

Stochastic Modeling Status Report

California ISO Workshop

February 10, 2012

Arne Olson Andrew DeBenedictis Ryan Jones

+ Description of methodology

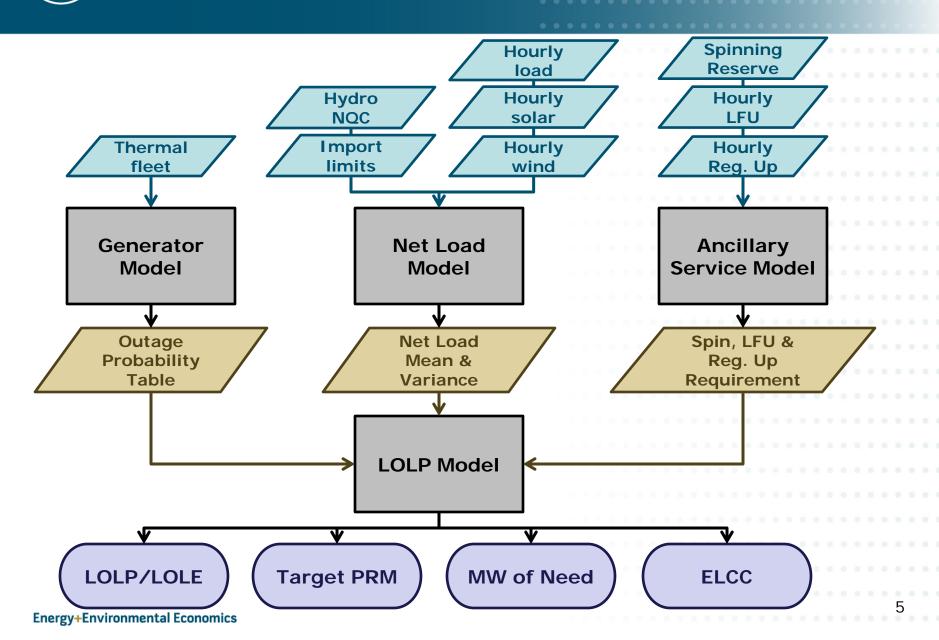
- Generator Model: development of generator outage table
- Net Load Model: development of net load curve
- LOLP Model: integrates prior models and calculates metrics
- + Preliminary results
- + Next steps

Energy+Environmental	Economics
----------------------	-----------

Summary of Approach to Need Modeling

- Calculate LOLP-based metrics to determine need that is due to factors unrelated to system flexibility
 - Load levels, imports, hydro, renewable production during peak hours
- Calibrate LOLP model to historical reserve margin (15-17%)
 - Agree not to contest 15-17% reserve margin
 - Focus only on *changes* to traditional reserve margins caused by introduction of renewables
- Use CAISO model and PLEXOS to test for flexibility within otherwise reliable system
 - Calibrate imports, renewables production, hydro production, etc. to expected values from LOLP model

