

Contingency Modeling Enhancements Straw Proposal

As of May 15, 2013

Contingency Modeling Enhancements Straw Proposal

Table of Contents

1.	Changes from the Issue Paper	3
2.	Background	
3.	Scope of initiative and plan for stakeholder engagement	4
4.	Comparison of NERC and WECC standards for corrective action	5
5.	U.S. ISO/RTO 30 minute reserves and mechanisms	8
6.	WECC standard compliance	12
6.1.	WECC SOL standard challenges	12
6.2.	10 minute ancillary services	12
6.3.	Exceptional dispatch	13
6.4.	MOC constraints	13
6.5.	Reliability challenges in current mechanisms	13
6.6.	Efficiency challenges in current mechanisms	15
6.7.	Potential solutions considered	16
7.	Preventive-Corrective Market Optimization Model	17
7.1.	Background	17
7.2.	Preventive-corrective market optimization	19
7.2.	1. Power system security framework	19
7.2.	2. Preventive market optimization	20
7.3.	Preventive-corrective market optimization	22
7.3.	Preventive-corrective optimization model	24
7.3.2	2. Preventive-corrective model compensation	26
7.4.	Examples	27
7.4.	1. Example 1: Out-of-merit dispatch with LMCP reflecting opportunity cost	27
7.4.2	2. Example 2: Reducing pre-contingency flow with LMCP reflecting congestion cost saving	31
7.4.	3. Example 3: Dynamic ramp rate with LMCP zeroing out uninstructed deviation incentive	32
7.4.	4. Example 4: Multiple contingencies with LMCPs reflecting location opportunity costs	35
8.	Conclusion	37
9.	Stakeholder feedback	39
10.	Next Steps	40
11	Namonalatura	11

Stakeholder comment matrix as a separate attachment available at:

http://www.caiso.com/informed/Pages/StakeholderProcesses/ContingencyModelingEnhancements.aspx

1. Changes from the Issue Paper

This straw proposal is preceded by an issue paper with a technical paper attachment posted on the ISO website March 11, 2013.¹ This straw proposal provides greater details on background information and responds to several stakeholder requests and provides clarifications. The straw proposal is organized as follows.

Section 2: Background - Unchanged from the issue paper

Section 3: Scope of initiative and plan for stakeholder engagement - Updated.

Section 4: Comparison of NERC and WECC standards for corrective action – **NEW**. Provides greater detail and side-by-side comparison of the standards this initiative seeks to meet.

Section 5: U.S. ISO/RTO 30 minute reserves and mechanisms – **NEW.** Comparison requested by stakeholders.

Section 6: WECC standard compliance – **NEW.** More detailed explanation on how ISO currently complies with the specific WECC standard using 10 minute contingency reserves, exceptional dispatches, and minimum online commitment constraints.

Section 7: Preventive-Corrective Market Optimization Model – **Updated**. Includes discussion on academic support for the proposed constraint and examples of how the constraint would work.

Section 8: Conclusion - New.

Section 9: Stakeholder feedback – **New**.

Section 10: Next Steps – **Updated.**

Section 11: Nomenclature – **Updated.**

2. Background

In the 2012 Stakeholder Initiatives Catalog the following discretionary initiative was highly ranked by stakeholders and the ISO: Additional Constraints, Processes, or Products to Address Exceptional Dispatch. The initiative was highly ranked because it will explore more efficient ways to maintain reliability and reduce reliance on exceptional dispatch. As the title of the initiative suggests, there may be different approaches to addressing the underlying causes of exceptional dispatch, each with its own resource and cost profile. Therefore, this umbrella initiative reflects both stakeholder concerns about the increase in exceptional dispatch and a broad range of tools the ISO may deploy to effectively address those concerns.

As noted in the 2012 Stakeholder Initiatives Catalog, the first issue the ISO will address under the umbrella initiative is the need to position resources to effectively reposition the system after

http://www.caiso.com/informed/Pages/StakeholderProcesses/ContingencyModelingEnhancements.aspx

CAISO 3 May 15, 2013

¹ See:

a contingency within 30 minutes. According to North American Electric Reliability Corporation (NERC)² and Western Electricity Coordinating Council (WECC)³ standards, the ISO is required to return flows on critical transmission paths to its system operating limit (SOL) within 30 minutes when a real-time contingency leads to the system being in an insecure state.

