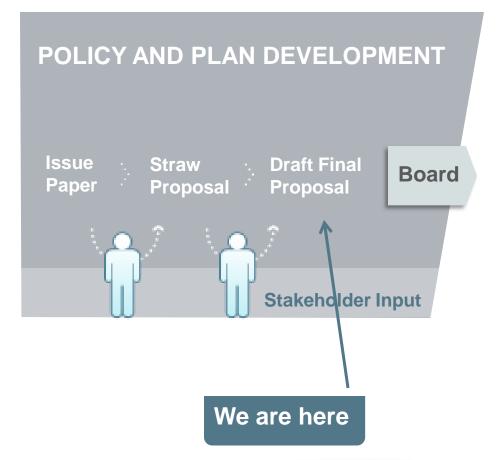


Flexible Ramping Product

2nD Revised Straw Proposal

Lin Xu, Ph.D. Senior Market Development Engineer

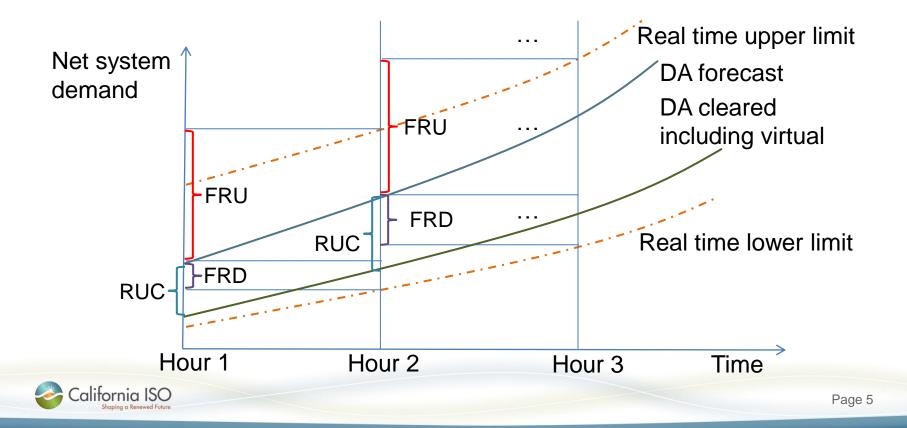
Don Tretheway Senior Market Design and Policy Specialist



Agenda

Time	Торіс	Presenter
10:00 – 10:10	Introduction	Chris Kirsten
10:10 - 11:00	Proposed Market Design Timeline	Don Tretheway
11:00 – 12:00	15 Minute Scheduling and Settlement Discussion	Don Tretheway
12:00 – 1:00	Lunch Break	
1:00 – 2:30	15 Minute Scheduling and Settlement Discussion	Don Tretheway
2:30 – 2:45	Break	
2:45 – 3:55	Flexible Ramping Product	Lin Xu
3:55 - 4:00	Wrap-up and Next Steps	Chris Kirsten

ISO Policy Initiative Stakeholder Process


Topics

- Capacity bids
 - Only allow flex ramp capacity bids in day-ahead market
 - Do not allow flex ramp capacity bids in real-time market
- Day-ahead flex ramp procurement
- Downward flex ramp examples

Day-ahead maximum procurement

- Flex ramp covers potential net movement between net demand forecast in hour t and real-time band in hour t+1
- RUC covers the difference between day-ahead net demand forecast and the cleared net demand in hour t
- Flex ramp capacity reserved on top of RUC schedule

Day-ahead maximum procurement example

	IFM	RUC		RT lower limit	RT upper limit
	Hour h	Hour h		Hour h+1	Hour h+1
load	10000		12000	11500	12500
renewable	1000		2000	3000	1000
self schedule	2000		2000	2000	2000
net virtual gen	200		0	0	0
Net demand	6800		8000	6500	9500
Requirement		RUC		FRD	FRU
			1200	-1500	1500

Downward flex ramp RTD examples

- Demonstrate properties and benefits of downward flex ramp under the assumption that net demand change is accurately predicted
- Four scenarios
 - Scenario 1: single interval RTD optimization without downward flex ramp
 - Scenario 2: single interval RTD optimization with downward flex ramp
 - Scenario 3: two-interval RTD optimization without downward flex ramp
 - Scenario 4: two-interval RTD optimization with downward flex ramp

Scenario 1 and scenario 2

Generator data

Gen	EN Bid	FRU bid	FRD bid	En init	Ramp rate	Pmin	Pmax
G1	25	0	0	300	10	0	500
G2	30	0	0	100	100	0	500

EN – energy FRU – flexible ramping up FRD – flexible ramping down

Scenario 1: no flex ramp down

Scenario 2: with flex ramp down

	Interval t (LMP=\$30)		
gen	Energy	Flex-ramp up	Flex-ramp down
G1	350		
G2	30		

	Interval t (LMP=\$25, FRDP=\$5)			
gen	Energy	Flex-ramp up	Flex-ramp down	
G1	260		50	
G2	120		120	

Scenario 3: look ahead without flex ramp

	Interval t (LMP=\$30)			Interval t+5 (LMP=\$20)		
gen	Energy	Flex-ramp up	Flex-ramp down	Energy	Flex-ramp up	Flex-ramp down
G1	260			210		
G2	120			0		

- Price consistency
 - Price consistent with bid over the horizon, but not on single interval basis
 - How about price consistency over time with settling the first interval
 - If net system demand is slightly higher in RTD interval t+5, the binding RTD LMP for interval t+5 will be \$25 set by G2. In this case, G1 is over paid \$5 in interval t.
 - If net system demand is slightly lower in RTD interval t+5, the binding RTD LMP for interval t+5 will be -\$35 as a result of power balance violation due to insufficient downward ramp. However, if RTD had created more downward ramping capability in interval t, we could have prevented the power balance violation.

Scenario 4: look ahead with flex ramp

	Interval t (LMP=\$25, FRDP=\$5)			Interval t+5 (LMP=\$25)		
gen	Energy	Flex-ramp up	Flex-ramp down	Energy	Flex-ramp up	Flex-ramp down
G1	259.99		50	210		
G2	120.01		120.01	0		

- Price consistency is maintained for both intervals with downward flex ramp requirement slightly higher than the expected system movement
 - How about price consistency over time with only settling the first interval
 - If net system demand is slightly higher in RTD interval t+5, the binding RTD LMP for interval t+5 will be \$25 set by G1. In this case, price is consistent with bid over time.
 - If net system demand is slightly lower in RTD interval t+5, the binding RTD LMP for interval t+5 will still be \$25. In this case, price is also consistent with bid over time.
- With flex ramp, the RTD price is less volatile, and fully support the schedule in this example without causing any bid cost recovery

Next Steps

Item	Date
Post 2 nd Revised Draft Final Proposal	October 24, 2012
Stakeholder Meeting	October 30, 2012
Stakeholder Comments Due	December 1, 2012
Resume Stakeholder Initiative	June 2013
Board of Governors Meeting	Fall 2013

ISO will hold technical conference in early 2013 on iDAM

Submit written comments to FRP@caiso.com

Product design: Lin Xu <u>Ixu@caiso.com</u> 916-608-7054

Cost Allocation: Don Tretheway dtretheway@caiso.com 916-608-5995