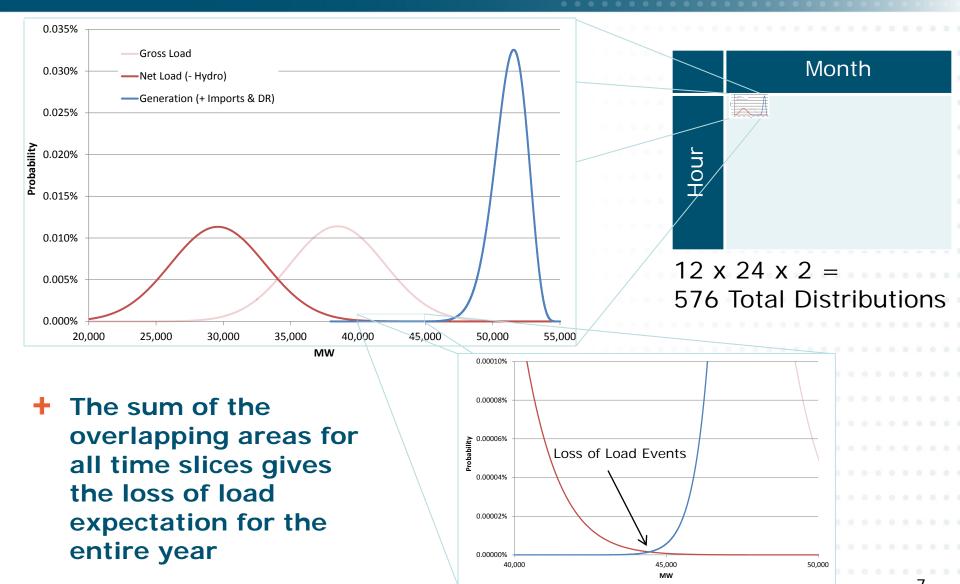
Hourly LOLP Model Overview

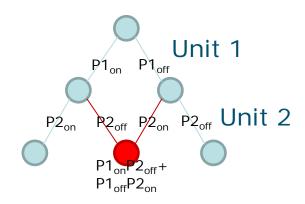

+ Five-step methodology:

- Step 1: calculate generator outage probability table
- Step 2: calculate hourly net load mean and variance
- Step 3: add reserve requirements for within-hour variability
- Step 4: calculate probability that $G \leq L$ for 8760 hours
- Step 5: add generation until LOLE = target reliability level

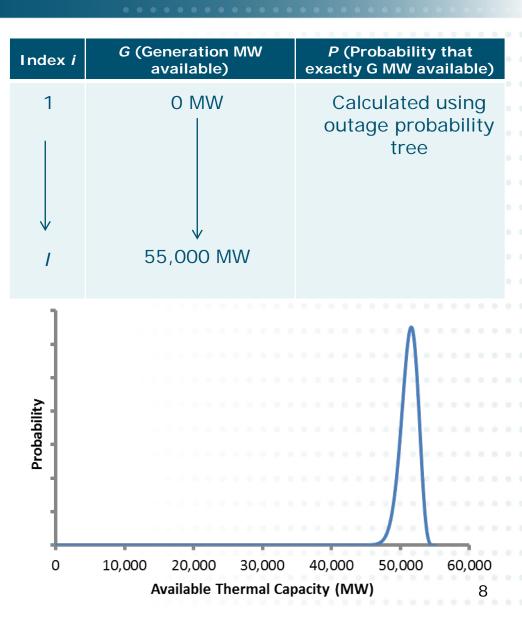
+ Additional useful calculations

- Target Planning Reserve Margin (i.e., reserve margin that achieves 1-day-in-10-year reliability)
- Renewables Effective Load-Carrying Capability (ELCC) at various penetration levels


E3 LOLP Model Flow Chart



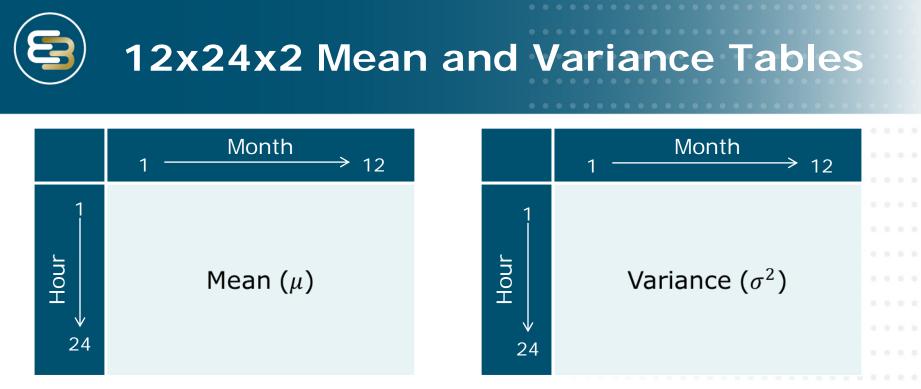
- Loss of Load Probability (LOLP) is the probability that load will exceed generation in a given hour
- Loss of Load Expectation (LOLE) is total number of hours wherein load exceeds generation. This is calculated as the sum of all hourly LOLP values during a given time period (e.g., a calendar year)
- Effective Load Carrying Capability (ELCC) is the additional load met by an incremental generator while maintaining the same level of system reliability
- Target Planning Reserve Margin (TPRM) is the planning reserve margin needed to meet a specific reliability standard, e.g., '1 day in 10 years'