The ISO conducted a stakeholder process in 2008 to discuss the need for a mechanism to provide 30 minute operating reserves. During that process several stakeholders had suggested developing an additional 30 minute reserve product or increase procurement of 10 minute reserves. At the time, it was decided to continue using exceptional dispatch to position generation in case of a contingency while we gained more experience in the MRTU market. Since then the ISO has also incorporated the use of minimum online commitment (MOC) constraints. MOC constraints also ensure real-time reliability by committing resources in the day-ahead market to ensure system security can be maintained following a contingency in real-time. The constraint identifies the minimum generation capacity requirement, the set of generators that are effective in meeting the requirement, and the effectiveness of each generator where appropriate.⁴

3. Scope of initiative and plan for stakeholder engagement

This stakeholder initiative is narrowly focused on alternatives to exceptional dispatch and the MOC constraints in addressing the post-contingency 30 minute SOL requirement from NERC and WECC. While exceptional dispatch is used for other tariff-approved purposes, we are addressing the 30 minute need as the most important issue because this aligns with the results of the 2012 Stakeholder Initiatives Catalog and addresses a significant portion of the total instances of exceptional dispatch.

A revised schedule for stakeholder engagement is provided below and includes an additional revised straw proposal, stakeholder call, and comment period before the targeted September Board of Governors meeting.

.

² NERC standard TOP-007-0 R2

³ WECC standard TOP-007-WECC-1 R1

⁴ http://www.caiso.com/Documents/TechnicalBulletin-MinimumOnlineCommitmentConstraint.pdf

Date	Event
Mon 3/11/13	Issue Paper Posted
Tue 3/26/13	Stakeholder Call
Tue 4/9/13	Stakeholder Comments Due
Wed 5/15/13	Straw Proposal Posted
Wed 5/22/13	Stakeholder Meeting
Tue 5/28/13	Stakeholder Comments Due on Straw Proposal
Tue 6/18/2013	Post revised straw proposal
Tue 6/25/2013	Stakeholder call
Mon 7/1/2013	Stakeholder comments due
Thu 7/25/13	Draft Final Proposal Posted
Thu 8/1/13	Stakeholder Call
Thu 8/8/13	Stakeholder Comments Due on Draft Final Proposal
Thu-Fri 9/12-13/13	September BOG

4. Comparison of NERC and WECC standards for corrective action

This section provides a sample comparison of the NERC and regional standards with which the ISO must comply after a contingency. The NERC is responsible for establishing and enforcing reliability standards for the bulk power system. NERC reliability standards are minimum requirements for all of North America, but more stringent regional variations are allowed and developed via the eight regional entities as shown in Figure 1. The ISO is considered a balancing authority and transmission operator within the Western Electricity Coordinating Council (WECC).⁵

Figure 1
NERC Regional Entities

Florida Reliability Coordinating Council (FRCC)
Midwest Reliability Organization (MRO)
Northeast Power Coordinating Council (NPCC)
ReliabilityFirst Corporation (RFC)
SERC Reliability Corporation (SERC)
Southwest Power Pool, RE (SPP)
Texas Reliability Entity (TRE)
Western Electricity Coordinating Council (WECC)

Source: North American Electric Reliability Corporation

CAISO 5 May 15, 2013

⁵ For completeness, the ISO is considered under NERC standards as a Balancing Authority (BA), Transmission Operator (TOP), Planning Coordinator (PC), and a Transmission Service Provider (TSP).

The ISO must adhere to a more stringent regional standard under WECC standard TOP-007-WECC-1 versus the national standard under NERC standard TOP-007-0. Table 1 below reprints the two standards and contains highlighted text where the WECC standard is more stringent than the NERC standard.

