \$                          | 220,021 |  |
| Transmission Line                | 75                 | 647                                | \$                          | 357,005 |  |
| Transmission Line and Substation | 21                 | 197                                | \$                          | 256,732 |  |
| Transformer                      | 22                 | N/A                                | \$                          | 29,080  |  |
| Other                            | 12                 | N/A                                | \$                          | 70,309  |  |
| Total Projects                   | 191                | 843                                | \$                          | 933,147 |  |

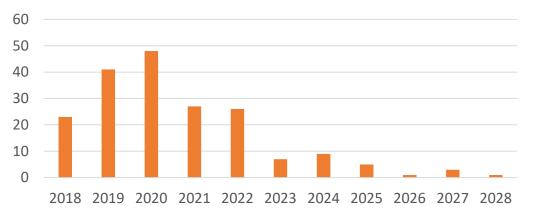
#### **Overview of 2018-19 Base Transmission Plan**



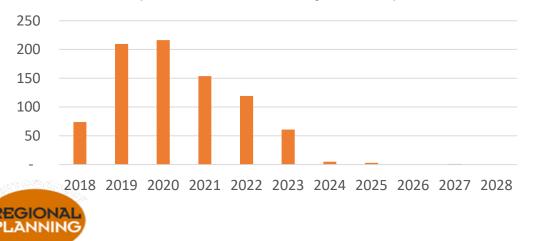
### **Base Transmission Plan: Changes from Last Cycle**

### Projects placed in-service between the 2016-2017 & 2018-2019 Cycle

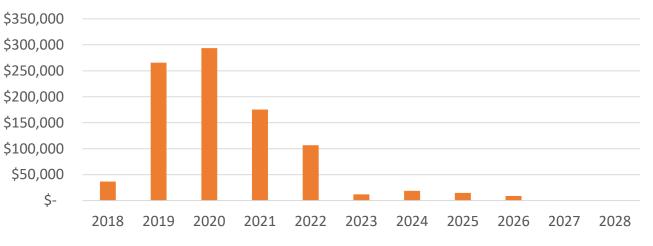
| Type of Project                  | Number of<br>Projects | Transmission<br>Line Project<br>Miles | Planned<br>Investment<br>(\$K) |
|----------------------------------|-----------------------|---------------------------------------|--------------------------------|
| Substation                       | 7                     | N/A                                   | \$27,002                       |
| Transmission Line                | 13                    | 42                                    | \$28,210                       |
| Transmission Line and Substation | 2 77                  |                                       | \$15,800                       |
| Transformer                      | 7                     | N/A                                   | \$35,392                       |
| Other                            | 7                     | N/A                                   | \$1,447                        |
| Total Projects                   | 36                    | 119                                   | \$107,851                      |

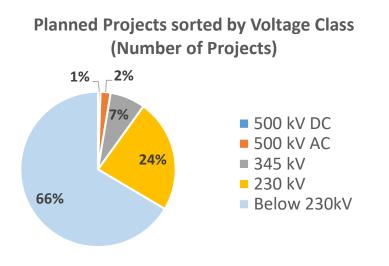

#### Projects starting construction between the 2016-2017 & 2018-2019 Cycle

| Type of Project                  | Number<br>of<br>Projects | Transmission<br>Line Project<br>Miles | Planned<br>Investment (\$K) |
|----------------------------------|--------------------------|---------------------------------------|-----------------------------|
| Substation                       | 3                        | N/A                                   | \$ 24,096                   |
| Transmission Line                | 4                        | 153                                   | \$297,000                   |
| Transmission Line and Substation | -                        | N/A                                   | \$ -                        |
| Transformer                      | 1                        | N/A                                   | \$10,000                    |
| Other                            | 1                        | N/A                                   | \$38,600                    |
| Total Projects                   | 9                        | 153                                   | \$369,696                   |




# **Base Transmission Plan: Timing of Projects**


Planned Projects by In-Service Year (Number of Projects)




Planned Projects by In-Service Year (Transmission Line Project Miles)



Planned Projects by In-Service Year (Planned Investment (\$K))





## **Base Transmission Plan: Geography and Drivers**

#### Planned Projects by State(s) Traversed

| State          | Number of<br>Projects | Transmission<br>Line Project<br>Miles | Planned<br>Investment<br>(\$K) |
|----------------|-----------------------|---------------------------------------|--------------------------------|
| Arizona        | 65                    | 237                                   | \$263,017                      |
| California     | 28                    | 7                                     | \$22,423                       |
| Colorado       | 32                    | 254                                   | \$350,296                      |
| Nevada         | 24                    | 11                                    | \$31,000                       |
| New Mexico     | 12 127                |                                       | \$138,109                      |
| South Dakota   | 2                     | 48                                    | \$23,400                       |
| Texas          | 10                    | 14                                    | \$-                            |
| Wyoming        | 10                    | 20                                    | \$52,902                       |
| Multiple       | 8                     | 127                                   | \$52,000                       |
| Total Projects | 191                   | 843                                   | \$933,147                      |

#### **Planned Projects by Driver**

| Driver         | Driver Number of Projects Transmission Li<br>Project Miles |     | Planned Investment<br>(\$K) |
|----------------|------------------------------------------------------------|-----|-----------------------------|
| Reliability    | 171                                                        | 826 | \$858,148                   |
| Public Policy  | 14                                                         | 4   | \$46,749                    |
| Economic       | 6                                                          | 13  | \$28,250                    |
| Total Projects | 191                                                        | 843 | \$933,147                   |