Loss of Load Probability Occurs When Generation < Net Load + AS

Description of Generator Model

 The probability of combinations of thermal unit forced outages are calculated by fully enumerating a binary outage probability tree

The net load is gross load minus expected wind and solar output


- Mean and Variance for load, wind, and solar calculated from available data
- Covariances are calculated using the years with concurrent data sets
- Makes maximum use of all available data

Net load mean and variance calculated for 576 annual time periods

 24 x 12 x 2: 24 hours per day, 12 months, 2 day types (workday vs. weekend/holiday)

Data Availability

	Load	Solar	Wind
1990		Х	
1991		X	
1992		X	
1993		х	
1994		х	
1995		Х	
1996		Х	
1997		Х	
1998		X	
1999		X	
2000		X	
2001		X	
2002		Х	
2003	X	X	
2004	х	X	х
2005	Х	X	X
2006	X		Х
2007	х		
2008	х		
2009	X		
2010	х		

- The mean (μ) and variance (σ^2) of gross load for each day type (L_d) , wind output for each zone (W_i) , and solar output for each zone and technology (S_j) are calculated for each month, hour and day type (workday or not)
- The Net Load mean and variance are then calculated using (where ρ_{jk} represents the correlation between data sets j and k):

•
$$\mu_{NetLoad} = \mu_L - \sum_i \mu_{W_i} - \sum_j \mu_{S_j}$$

• $\sigma_{NetLoad}^{2} = \sigma_{L}^{2} + \sum_{i} \sigma_{W_{i}}^{2} + \sum_{j} \sigma_{S_{j}}^{2} - 2\sum_{i} \sigma_{W_{i}} \sigma_{L} \rho_{W_{iL}} - 2\sum_{i} \sigma_{S_{j}} \sigma_{L} \rho_{S_{jL}} + 2\sum_{i} \sum_{j} \sigma_{W_{i}} \sigma_{S_{j}} \rho_{W_{i}S_{j}} + 2\sum_{i} \sum_{k>i} \sigma_{W_{i}} \sigma_{W_{k}} \rho_{W_{i}W_{k}} + 2\sum_{j} \sum_{k>j} \sigma_{S_{j}} \sigma_{S_{k}} \rho_{S_{j}S_{k}}$

+ Hydro dispatch is difficult to model

- Water budgets and storage horizons vary by project
- Each project subject to minimum flow and maximum ramp constraints

 E3 approach: subtract monthly hydro NQC value from load during each hour of month

- Assumes that hydro is *available* to dispatch up to NQC value during any hour of the month, if needed to avoid loss of load
- Does *not* assume that hydro is *actually* dispatched to NQC value

- System operator procures reserves to avoid problems within the hour
- + Three types of reserves:
 - Contingency reserve: needed to avoid firm load curtailment under Stage 3 emergency
 - Regulation reserve: needed to capture within-hour net load variability
 - Load following up: needed to avoid lost load due to net load forecast errors

+ Current Status:

- Current runs assume 2.5% of load for spinning reserve
- Regulation and LFU not yet considered

															ŝ

- LOLP Model compares Net Load levels to generator outage table and calculates reliability metrics
 - PRM, LOLE, TPRM, ELCC, Need
- + LOLE Standard "1 day in 10 years" can be interpreted in various ways:

- For high renewables cases, focus on the *change* in PRM due to renewables
 - Calculate TPRM for All-Gas Case first, then look at change in TPRM from addition of renewables