Table 1
Comparison of NERC and WECC TOP-007 Standards

Entity	NERC	WECC
Title	Reporting System Operating Limit (SOL) and Interconnection Reliability Operating Limit (IROL) Violations	System Operating Limits
Number	TOP-007-0	TOP-007-WECC-1
Purpose	This standard ensures SOL and IROL violations are being reported to the Reliability Coordinator so that the Reliability Coordinator may evaluate actions being taken and direct additional corrective actions as needed.	When actual flows on Major WECC Transfer Paths exceed System Operating Limits (SOL), their associated schedules and actual flows are not exceeded for longer than a specified time.
Applicability	Transmission Operators and Reliability Coordinators	Transmission Operators for the major WECC paths ⁶
Requirements	R1. A Transmission Operator shall inform its Reliability Coordinator when an IROL or SOL has been exceeded and the actions being taken to return the system to within limits. R2. Following a Contingency or other event that results in an IROL violation, the Transmission Operator shall return its transmission system to within IROL as soon as possible, but not longer than 30 minutes. R3. A Transmission Operator shall take all appropriate actions up to and including shedding firm load, or directing the shedding of firm load, in order to comply with Requirement R2. R4. The Reliability Coordinator shall evaluate actions taken to address an IROL or SOL violation and, if the actions taken are not appropriate or sufficient, direct actions required to return the system to within limits.	R1. When the actual power flow exceeds an SOL for a Transmission path, the Transmission Operators shall take immediate action to reduce the actual power flow across the path such that at no time shall the power flow for the Transmission path exceed the SOL for more than 30 minutes. R2. The Transmission Operator shall not have the Net Scheduled Interchange for power flow over an interconnection or Transmission path above the path's SOL when the Transmission Operator implements its real-time schedules for the next hour. For paths internal to a Transmission Operator Area that are not scheduled, this requirement does not apply. R2.1 If the path SOL decreases within 20 minutes before the start of the hour, the Transmission Operator shall adjust the Net Scheduled Interchange within 30 minutes to the new SOL value. Net Scheduled Interchange exceeding the new SOL during this 30-minute period will not be a violation of R2.

⁶ See table titled "Major WECC Transfer Paths in the Bulk Electric System" provided at: http://www.wecc.biz/Standards/Approved%20Standards/Supporting%20Tables/Table%20Major%20Paths %204-28-08.pdf

CAISO 6 May 15, 2013

On the "Applicability" row, the NERC standard is broad because it applies to all transmission operators and reliability coordinators. On the other hand, the WECC standard specifically applies to reliable operation of the major WECC transmission paths. The major WECC paths are critical because unlike the more densely populated eastern interconnection, the WECC is characterized by its reliance on a handful of high voltage transmission lines, which transfer large amounts of energy across long distances from remotely located generation to load. As WECC notes with regard to its region-specific reliability standards, the "lack of redundant transmission in these corridors raises the level of scrutiny for these paths." The ISO is responsible for eight major WECC paths, which are system operating limits (SOLs), as shown in Table 2.

Table 2 CAISO's major WECC paths

Path name	Path number
South of Los Banos or Midway- Los Banos	15
PG&E – SPP	24
Northern – Southern California	26
SDGE – CFE	45
West of Colorado River (WOR)	46
Lugo – Victorville 500 kV	61
COI	66
SCIT	

Source: See table titled "Major WECC Transfer Paths in the Bulk Electric System" provided at: http://www.wecc.biz/Standards/Approved%20Standards/Supporting%20Tables/Table%20Major%20Paths%204-28-08.pdf

WECC developed its own TOP-007 standard to comply with NERC's TOP-007 standard. The key distinction lies in the consideration of SOLs and interconnection reliability operating limits (IROLs). A system operating limit is the value (such as MW or frequency) that satisfies the most limiting of the prescribed operating criteria for a specified system configuration to ensure operation within acceptable reliability criteria. An interconnection reliability operating limit is a type of system operating limit which, if exceeded, could expose a widespread area of the bulk electric system to instability, uncontrolled separation(s) or cascading outages. Under the NERC standard, violations of system operating limits only need to be reported (see "Title", "Purpose," and R1 under "Requirements"). Corrective action is not required until the violation of an interconnection reliability operating limit. WECC does not have IROLs under normal operating conditions. Instead, WECC relies on SOLs to comply with NERC's TOP-007 standard. WECC requires corrective action to transition to the next secure state when SOLs are

⁷ North American Electric Reliability Corporation, Docket RM09-14, March 25, 2009, p. 10.

⁸ North American Electric Reliability Corporation, *Glossary of Terms Used in NERC Reliability Standards*, "System Operating Limit," April 5, 2013, p. 60.

⁹ North American Electric Reliability Corporation, *Glossary of Terms Used in NERC Reliability Standards*, "Interconnection Reliability Operating Limit," April 5, 2013, p. 36.

violated. This makes the WECC standard potentially more stringent because violating a system operating limit would not necessarily lead to cascading outages, whereas violation of an interconnection reliability operating limit under the NERC standard would. Furthermore, the WECC standards (R2 and R2.1) require that the Net Scheduled Interchange stays within the path's system operating limit whereas NERC has no such requirement.