Planned Projects by Subregional Planning Group (Transmission Line Project Miles)





## Models Approved for Regional Assessment

| Case Name                         | Study Type  | Case Description and Scope                                                                                                                                  |
|-----------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2028 Heavy<br>Summer Base<br>Case | Reliability | Expected peak load for June - August during 1500 to 1700 hours MDT, with typical flows throughout the Western Interconnection                               |
| 2028 Light<br>Spring Base Case    | Reliability | Light-load conditions in spring months during 1000 to 1400 hours MDT with solar and wind serving a significant but realistic portion of the WECC total load |
| 2028 Base Case<br>PCM             | Economic    | Business-as-usual, expected-future case with median load and hydro conditions and representation of resources consistent with enacted public policies.      |



## **Regional Assessment Study Work is Complete**

- The work scope defined in the Study Plan has been completed and the PMC has concluded that there are **no regional transmission needs** in the WestConnect footprint
- This conclusion is based on member review of:
  - Reliability analyses: Neither the Heavy Summer or Light Spring assessments identified regionally significant reliability issues that were between two or more WestConnect member or impacted two or more WestConnect members
    - The results include 14 voltage issues within multi-TO systems and 7 branch overloads and 105 voltage issues within single-TO systems which the Planning Subcommittee determined to be local issues and not regional.
  - Economic analysis: There was no regionally significant congestion identified in the base case, and thus, there were no identified regional economic needs.
    - The results include 9 congested elements in multi-TO systems and 21 congested elements in single-TO systems which the Planning Subcommittee determined to be local issues and not regional.
- The Planning Subcommittee and the PMC are finalizing the documentation that supports these conclusions ("Regional Needs Assessment Report")



## **Reliability Assessment**

- Assessment for regional needs was based on reliability standards adopted by the North American Electric Reliability Corporation (NERC) TPL-001-4 Table 1 (P0 and P1) and TPL-001-WECC-CRT-3.1 (Transmission System Planning Performance WECC Regional Criterion)
- Steady state contingency analysis:
  - Limited to N-1 contingencies for elements 230-kV and above, generator step-up transformers for generation with at least 200 MW capacity, and member-requested N-2 contingencies.
  - All bulk electric system (BES) branches and buses in the WECC model were monitored with violation reports filtered to exclude branch flows that increased less than 1% and voltage decline less than 0.5%
- Transient stability analysis:
  - > Limited to contingencies that could have a regional impact 8 major contingencies across system

# Results are available in Appendix B of the Regional Assessment Report.

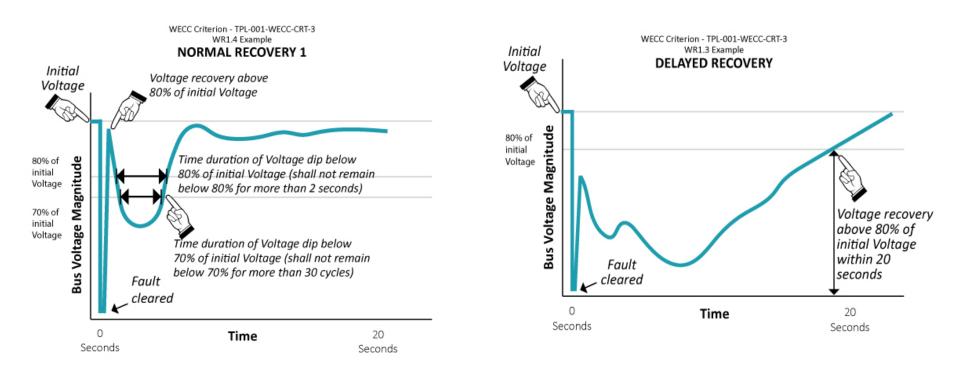


### Steady State Contingency Analysis Results

- The table on the right lists the total number of disturbances that caused issues in each power flow case
  - The disturbances are totaled by owner and sorted by affected element owner(s)/operator(s)
- The results showed 14 voltage issues within multi-TO systems, 7 branch overloads, and 105 voltage issues within single-TO systems which
  - The Planning Subcommittee determined to be local issues and not regional

|                      |                                             |    | Affect                    |                      |                                     |                  |
|----------------------|---------------------------------------------|----|---------------------------|----------------------|-------------------------------------|------------------|
| 2028 Base Case<br>PF | Disturbance Number of<br>Owner Disturbances |    | Operator(s) /<br>Owner(s) | lssue                | Number of<br>Elements<br>With Issue | Regional<br>Need |
|                      | Base Case                                   | -  | NVE                       | High V               | 1                                   | NO               |
|                      |                                             | 1  |                           | High % V<br>Decrease | 6                                   | NO               |
|                      | EPE                                         | 1  | PNM/TSGT                  | High % V<br>Decrease | 7                                   | NO               |
|                      | EPE                                         | 1  | PNM                       | Low V                | 1                                   | NO               |
|                      |                                             | 1  |                           | High % V<br>Decrease | 1                                   | NO               |
| HS                   |                                             | 1  |                           | Branch<br>Overload   | 1                                   | NO               |
|                      |                                             | 1  |                           | Low V                | 1                                   | NO               |
|                      |                                             | 3  |                           | Branch<br>Overload   | 5                                   | NO               |
|                      |                                             | 4  |                           | High V               | 12                                  | NO               |
|                      | IMPA                                        | 4  | LADWP/PG&E                | High V               | 24                                  | NO               |
|                      |                                             | 1  |                           | High V               | 1                                   | NO               |
|                      |                                             | 15 |                           | Low V                | 25                                  | NO               |
|                      |                                             | 4  |                           | High V               | 12                                  | NO               |
|                      | IMPA                                        | 4  | LADWP/PG&E                | High V               | 24                                  | NO               |
| LSP                  |                                             | 1  |                           | Branch<br>Overload   | 1                                   | NO               |
|                      |                                             | 2  |                           | High V               | 4                                   | NO               |