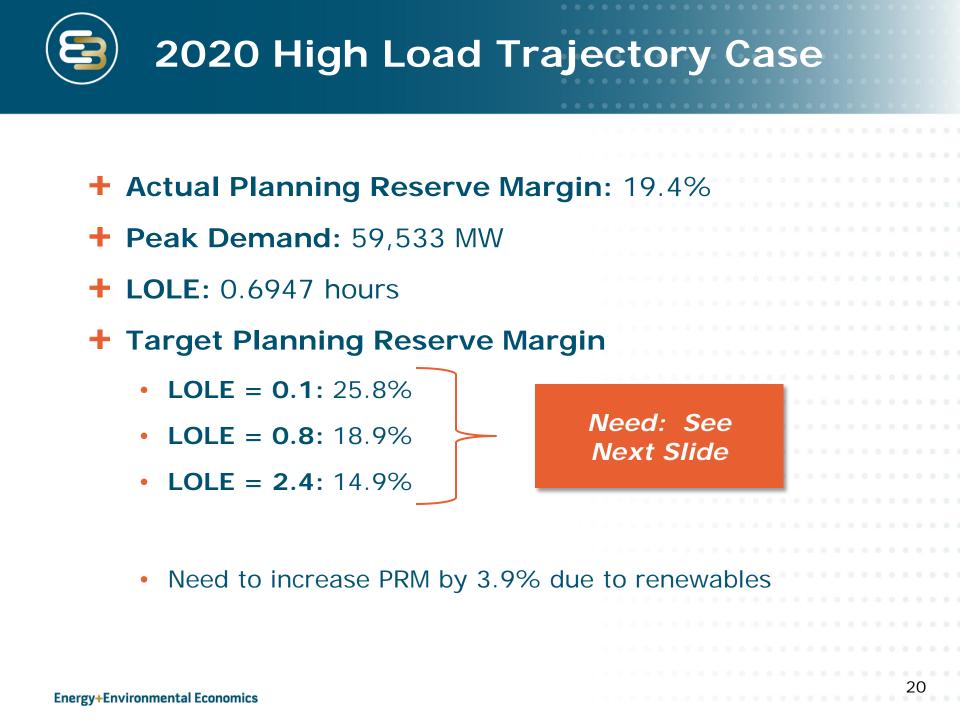
+ Key Assumptions for LOLP model

- Net load can be represented by a normal distribution
- Generation on the system is infinitely flexible
- No internal transmission constraints or local resource adequacy requirements
- Imports always available at specified limits
- Hydro always available to dispatch up to NQC value during each hour of month if needed to avoid loss of load
- Policy-driven demand reductions (EE, CSI, DR, CHP) are fixed and perfectly reliable
- Economic growth assumptions behind base load growth forecast are perfectly accurate
- Generation resources are fixed as per scenario specs

		• •								
reliminary	Res	• •	5							
	100	• •								

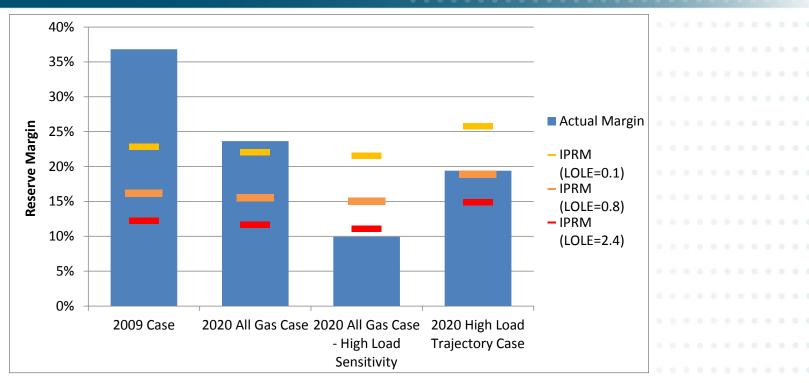
Four Cases/Sensitivities

	2009 Case	2020 All Gas Case	2020 All Gas Case: High Load Sensitivity	2020 High Load Trajectory Case
Peak Load (MW)	50,561	54,121	59,533	59,533
Actual Reserve Margin	36.8%	23.6%	9.9%	19.4%
Summer Peak Imports (MW)	14,886	14,886	14,886	13,410
Nameplate Wind (MW)	1,425	1,425	1,425	5,538
Nameplate Solar (MW)	437	437	437	8,985
Notes		Scheduled generator retirements and additions	10% higher load	Trajectory renewable build-out to 33% of load

