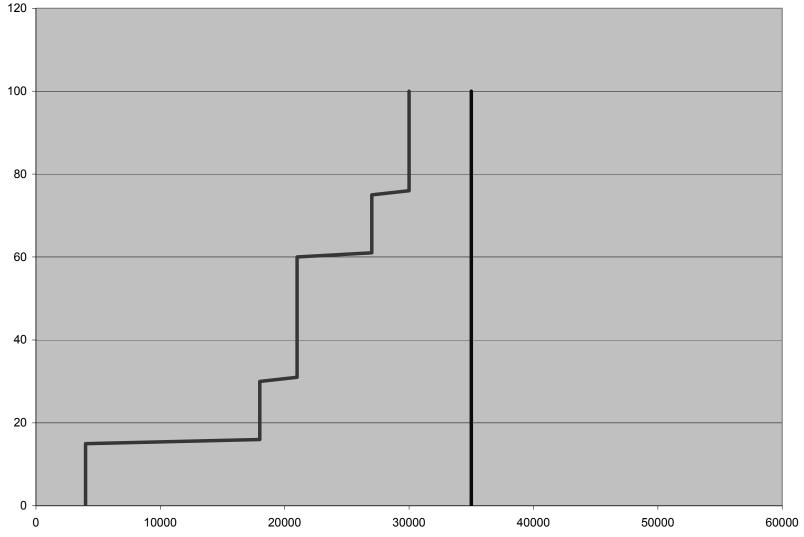
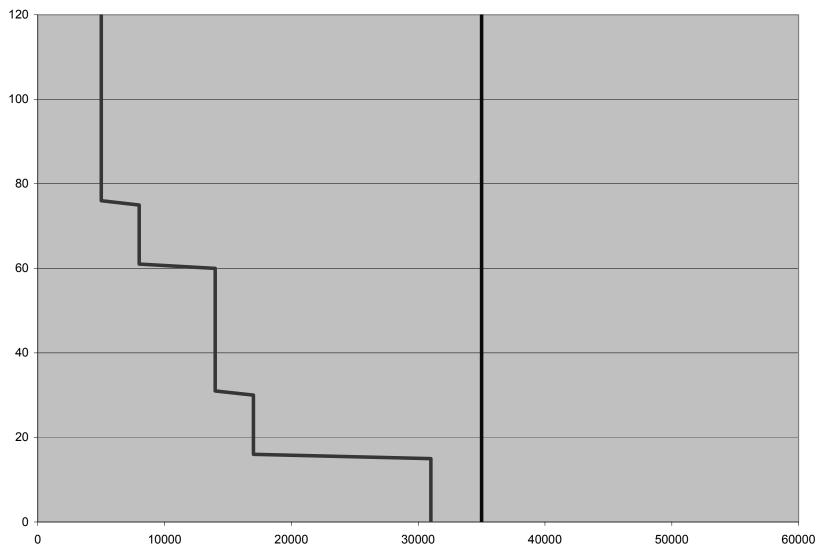

Residual Demand Based Competitive Analysis: an example

> James Bushnell MSC


Market Structure

	Capacity with costs at or below					Native Demand
	\$15/MWh	\$30/MWh	\$45/MWh	\$60/MWh	\$75/MWh	1
Firm A	500	1000	2000	3000	4000	
Firm B	500	1000	2000	3000	4000	
Firm C	500	1000	2000	3000	4000	
Firm D	500	1000	2000	3000	4000	
Firm E	500	1000	2000	3000	4000	
Small Instate	4000	8000	9000	9000	10000	
Import	10000	20000	22000	28000	30000	10000
Total	0	33000	41000	52000	60000	35000


Total Supply

Competitive "Fringe" Supply

Inverse Residual Demand

Cournot Firms Maximize Profits

 Solve first order conditions for profit maximization – taking into account contracts and retail obligations

$$\frac{\partial \pi_{i,t}}{\partial q_{i,t}} = p_t^w(q_{i,t}, q_{-i,t}) + [q_{i,t} - q_{i,t}^r] \cdot \frac{\partial p_t^w}{\partial q_{i,t}} - C_{i,t}'(q_{i,t}) \ge 0.$$

Solution Options

- Iterative grid search
 - each firm iteratively searches for best Q given Q's of other firms. Repeat until convergence
 - deals well with discontinuities like steps in the residual demand function
 - may not converge possibly multiple equilibria
- Analytic solution
 - Simultaneously solve FOC for each Cournot firm
 - should yield unique solution
 - can accommodate optimal hydro scheduling
 - requires a fit of smooth function to fringe supply curve

Residual Demand

- market demand $Q_t = a_t b \ln(p_t)$,
- a = 42313, b = 7779.8
- or inverse $p_t = \exp((a_t Q_t)/b)$.
- $q_i^{Th,j}$ is thermal production of type j from firm i
- unit type j has marginal cost $c(q_i^{Th,j}) = K_i^j$
- and capacity $q_{i,\max}^{Th,j}$

Equilibrium Conditions

For
$$q_{it}^{Th,j}$$
, $\forall i \neq f, j, t$:

$$0 \geq \left(1 - \frac{(q_{it} - q_{it}^r)}{b_t}\right) e^{\left(\frac{a_t - \sum_l q_{lt}}{b_t}\right)} - K_i^j - \psi_{it}^j \perp q_{it}^{Th} \ge 0;$$
(A1)

 $\text{For } \psi_{it}^{j}, \forall i, j, t: \qquad 0 \leq \ \psi_{it}^{j} \ \perp \ q_{it}^{Th,j} \leq q_{it,\max}^{Th,j};$

Solutions for example

- Perfect competition
 - price = \$30.00, qi = 3170
- Cournot with no contracts

– price = \$44.64, qi = 2552

 Cournot with contract qc = 2000 for each Cournot firm

– price = \$34.25, qi = 2999

Other Issues

- Threshold mark-up levels
 - should be higher than for benchmark studies
 - can examine uncertainty from the "fit" of the import curve – develop confidence intervals
 - Price cap level may effect average mark-up
- Treatment of energy limited
 - can optimize or "peak shave"
- Treatment of derivative contracts