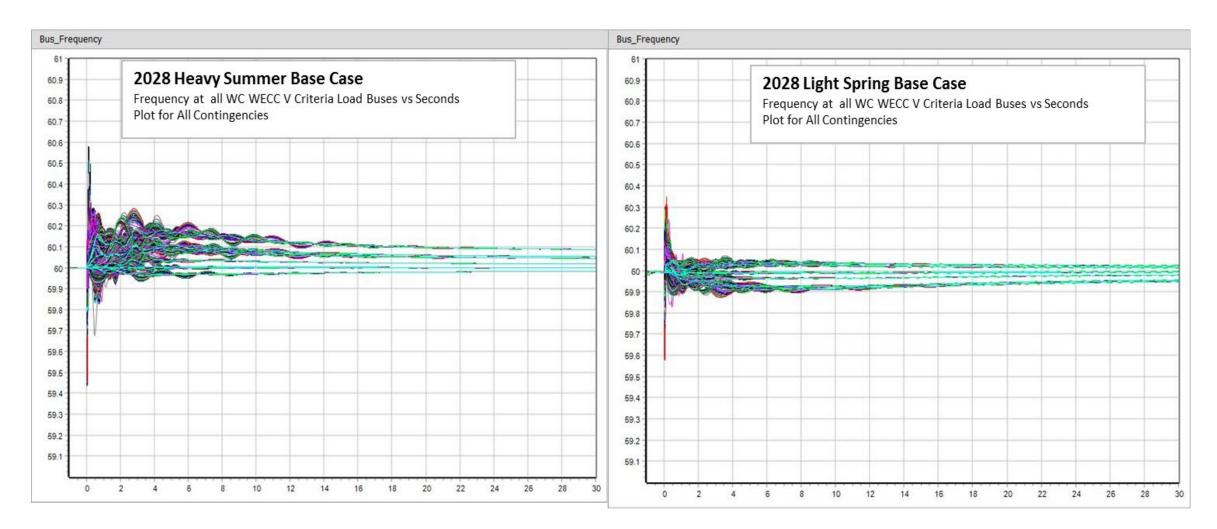



#### **Transient Stability Runs**

|    | Description                                                                                                         |
|----|---------------------------------------------------------------------------------------------------------------------|
| 1. | <b>1PV:</b> Tripping 1 Palo Verde (PV) generator and its generator step-up (GSU) transformer with fault on the Palo |
|    | Verde 500kV bus                                                                                                     |
| 2. | <b>DP-Com</b> : Tripping Daniel Park-Comanche 345kv Lines 1 & 2 with fault at the Comanche 345kV bus                |
| 3. | MS-Wind: Fault on Missile Site 345kV Bus, loss of Missile Site – Harvest Mi & Missile Site – Daniels Park 345kV     |
|    | Lines, and loss of Limon and Missile Site Wind Generation                                                           |
| 4. | LRS-Fault: Fault on Laramie River 345kV Bus, loss of Laramie River – Ault 345kV Line, & loss of Laramie River #3    |
|    | Generation                                                                                                          |
| 5. | PV-CR_at_C: Palo Verde – Colorado River 500kV Line, Fault at Colorado River                                         |
| 6. | PV-CR_at_P: Palo Verde – Colorado River 500kV Line, Fault at Palo Verde                                             |
| 7. | Hass-NG_at_H: Hassyampa – North Gila 500kV Line, Fault at Hassyampa                                                 |

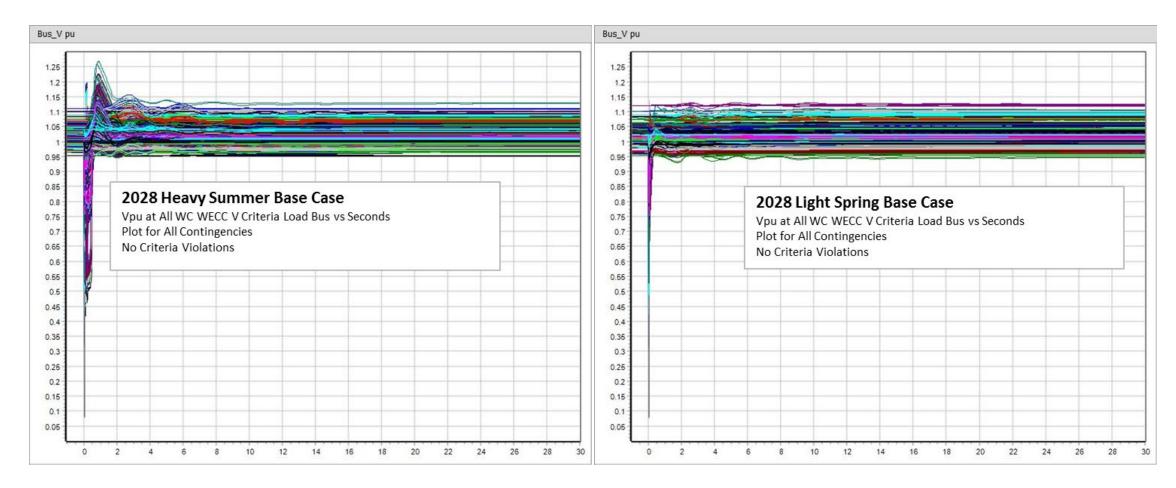
8. Hass-NG\_at\_N: Hassyampa – North Gila 500kV Line, Fault at North Gila