Lastly, the NERC standard allows load shedding (R3) as an option to respect an interconnection reliability operating limit. Since the NERC standards also apply nationally, a WECC balancing authority experiencing an interconnection reliability operating limit violation may use load shedding. However, the WECC standard does not contemplate such an option for a system operating limit. The exception to this is if after the first contingency, the second contingency occurs within 30 minutes. 10 As we discuss later in Section 7, although load shedding can play a role in helping the system transition to a secure state, currently WECC does not consider it a viable option. However, if WECC converts some of the SOLs to IROLs in the future, load shedding would be considered in meeting the 30-minute standard.

5. U.S. ISO/RTO 30 minute reserves and mechanisms

U.S. ISOs and RTOs may meet NERC TOP-007-0 R2 and related regional or local standards via explicit 30 minute reserves or other supplemental mechanisms. Those with an explicit 30 minute reserve are shown in Table 3 below. 11 We discuss each market and provide some context around how each relies on its 30 minute reserves.

It does currently have a 30 minute supplemental reserve service.

CAISO 8 May 15, 2013

¹⁰ NERC standard TPL-003-0 ¹¹ SPP will not be discussed as its market design will change with the implementation of a nodal market.

Table 3
Comparison of ISO/RTO 30 minute reserves

ISO/RTO	30-min reserve requirement (source)	ISO/RTO specific requirements	Procurement mechanism	Settled?
ISO New England	Equal to at least one- half of second contingency loss (NPCC Directory # 5 – Reserve)	Locational consideration for three reserve zones with historical import constraints and for the Rest of the System ¹²	Via Forward Reserve Market for summer and winter seasons by location ¹³	Yes
NYISO	Equal to at least one- half of second contingency loss (NPCC Directory # 5 – Reserve)	NY control area: 1.5x 10-min reserves for largest contingency Eastern NY: single largest contingency Long Island: restore loss of transmission circuit in 30 min ¹⁴	Co-optimized with energy in day-ahead market based on separate demand curves for NY control area, Eastern NY, and Long Island ¹⁵	Yes
PJM	Condition of RPM settlement agreement to establish 30-min reserve market-based mechanism (117 FERC ¶ 61,331 (2006)	~7 percent of peak load (which is sum of peak load forecast error and forced outage rate) ¹⁶	Day-Ahead Scheduling Reserve Market system-wide	Yes
ERCOT	30-minute non- spinning reserve requirement calculated based on load and wind forecast risk and single largest contingency (ERCOT) ¹⁷	The sum of: (a) 30-minute non- spinning reserve requirement; plus (b) 500 MW of 10-minute spinning reserve; plus (c) average amount of Regulation Up procured Should cover: at least 95 percent of load and wind forecast risk Also consider loss of single largest contingency.	Co-optimized with energy in day-ahead market system-wide with offer curves Cap: 1,500 MW Floor: Single largest unit minus 500 MW	Yes

ISO New England and NYISO are both balancing authorities under the NPCC. NPCC imposes a regional reliability requirement to have 30 minute reserves to account for real-time contingencies.

ISO New England holds seasonal capacity procurement markets for these reserves based on local reserve zones created by historical import constraints. However, as a result of aggressive

¹² http://www.iso-ne.com/mkts_billing/mkt_descriptions/line_items/reserve_market.html

¹³ http://www.iso-ne.com/mkts_billing/mkt_descriptions/line_items/reserve_market.html

http://www.nyiso.com/public/webdocs/markets_operations/market_data/reports_info/nyiso_locational_reserve_reqmts.pdf

¹⁵ NYISO, Manual 2: Ancillary Services Manual, March 2013, p. 6-25.

¹⁶ Monitoring Analytics, LLC, *2012 State of the Market Report for PJM*, "Section 9: Ancillary Services", p. 289. Requirement was 7.03 percent in 2012 and 7.11 percent in 2011.

^{289.} Requirement was 7.03 percent in 2012 and 7.11 percent in 2011.