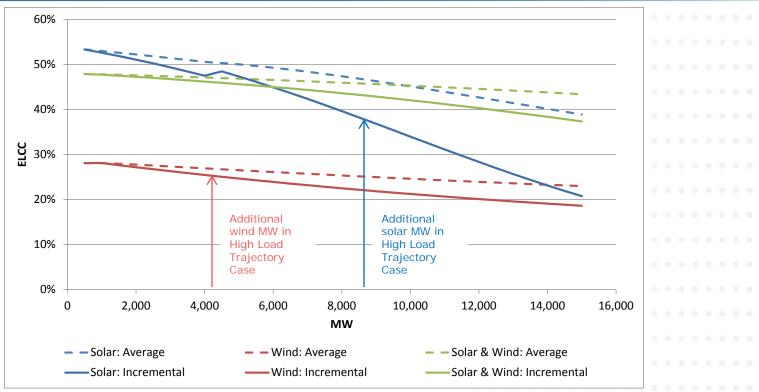


2009 Case	• • • • • • • • • • • • • • • • • • •
+ Actual Planning Reserve M	argin: 36.8%
+ Peak Demand: 50,561 MW	
+ LOLE: 0.00056 hours	
+ Target Planning Reserve M	argin
• LOLE = 0.1: 22.8%	
• LOLE = 0.8: 16.2%	No need using any LOLE target
• LOLE = 2.4: 12.2%	
 Range of Target Planning Resourcent practices 	erve Margins consistent with

2020 All-Gas Case	
+ Actual Planning Reserve Ma	argin: 23.6%
+ Peak Demand: 54,121 MW	
+ LOLE: 0.05852 hours	
+ Target Planning Reserve Ma	argin
• LOLE = 0.1: 22.1%	3
• LOLE = 0.8: 15.5%	No need using any LOLE target
• LOLE = 2.4: 11.6%	any LOLL target
 Target reserve margins decrea reliable 	se as fleet becomes more
v+Environmental Economics	18



Calculating Need in High Load Trajectory Case Calculate All Gas TPRM 15.0% 2. Calculate Trajectory TPRM 18.9% 3. Define \triangle TPRM = Trajectory TPRM – 3.9% **All Gas TPRM** 4. Add \land TPRM to traditional 15-17% PRM to derive final PRM for **Trajectory Case** 5. Multiply (1 + final PRM) by Peak 70,795-71,986 M Load to get Target NQC Compare to NQC of existing fleet 71,087 MW 6. 7. Target NQC > fleet NQC indicates (292 MW) – 899 MW need for new generation


Need for high renewables case calculated as a function of the change in TPRM relative to All-Gas Case

- + Combined load growth to 2020 and generator retirements not enough to require additional resources in 2020
 - However, 10% increase in load creates need due to shrinking actual reserve margin and relatively stable Target Planning Reserve Margin
- 3.9% increase in TPRM (LOLE = 0.8) from All Gas to Trajectory High Load Cases
 - This translates to 2,332 NQC MW
- + Regulation and Load Following Up requirements NOT explicitly included

ELCC as a Function of Renewables Penetration

- + Shown for 2020 All Gas Case: High Load Sensitivity
 - MW additions are incremental to solar and wind MW already installed in 2009 Case
 - Mix of wind and solar sites maintains proportions of 2020 Trajectory Case
- Increasing renewable penetration leads to decreasing effectiveness
 - However, a 70/30 split of solar and wind maintains effectiveness

Next Steps

Next Steps	
+ Continued calibration ar	nd clean-up of base model
+ Add Regulation and Loa requirements (increments)	
Evaluate change in TPRI updated to reflect ELCC	
Generate and review rest scenarios (Trajectory, E	
+ Compare results agains	t PLEXOS need results
Energy+Environmental Economics	25

Thank You!

Energy and Environmental Economics, Inc. (E3) 101 Montgomery Street, Suite 1600 San Francisco, CA 94104 Tel 415-391-5100 Web http://www.ethree.com

Arne Olson, Partner (arne@ethree.com) Andrew DeBenedictis, Senior Associate (andrew@ethree.com) Ryan Jones, Associate (ryan.jones@ethree.com)