### **Transient stability analysis – Refresher on WECC Criteria**



- Recovery should be stable (not volatile)
- Oscillations (if any) should be damped
- Above plots show acceptable recovery of BES bus serving load




### Frequency at All WestConnect Load Buses with WECC Voltage Criteria, for All Transient Stability Simulated Contingencies in Each Reliability Base Case





### Per Unit Voltage at All WestConnect Load Buses with WECC Voltage Criteria, for All Transient Stability Simulated Contingencies in Each Reliability Base Case





### Summary of Transient Stability Simulations: No Violations. The Unrestored Load & Tripped Generation Reported by The Simulations Is Acceptable Per TPL standards

|                      | Disturbance                                        | HS Summary   |            |                              |                | LSP Summary      |            |                              |                |                  |
|----------------------|----------------------------------------------------|--------------|------------|------------------------------|----------------|------------------|------------|------------------------------|----------------|------------------|
| Area Name            | Owner Name                                         | Name         | Violations | Tripped Load<br>(Unrestored) | Tripped<br>Gen | Islanded<br>Load | Violations | Tripped Load<br>(Unrestored) | Tripped<br>Gen | Islanded<br>Load |
| WestConnect          | WestConnect                                        | Base         | 0          | 0                            | 0              | 0                | 0          | 0                            | 0              | 0                |
| ARIZONA              | APS, City of LA, EPE, IID,<br>PNM, SRP, SCE, SCPPA | 1PV          | 0          | 2,894                        | 119            | 65               | 0          | 815                          | 102            | 65               |
| PSCOLORADO           | Xcel/PSCO                                          | DP-Com       | 0          | 107                          | 0              | 0                | 0          | 68                           | 0              | 0                |
| PSCOLORADO           | Xcel/PSCO                                          | MS-Wind      | 0          | 304                          | 0              | 0                | 0          | 103                          | 0              | 0                |
| WAPA R.M.            | BEPC, TSGT                                         | LRS-Fault    | 0          | 29                           | 0              | 0                | 0          | 14                           | 102            | 0                |
| SOCALIF              | SCE                                                | PV-CR_at_C   | 0          | 640                          | 0              | 0                | 0          | 116                          | 0              | 0                |
| ARIZONA,<br>SOCALIF  | SCE                                                | PV-CR_at_P   | 0          | 3,035                        | 119            | 0                | 0          | 831                          | 0              | 0                |
| ARIZONA,<br>SANDIEGO | APS                                                | Hass-NG_at_H | 0          | 1,775                        | 0              | 0                | 0          | 574                          | 0              | 0                |
| SANDIEGO             | APS                                                | Hass-NG_at_N | 0          | 37                           | 0              | 0                | 0          | 57                           | 0              | 0                |

No Violations, & the unrestored load & tripped gen reported by the simulations is acceptable per TPL standards (see Table 1 in <u>TPL-001-4</u>)

• Note "c." in <u>TPL-001-4</u>: Simulate the removal of all elements that Protection Systems and other controls are expected to automatically disconnect for each event.



• Note "b." in <u>TPL-001-4</u>: Consequential Load Loss as well as generation loss is acceptable as a consequence of any event excluding PO.

#### WestConnect

## **Economic Assessment**

- Objective was to arrive at a set of congested elements that warranted testing for the economic potential for a regional project solution, recognizing that the presence of congestion does not always equate to a regional need for congestion relief at a particular location.
- The congestion analysis was limited to:
  - Transmission elements (or paths/interfaces) between multiple WestConnect member TOs;
  - Transmission elements (or paths/interfaces) owned by multiple WestConnect member TOs; and
  - Congestion occurring within the footprints of multiple TOs that has potential to be addressed by a regional transmission project or non-transmission alternative.
- Congestion within a single TO's footprint (and not reasonably related or tied to other TO footprints) is out of scope of the regional planning effort and is alternatively subject to Order 890 economic planning requirements.