17 ERCOT, "ERCOT Methodologies for Determining Ancillary Service Requirements," as presented to and approved by ERCOT Board of Directors at public meeting March 19, 2013.

transmission upgrades from 2007 through 2009, the dramatic increase in transfer capability means that "local reserve constraints have rarely been binding." ¹⁸

On the other hand, **NYISO** has more stringent and differentiated obligations for each sub-region to address the major load pockets in its control area. Since there is limited transmission capability between the sub-regions, NYISO uses demand curves to reflect scarcity pricing. NYISO procures hourly reserves in the day-ahead market and co-optimizes it with energy. NYISO's 30 minute reserves are considered supplemental to its 10 minute ancillary services and can be directly converted to energy when those 10 minute reserves start to deplete. The decision to convert 30 minute reserves to energy is a partially manual operation based on operator judgment and the outcome of its forward looking real-time commitment. In addition, the NYISO can use manual out-of-merit dispatch to in the event of a contingency or other violation.

PJM does not have a regional reliability obligation but was required by FERC to create a market-based mechanism to procure 30 minute reserves, pursuant to PJM's capacity market settlement terms. PJM procures these reserves to account for forecast error and generator outages rather than to account for real-time contingencies. PJM has set the procurement obligation to be equal to the sum of its peak load forecast error (*i.e.*, under-forecasted error) and generator forced outage rate calculated annually. Though PJM procures its other ancillary services based on deliverability to one of two major zones within its footprint, 30 minute reserves are procured system-wide. PJM considers its 30-minute reserves to be a form of *supplemental* reserves and relies on its 10 minute reserves (referred to as primary reserves) for real-time contingencies. For example, supplemental reserves are procured in the day-ahead but are not maintained in real time. PJM relies heavily on its primary reserves and procures up to 150 percent of its single largest contingency, comprised of two-thirds spinning and one-third non-spinning reserves in total equal to 100 percent of the single largest contingency or 5 percent of load served by hydro and 7 percent of load served by thermal.²²

ERCOT relies on its 30 minute reserves largely to account for variations in load and wind forecasting due to the high penetration of wind generation in its balancing area. ERCOT procures a combination of 30 minute reserves, 10-minute spinning reserves, and regulation up service to cover at least 95 percent of load and wind forecast risk. All ancillary services are procured in the day-ahead, system-wide, and not re-optimized in real-time.²³ On-line non-spinning and offline non-spinning reserve have minimum energy offer curves of \$120/MWh and

 $^{^{18}}$ Potomac Economics, 2011 Assessment of the ISO New England Electricity Market, June 2012, p. 45. 19 117 FERC \P 61,331 (2006).

²⁰ PJM System Operations Division, Manual 13: Emergency Operations, Revision 52, effective February 1, 2013, pp. 11-12.

²¹ Monitoring Analytics, LLC, *2012 State of the Market Report for PJM*, "Section 9: Ancillary Services," p. 279.

²² WECC standard BAL-STD-002-0

²³ Moorty, Sai, ERCOT, "Look Ahead SCED," November 28, 2011, slide 6.

\$180/MWh, respectively, to reflect shortage pricing.²⁴ There is a capacity procurement floor of 30 minute reserves equal to the single largest unit minus 500 MW and a capacity cap of 1,500 MW.²⁵ 30 minute reserve is also used to replenish or support the 10-minute spinning reserves used to maintain frequency.²⁶

The Midwest ISO does not carry 30 minute reserves but it is currently undergoing deliverability testing for its 10 minute reserves. It is currently manually disqualifying reserves that are not deliverable to each of its reserve zones. In future, the Midwest ISO will move forward on a 30 minute product that can be considered at a nodal level.

Lastly, CAISO also does not explicitly carry 30 minute reserves but relies on 10-minute spinning and non-spinning ancillary services, minimum online commitment (MOC) constraints, and exceptional dispatch to ensure system reliability. The SOLs are met by a combination of pre contingency flow management and post contingency reserve deployment. Spinning and nonspinning reserves are procured 100 percent day-ahead and optimized with energy. They are settled at the ancillary service marginal price, which is based on the marginal resource's spinning or non-spinning reserve bid and any opportunity cost for providing reserves rather than energy. A MOC constraint is a market mechanism used to ensure sufficient unit commitment is available that is effective in addressing specified contingencies. MOC constraints are enforced in the day-ahead market, and thus affect unit commitment and dispatch. But MOCs do not have marginal contributions to the LMPs. An exceptional dispatch is an out-of-market manual operation to start specific units or move them to specified output levels. It is an important device the ISO uses to meet the SOL standard. Like MOC constraints, the bid costs from exceptionally dispatched energy are not reflected in LMPs. Both MOCs and exceptional dispatches are used for broader reasons than meeting the SOL standard.

