
Net Export Rule¹: Deriving the generation value of storage device G(t)

 $G(t)^{nx} = \sum_{i=1}^{n} G(i, t) - \min\{0, N(i, t)\}$

Where,

- $i = 1,2, \dots n \text{location}$
- G(i, t) storage device generation metered output at location i during the dispatch interval t
- N(i, t) net meter quantity at location i during dispatch interval t

Assume²:

- N(i, t) = +7
- Load at facility = +10
- BTM storage device Gen = -3

Then apply the net export rule:

 $G(t)^{nx} = (-3) - \min(0,7)$ $G(t)^{nx} = -3$

Discharge value after applying the net export rule is 3 MW

¹ Applicable when determining performance for PDR-LSR curtailment only.

² A specific sign convention was used in developing the application of the net export rule. Load served by the storage device is expressed as a positive quantity and its output in a discharging mode is a negative quantity. This is used in the application of the net export rule only.

Typical Use Calculation: Curtailment

Pmax = 3 MW $G(t)^{nx}$ = -3 MW Dispatched for 3 MW (Tuesday, May 30)

	Table 1: Examination	of 10 similar days,	non-event intervals ³
--	----------------------	---------------------	----------------------------------

	5/1	5/2	5/3	5/4	5/5	5/8	5/9	5/10	5/11	5/12	5/15	5/16	5/17	5/18	5/19	5/22	5/23	5/24	5/25	5/26	5/29
Curtailment ⁴	E	E	0	0	0	Е	2	0	0	2	4	E	0	E	0	Е	0	2	1	1	E
Consumption ⁵	0	0	-4	E	E	0	0	-2	-2	0	0	0	-2	0	E	0	-2	0	0	0	0

E represents an event*

Typical use formula:

 $G_{LM} = Max \{ (G_{LMcurt} + G_{LMcons}), 0 \}$

- *G*_{LM} Typical use value
- *G*_{LMcurt} Typical curtailment value (simple average of 10 non-event 15-minute intervals)
- *G_{LMcons}* Typical consumption value (simple average of 10 non-event 15-minute intervals)

³ Event interval is one in which the PDR-LSR was subject to an Outage or previously provided Demand Response Services (other than capacity awarded for AS or RUC). ⁴Curtailment sign convention is expressed as positive quantity representing energy storage output in a discharging mode. This convention used for both the typical use and performance evaluation calculations.

⁵ Consumption sign convention is expressed as negative quantity representing energy storage input in a charging mode. This convention used for both the typical use and performance evaluation calculations.

Determine and add the simple interval average for both the curtailment and consumption values:

$$G_{LM} = Max \left\{ \begin{bmatrix} \frac{1+1+2+0+0+4+2+0+0+2}{10} \\ 0 \end{bmatrix} + (\frac{0+0+0+(-2)+(-2)+0+0+(-2)+(-2)+0}{10} \end{bmatrix} \right\}$$

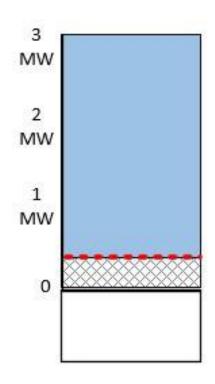
Then identify the value at or above 0: $G_{LM} = Max \{ [1.2 + (-.8)], 0 \}$

Load curtailment typical value is evaluated as .4 MW:

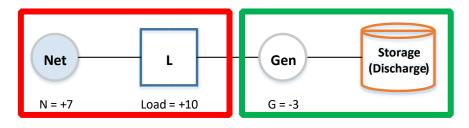
 $G_{LM} = .4$

Performance Evaluation Methodology: LSR-Curtailment

Pmax = 3 MW


 $G(t)^{nx}$ = -3 MW

```
G_{LM} = .4 MW
```


Performance Evaluation (LSR-Curtailment) formula:

 $LSR_{curt} = [|G(t)^{nx}| - G_{LM}]$

- $|G(t)^{nx}|$ Generation value of the energy storage device (net export rule applied)
- *LSR_{curt}* Curtailment performance of PDR-LSR
- G_{LM} Typical use value
 Calculate the difference between the generation and typical use value: LSR_{curt} = [3 - .4]
 Resource provided 2.6 MW of load curtailment: LSR_{curt} = 2.6 MW