|                                      | Element Information                      |                                    |                  |  |  |
|--------------------------------------|------------------------------------------|------------------------------------|------------------|--|--|
| Owner/<br>Operator(s)                | Branch/Path Name                         | Hrs) / Cost (\$)<br>2028 Base Case | Regional<br>Need |  |  |
| TANC WAPA-SNR BPA <br>PACW PGE CAISO | P66 COI                                  | 69 (0.79%) / 3,795K                | No               |  |  |
| WAPA-RM PSCO                         | SANJN PS-WATRFLW 345kV Line Ckt 1        | 74 (0.84%) / 2,209K                | No               |  |  |
| BEPC TSGT                            | SAWMILLCK-LAR.RIVR 230kV Line Ckt 1      | 4 (0.05%) / 941K                   | No               |  |  |
| WAPA-RM TSGT DG&T                    | P30 TOT 1A                               | 8 (0.09%) / 828K                   | No               |  |  |
| TSGT EPE PNM                         | P47 Southern New Mexico                  | 42 (0.48%) / 690K                  | No               |  |  |
| BEPC TSGT PACE                       | DAVEJOHN-SAWMILLCK 230kV Line Ckt 1      | 3 (0.03%) / 490K                   | No               |  |  |
| NVE LADWP                            | P32 Pavant-Gonder InterMtn-Gonder 230 kV | 36 (0.41%) / 311K                  | No               |  |  |
| LADWP NVE                            | INTERMT-GONDER 230kV Line Ckt 1          | 1 (0.01%) / 6K                     | No               |  |  |
| TSGT WAPA-RM                         | P36 TOT 3                                | 2 (0.02%) / 3K                     | No               |  |  |
|                                      |                                          | 324 (4%) / 17,671K                 | No               |  |  |
|                                      |                                          | 1,089 (12%) / 16,645K              | No               |  |  |
|                                      |                                          | 1,896 (22%) / 14,825K              | No               |  |  |
|                                      |                                          | 894 (10%) / 8,219K                 | No               |  |  |
|                                      |                                          | 431 (5%) / 7,218K                  | No               |  |  |
|                                      |                                          | 307 (4%) / 4,877K                  | No               |  |  |
|                                      |                                          | 67 (0.76%) / 2,459K                | No               |  |  |
|                                      |                                          | 177 (2%) / 1,885K                  | No               |  |  |
|                                      |                                          | 55 (0.63%) / 1,482K                | No               |  |  |
|                                      |                                          | 47 (0.54%) / 1,439K                | No               |  |  |
|                                      |                                          | 117 (1%) / 996K                    | No               |  |  |
|                                      |                                          | 2 (0.02%) / 627K                   | No               |  |  |
|                                      |                                          | 6 (0.07%) / 482K                   | No               |  |  |
|                                      |                                          | 21 (0.24%) / 358K                  | No               |  |  |
|                                      |                                          | 72 (0.82%) / 357K                  | No               |  |  |
|                                      |                                          | 2 (0.02%) / 18K                    | No               |  |  |
|                                      |                                          | 1 (0.01%) / 16K                    | No               |  |  |
|                                      |                                          | 1 (0.01%) / 10K                    | No               |  |  |
|                                      |                                          | 1 (0.01%) / 2K                     | No               |  |  |
|                                      |                                          | 1 (0.01%) / 13K                    | No               |  |  |
|                                      |                                          |                                    | No               |  |  |
|                                      | Total Congestion Cost:                   | \$88,870K                          |                  |  |  |

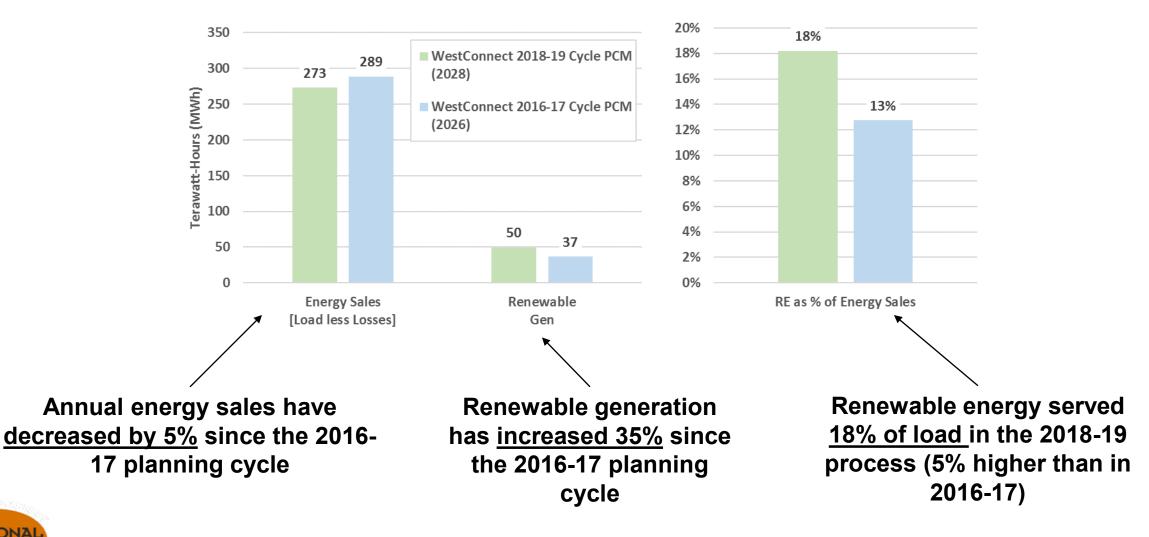
### Results of Regional Economic Needs Assessment

- Appendix C of the Regional Needs
   Assessment Report contains additional
   information about how WestConnect came to
   the determination that the congestion did not
   justify a regional economic need
- A wheeling charge sensitivity was performed to test impact to congestion as a result of that assumption.
  - The sensitivity did not justify any regional economic needs
  - The results are also available in Appendix C



# **Public Policy Assessment**

- WestConnect begins evaluation by identifying a list of enacted public policies that impact local TO (see study plan)
- Enacted public policies were incorporated into the base models through the roll-up of local TO plans and their associated load, resource, and transmission assumptions.
- Regional public policy needs can be identified one of two ways:
  - > New regional economic or reliability needs driven by enacted Public Policy Requirements; or
  - Stakeholder review of local TO Public Policy Requirements-driven transmission projects and associated suggestions as to whether one or more TO projects may constitute a public policy-driven regional transmission need.
- No regional public policy needs were identified in the 2018-19 planning cycle