In summary, most ISOs and RTOs that have a 30 minute reserve product consider them supplemental to 10 minute reserves. The 30 minute reserves exist mainly to replenish depleted 10 minute reserves or serve as additional backup. In other words, the 30 minute reserve is not expressly procured to address the 30 minute limit described in NERC standard TOP-007 R2 for a violation of an IROL. Based on our research and discussion with eastern ISOs and RTOs. they use a combination of their primary reserves supported by supplemental reserves (if any), out of market manual operations, and reserve sharing agreements. interconnection, IROLs are, by definition, the interfaces between interconnections. Therefore, their system wide reserves can help meet the IROL needs with good accuracy. In addition, they can arrange for reserve sharing agreements to meet the IROL needs. This is not typically the case for the CAISO. Most of CAISO's major paths (such as Path 26) are wholly internal to our market, and are not in the same granularity as ancillary service regions. We cannot rely on reserve sharing arrangements with our neighbors, either.

CAISO 11 May 15, 2013

²⁴ ERCOT, "6.4.3.2 (a) Energy Offer Curve for Non-Spinning Reserve Capacity," ERCOT Nodal Protocols, Section 6: Adjustment Period and Real-Time Operations, April 1, 2013.

25 ERCOT, "ERCOT Methodologies for Determining Ancillary Service Requirements," as presented to and

approved by ERCOT Board of Directors at public meeting March 19, 2013. ²⁶ ERCOT, "3.17.3 (2) Non-Spinning Reserve Service," ERCOT Nodal Protocols, Section 3: Management

Activities for the ERCOT System, April 2, 2013.

6. WECC standard compliance

This section describes the challenges to meeting WECC standard TOP-007-WECC-1 R1 (WECC SOL standard), how the ISO is currently meeting the standard, and where improvement is needed.

6.1. WECC SOL standard challenges

Meeting the WECC SOL standard is challenging because of the combination of the 30 minute time limit and the flow-based nature of contingencies. The time limit requires the ISO to transition the post-contingency system to the next secure state by the end of 30 minutes. This requires the ISO to adjust the output of fast response resources so that the post-contingency flows are within the new system operating limit. Contingencies that constrain the major WECC paths can occur in a number of areas on the system and each (or a combination of them) will result in a different post-contingency topology. In other words, each contingency (or a combination of them) will change the flows on the system in different ways. The ISO needs to be able to evaluate the post contingency flow with the impacts from the contingency and the redispatches. This presents a challenge to the ISO in defining where effective fast response resources should be located as the need is flow based, and cannot be accurately translated into regional requirements.

6.2. 10 minute ancillary services

10 minute ancillary reserves are procured primarily to meet NERC and WECC operating reserve requirements.²⁷ As mentioned above, reserves in WECC must cover either the single largest contingency or 5 percent of load served by hydro and 7 percent of load served by thermal and be comprised of 50 percent spinning and 50 percent non-spinning reserves.²⁸

For NERC standard TOP-007-0 R2, 10 minute ancillary services can be used to address an interconnection reliability operating limit violation to avoid cascading outages. We stress that this does not mean the reserves can be procured for the IROL purpose. Use of these reserves is more complicated when addressing a system operating limit violation under the WECC SOL standard. The effectiveness of the ancillary services capacity may be limited or counterproductive if the capacity is located on the wrong side of the constraint. In fact, resources in the wrong location can cause flows to go higher if dispatched. We have anecdotal evidence from other ISOs/RTOs that stranded ancillary services, even if procured sub-regionally, are an operational challenge.

The main point is that 10 minute ancillary services are procured to comply with completely different NERC and WECC standards than the WECC SOL standard. The different standards also reflect different system needs. The operating reserve requirement is based on a static or

²⁷ For example, WECC standard BAL-STD-002-0 B.WR1

²⁸ WECC standard BAL-STD-002-0

pre-calculated system capacity need whereas the WECC SOL standard is a dynamic need based on the post-contingency flows. Creating smaller ancillary service subregions is a very rough way to target the flow-based need under WECC SOL standard.