Performance Evaluation Methodology: Facility Load Curtailment + LSR Curtailment

$$DR_{Load}(t) = \max\{B_{N-G}(t) - [N(t) - \min(G(t), 0)], 0\}$$

Table 2: Examination of 10 similar non-event days and the total MWhs delivered during a 15-minute interval event period

	5/1	5/2	5/3	5/4	5/5	5/8	5/9	5/10	5/11	5/12	5/15	5/16	5/17	5/18	5/19	5/22	5/23	5/24	5/25	5/26	5/29
Facility load ³	E	E	11	E	E	E	12	E	13	10	10	E	10	E	E	E	11	10	E	12	11

11 + 12 + 13 + 10 + 10 + 10 + 11 + 10 + 12 + 11

 $B_{N-G}(t) = 10$ $B_{N-G}(t) = 11$ $DR_{Load}(t) = \max\{11 - [7 - (-3)], 0\}$ $DR_{Load}(t) = \max\{1, 0\}$ $DR_{Load}(t) = 1 \text{ MW}$

Facility provided 1 MW of load curtailment

 $LSR_{totalcurt}(t) = DR_{load}(t) + LSR_{curt}(t)$ $LSR_{totalcurt}(t) = 1 + 2.6 MW$ $LSR_{totalcurt}(t) = 3.6 MW$

Facility and energy storage provided 3.6 MWs of load curtailment

³ Facility load is expressed as positive quantity.

Typical Use Calculation: Consumption

Maximum Consumption = -4 MW

G(t) = -4 MW Dispatched for -4 MW (Tuesday, May 30)

Table 3: Examination of 10 similar days, non-event intervals⁷

	5/1	5/2	5/3	5/4	5/5	5/8	5/9	5/10	5/11	5/12	5/15	5/16	5/17	5/18	5/19	5/22	5/23	5/24	5/25	5/26	5/29
Curtailment ⁸	Е	Е	0	0	0	Е	2	0	0	2	4	0	0	E	0	Е	0	2	0	1	0
Consumption ⁹	0	0	-4	E	E	0	0	E	-2	0	0	E	-2	0	E	0	-2	0	E	0	-3

E represents an event*

Typical use formula:

 $G_{LM} = Min \{ (G_{LMcurt} + G_{LMcons}), 0 \}$

- *G_{LM}* Typical use value
- *G*_{LMcurt} Typical curtailment value (simple average of 10 non-event 15-minute intervals)
- *G*_{LMcons} Typical consumption value (simple average of 10 non-event 15-minute intervals)

⁷ Event interval is one in which the PDR-LSR was subject to an Outage or previously provided Demand Response Services (other than capacity awarded for AS or RUC). ⁸ Curtailment sign convention is expressed as positive quantity representing energy storage output in a discharging mode. This convention used for both the typical use and performance evaluation calculations.

⁹ Consumption sign convention is expressed as negative quantity representing energy storage input in a charging mode. This convention used for both the typical use and performance evaluation calculations.

Determine the simple average of the typical curtailment/consumption values:0 + 1 + 2 + 0 + 0 + 4 + 2 + 0 + 2 + 0(-3) + 0 + 0 + (-2) + (-2) + 0 + 0 + (-2) + 0 + (-4) $G_{LM} = Min \{ [(10) + 0 + (-1) + 0 + (-1) + 0 + (-1) + 0 + (-1) + (-1) + 0 + (-1) + (-1) + 0 + (-1)$

Then identify the typical value at or below 0: $G_{LM} = Min \{ [1.1 + (-1.3)], 0 \}$

Resource is typically consuming load at -.2 MW

 $G_{LM} = -.2$

Performance Evaluation Methodology: LSR-Consumption

G(t) = -4 MW $G_{LM} = -.2 \text{ MW}$

Performance Evaluation (LSR-Consumption) formula:	0	*****
$LSR_{cons} = [G(t) - G_{LM}]$	MW	
 LSR_{cons} – Consumption value of PDR-LSR 	-1	
 G(t) – Load value of the energy storage device 	MW	
• G_{LM} – Typical use value		
	-2	
Calculate the difference between the generation and typical use value:	MW	
$LSR_{cons} = [-4 - (2)]$		
$LSR_{cons} = -3.8 MW$	-3	
$LSR_{cons} = -3.8 MW$	MW	
	8.2.1	
Resource provided -3.8 MW of load consumption:	-4 MW	
	10100	

Г

٦