### **Enacted Public Policies Incorporated into 2028 WestConnect Planning Models**

| Enacted Public Policy                       | Description                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arizona Renewable                           | Requires IOUs and retail suppliers to supply 15% of electricity from renewable resources by 2025), with a minimum of 30% of the renewable resources                                                                                                                                                                                         |
| Energy Standard                             | provided by distributed generation                                                                                                                                                                                                                                                                                                          |
| California SB350                            | Requires IOUs and municipal utilities to meet a 50% RPS by 2030 and also requires the establishment of annual targets for energy efficiency savings                                                                                                                                                                                         |
| California AB398/SB32                       | Requires the California State Air Resources Board to approve a statewide greenhouse gas emissions limit equivalent to the statewide greenhouse gas emissions level in 1990 to be achieved by 2020 and to ensure that statewide greenhouse gas emissions are reduced to at least 40% below the 1990 level by 2030.                           |
| Colorado SB 07-100                          | Requires IOUs to identify Energy Resource Zones, plan transmission to alleviate constraints from those zones, and pursue projects according to the timing of resource development in those zones                                                                                                                                            |
| Colorado HB10-1001                          | Established Colorado Renewable Energy Standard (RES) to 30% by 2020 for IOUs (Xcel & Black Hills)                                                                                                                                                                                                                                           |
| Colorado SB13-252                           | Requires cooperative utilities to generate 20% of their electricity from renewables by 2020                                                                                                                                                                                                                                                 |
| Colorado HB10-1365                          | Requires rate regulated utilities in CO with coal-fired generation to reduce emissions on the smaller of 900 MW of generation of 50% of a company's coal generation fleet. Full implementation to be achieved by 12/31/2017                                                                                                                 |
| Nevada SB123                                | To reduce emissions from coal-fired generators, requires reduction of at least 800 MW generation capacity from coal-fired generation plants, addition of at least 350 MW of generating capacity from renewable energy facilities, and construction of at least 550 MW of generating capacity from other types of generating plants by 2020. |
| Nevada SB374                                | Requires net metering be available to each customer-generator who submits a request to the company.                                                                                                                                                                                                                                         |
| Nevada Renewable<br>Portfolio Standard      | The percentage of renewable energy required. Increases every two years until it reaches 25 percent by 2025.                                                                                                                                                                                                                                 |
| New Mexico Efficient Use<br>of Energy Act   | Require utilities to include cost-effective EE and DR programs in their resource portfolios and establish cost-effectiveness as a mandatory criterion for all programs.                                                                                                                                                                     |
| New Mexico Renewable<br>Energy Requirements | Subject to the Reasonable Cost Threshold (RCT), the RPS Rule outlines renewable energy requirements that are a function of PNM's retail energy sales.                                                                                                                                                                                       |
|                                             | <ul> <li>No less than 10% of retail energy needs for calendar years 2011 through 2014;</li> <li>No less than 15% of retail energy needs for calendar years 2015 through 2019;</li> </ul>                                                                                                                                                    |
|                                             | • No less than 20% of retail energy needs for calendar year 2020 and subsequent years                                                                                                                                                                                                                                                       |
| SRP 2020 20% Sustainable<br>Energy Goal     | SRP has established a goal that by 2020, SRP will meet a target of 20% of its expected retail energy requirements with sustainable resources. Among them are a diversified resource mix of wind, geothermal, large hydro and low-impact hydro, and solar.                                                                                   |

#### WestConnect

# Comparison of Net Load/Sales and renewable generation across planning cycles (entire WestConnect Region)





### Scenario Studies are Currently Under Development

• Study plan included two scenario studies:

#### **Load Stress Study**

Purpose: Test the robustness of the Base Transmission Plan against changes in load.

**Assumptions:** Study will be performed using the peak load condition from the Base Case production cost model. To stress the system, loads will be increased 10% and the generation-load gap will be filled with existing generator capacity not already dispatched in Base Case. In certain areas, renewable capacity may be added if there is not sufficient existing generation to meet the load increase. Details of the redispatch to fill the load-generation gap will need to be addressed through the Planning Subcommittee, the intent of the scenario is to focus on reliability, but a congestion/economic study may be considered if deemed useful.

• 10% is a guideline and may vary, depending on input from TO's

#### **CAISO Export Stress Study**

Purpose: Evaluate the reliability of the WestConnect regional system if power flows from the CAISO to WestConnect during CAISO overgeneration conditions.

**Assumptions:** Performed using a realistic CAISO export to WestConnect condition from the WestConnect 2028 Base Case production cost model. The export condition will be defined, technically, based on (1) simulation results from the WestConnect 2028 Base Case production cost model filtered for hours in which the CAISO exports to WestConnect; and (2) technical guidance from the CAISO describing the type of conditions that might cause flows from the CAISO to WestConnect to help reduce the flagged hours (if multiple) to a single hour. The details of the analysis will be determined at a later date by the Planning Subcommittee.



## Load Stress Scenario Assumptions

- Conforming loads in the 2028 Heavy Summer case are being updated based on specific instruction from each TO
  - Default target is adjustment to conforming loads such that total load increase is 10%
  - Certain TOs opted to adjust their total load 5%
  - >Others targeted specific MW values for their system
- Current status:
  - Members are providing feedback on generation dispatch to meet load increase
  - Based on this feedback Energy Strategies will develop draft 1 of case and perform preliminary contingency analysis
  - ➤This work will take place during February and March



## CAISO Export Scenario Assumptions

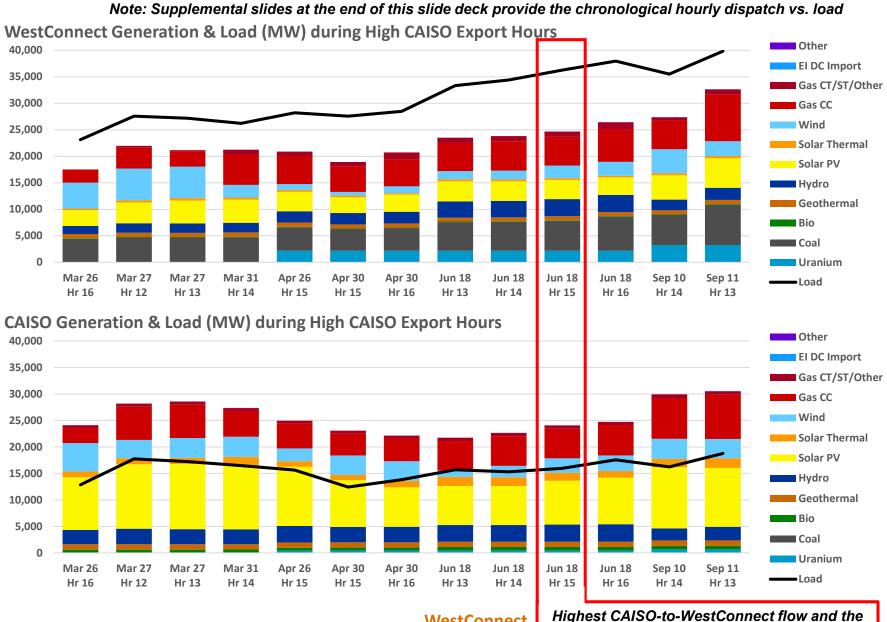
- Purpose: Evaluate the reliability of the WestConnect regional system if power flows from the CAISO to WestConnect during CAISO overgeneration conditions
- Simulation results from the WestConnect 2028 Base Case production cost model was filtered for hours in which the CAISO exports to WestConnect
  - This information was used to establish realistic future conditions that result in export
- Current status:
  - ➢June 18 Hour 15 selected by members
  - Draft 1 was constructed based on PCM assumptions. Members are reviewing test results and study case will be iterated to address member comments.
  - ➤This work will take place during February and March



### CAISO Export PF Scenario Case – Screening CAISO Export Hours (Continued)

- FYI, focusing on hours with CAISO Export &/or W-to-E Flow on P46 & P49 flowing ≥80% of their annual max away from CAISO &/or W-to-E:
  - More spring hours

|           |      | Flow (MW)  |            |                                 | % of Max   | CAISO Export | : &/or W-to-E Flow              |
|-----------|------|------------|------------|---------------------------------|------------|--------------|---------------------------------|
| Date      | Hour | P46 [E->W] | P49 [E->W] | CAISO Export to WC<br>(Approx.) | P46 [E->W] | P49 [E->W]   | CAISO Export to WC<br>(Approx.) |
| 3/26/2028 | 16   | -2,303     | -4,276     | 5,752                           | 54%        | 78%          | 89%                             |
| 3/27/2028 | 12   | 674        | -2,607     | 5,187                           | 0%         | 48%          | 80%                             |
| 3/27/2028 | 13   | 15         | -2,475     | 5,547                           | 0%         | 45%          | 86%                             |
| 3/31/2028 | 14   | -955       | -2,585     | 5,180                           | 23%        | 47%          | 80%                             |
| 4/26/2028 | 15   | -509       | -3,078     | 5,327                           | 12%        | 56%          | 83%                             |
| 4/30/2028 | 15   | -2,292     | -4,542     | 6,456                           | 54%        | 83%          | 100%                            |
| 4/30/2028 | 16   | -1,661     | -3,524     | 5,232                           | 39%        | 65%          | 81%                             |
| 6/18/2028 | 13   | -2,724     | -4,647     | 4,814                           | 64%        | 85%          | 75%                             |
| 6/18/2028 | 14   | -3,122     | -4,995     | 5,252                           | 74%        | 91%          | 81%                             |
| 6/18/2028 | 15   | -4,231     | -5,463     | 6,284                           | 100%       | 100%         | 97%                             |
| 6/18/2028 | 16   | -4,107     | -5,189     | 6,143                           | 97%        | 95%          | 95%                             |
| 9/10/2028 | 14   | -3,130     | -4,537     | 5,570                           | 74%        | 83%          | 86%                             |
| 9/11/2028 | 13   | -1,944     | -4,587     | 5,386                           | 46%        | 84%          | 83%                             |


• A few more mid- and late-summer hours

Hour 15 of June 18th has the highest CAISO-to-WestConnect flow and is the proposed basis for CAISO Export PF Case

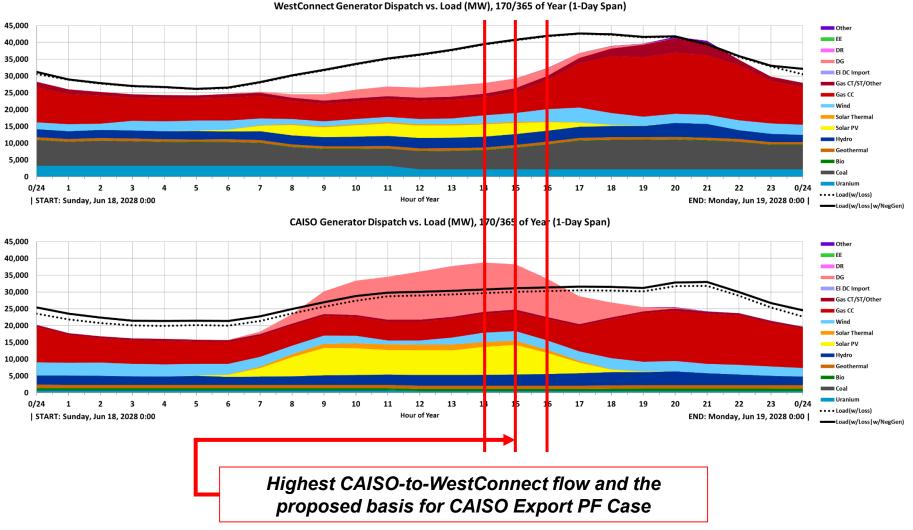


Note: "CAISO Export to WC (Approx.)" includes all monitored, "seam" branches between CAISO and WestConnect Load Areas (i.e., flow on unmonitored/non-BES "seam" branches is not included)

#### Summary of WestConnect & CAISO Contracted Generation & Load during High **CAISO Export Hours**



REGIONAL PLANNING


#### **WestConnect**

proposed basis for CAISO Export PF Case

### WestConnect & CAISO Gen/Load during High CAISO Export Hours

= CAISO Export &/or W-to-E Flow on P46 & P49 >=90% of annual max
 = CAISO Export &/or W-to-E Flow on P46 & P49 >=80% of annual max

Note: Behind-the-meter (BTM) generation is shown on the resource-side in these charts & is not part of the Load





## Next steps and schedule for remainder of 2018-19 planning cycle

- Finalize Regional Assessment Report
  - 1. Approval by PMC to distribute for Stakeholder comments
  - 2. Collect and review/respond to Stakeholder comments
  - 3. PMC approves final version of document
- Finalize scenario assessments
  - 1. Finish technical analysis in Planning Subcommittee and report any findings to PMC
  - 2. Decide where/how to document study the PMC has not taken up this issue
- Draft 2018-19 Regional Transmission Plan
  - 1. Targeting approval of document in late Q4
  - 2. Official stakeholder comment period will likely take place around November meeting
  - 3. Will be a roll-up of prior reports
- Begin to focus on 2020-2021 Study Plan in late Q4



# **Opportunities for stakeholder engagement**

- Stakeholders may comment on interim reports that are being finalized in 2019 (Model Development, Regional Assessment)
  - The 2018-19 Regional Transmission Plan will be made available in Q4 2019 and this document will be available to stakeholders for comments/review
  - The Regional Assessment Report is also available for comments
- 2. Stakeholders may participate in Planning Subcommittee or PMC meetings
- 3. WestConnect will also be participating in the Interregional Coordination Meeting in February 2019, and stakeholders are invited to attend this meeting
- 4. To joint email distribution lists, contact Heidi Pacini (<u>heidi@pacenergies.com</u>)
- 5. The next Stakeholder Meeting will be in November, 2019





### Interregional Transmission Project (ITP) Submittals

### Charlie Reinhold, WestConnect Project Manager

### **2018 Interregional Transmission Project Submittals**

ESTCON

REGIONAL

PLANNING

| Project Name                       | Company                           | Project Submitted To         | Lead Planning Region | Seeking Cost<br>Allocation from<br>WestConnect |
|------------------------------------|-----------------------------------|------------------------------|----------------------|------------------------------------------------|
| Cross-Tie Project                  | TransCanyon, LLC                  | WestConnect<br>CAISO<br>NTTG | WestConnect          | Yes                                            |
| HVDC Conversion<br>Project         | San Diego Gas & Electric          | WestConnect<br>CAISO         | CAISO                | No                                             |
| North Gila - Imperial<br>Valley #2 | ITC Grid Development, LLC.        | WestConnect<br>CAISO         | WestConnect          | Yes                                            |
| SWIP North                         | Western Energy Connection,<br>LLC | WestConnect<br>CAISO<br>NTTG | NTTG                 | Yes                                            |
| TransWest Express<br>DC            | TransWest Express, LLC            | WestConnect<br>CAISO<br>NTTG | CAISO                | Yes                                            |
| TransWest Express<br>AC/DC         | TransWest Express, LLC            | WestConnect<br>CAISO<br>NTTG | CAISO                | Yes                                            |

ITP Evaluation Process Plans from the 2018-19 planning cycle can be reviewed here

Since WestConnect did not identify any regional transmission needs in the 2018-19 regional planning cycle, WestConnect will not evaluate any ITPs in the 2018-19 planning cycle.



### **Upcoming Meetings**

### > WestConnect PS & PMC Meetings:

- March 19-20, Energy Strategies Offices, Salt Lake City, UT
- No CAS meetings currently scheduled
- > 2019 WestConnect Stakeholder Meetings:
  - November 21, 2019, Tempe, AZ (tentative)



## Additional Information Regarding the Regional Planning Process can be Accessed at: www.WestConnect.com



### **Questions?**

Presenter Contact Information: Charlie Reinhold, <u>reinhold@ctcweb.net</u> Tom Green, <u>Thomas.Green@xcelenergy.com</u> Roy Gearhart, <u>Rgearhar@wapa.gov</u> Keegan Moyer, <u>kmoyer@energystrat.com</u>