6.3. Exceptional dispatch

Exceptional dispatch is used to compensate for and supplement stranded ancillary services. Specifically for the WECC SOL standard, an exceptional dispatch is used to position a unit to an acceptable level of generation (e.g., above its minimum load range) so that it can respond to a contingency within the 30 minute limit. Exceptional dispatches are issued based on operator experience and judgment about the effectiveness of particular units. The units selected are not optimized and the resulting dispatch may not be the most efficient solution. In other words, exceptional dispatch will ensure that the operators have sufficient ramping capability but the effectiveness and deliverability of the units are not tested. Therefore, without an actual contingency occurring, we will not know whether the unit selected was effective in maintaining reliability. Manual operations are prone to both under- and over-procurement but typically leans towards more conservative actions.

6.4. MOC constraints

MOC constraints are used to identify the minimum generation capacity needed to address a reliability requirement. They are largely used to address the WECC SOL standard but are also deployed to address non-flow-based, procedural, and outage related constraints on the system. While MOC constraints are an improvement over exceptional dispatch because they introduce a systematic approach that can be included in the day-ahead market runs, they do have several drawbacks. First the definition of the constraint is determined via an engineering analysis but the units selected to be in the constraint are manually selected based on least cost. Second, like ancillary services sub-regions, the MOC constraints pre-define a small geographic footprint where units may be most effective but retain this static definition regardless of where the contingency occurs and the post-contingency topology. Third, the MOC constraint only commits units to their Pmin. The energy output above Pmin will be optimized in the market. Therefore, the MOCs do not have a marginal contribution to the LMPs (the energy bids above Pmin may have). Most importantly, without an actual contingency occurring, we will not know whether the constraint was effective in maintaining reliability.

6.5. Reliability challenges in current mechanisms

Table 4 below summarizes the ISO's current mechanisms to address the WECC SOL standard. Column [A] lists the three current mechanisms and column [B] describes the primary reason each exits. Column [C] summarizes for each mechanism the amount of capacity procured and how that amount is determined and column [D] provides the locational definition. Column [E]

CAISO 13 May 15, 2013

summarizes the effectiveness of each mechanism of ensuring reliability under the WECC SOL standard.

Table 4
Reliability comparison of ISO mechanisms to meet WECC SOL standard

Mechanism	Addresses:	Amount of capacity procured determined by:	Locational definition	Ensures accurate amount of capacity procured at right location?
[A]	[B]	[C]	[D]	[E]
10 minute contingency reserves	NERC/WECC operating reserve requirements ²⁹	WECC operating reserve requirements ³⁰	System-wide	Partially – deliverability issues because not flow-based and granularity
Exceptional dispatch	As specified in ISO tariff ³¹	Operator judgment	Location specific based on operator judgment	Partially – potential deliverability issues and imprecise procurement
MOC constraints	WECC standard TOP-007-WECC-1 R1 and non-flow based constraints	Predefined static region and requirement	Predefined static region	Partially – predefined static regions and only commits units to Pmin

For 10 minute contingency reserves, the basis for procurement is not the WECC SOL standard but rather other NERC/WECC standards that specify operating reserve capacity as noted in column [B]. The NERC/WECC operating reserve requirements specify the capacity that needs to be procured on a system-wide basis to protect against a contingency (columns [C] and [D]). The ISO has attempted to use the 10 minute contingency reserve to address the WECC SOL standard when possible and appropriate. However, the capacity procured is not tested for deliverability and therefore cannot fully meet the flow-based requirements under the WECC SOL standard (column [E]).

Exceptional dispatch can be used for several reasons specified in the ISO tariff and has been used to address the WECC SOL standard (column [B]). The technical paper attached to the previous ISO issue paper (as well as reproduced in Figure 2 below) showed that for 2012, 21 percent to 77 percent of all exceptional dispatch volume measured in MWhs issued by month (40 percent annual) were due to the WECC SOL standard. Therefore, a significant portion of exceptional dispatches were used to address this specific reliability standard. Exceptional dispatches are manual interventions in the market based on operator judgment (column [C]) and since the units are individually selected, the location is known and specific (column [D]). However, exceptional dispatch is used to ensure the units can provide the correct ramping capability within the 30 minute time limit but the units procured are not tested for deliverability. Since the amount of capacity procured is not optimized, we cannot definitively say that we have

CAISO 14 May 15, 2013

²⁹ WECC standard BAL-STD-002-0 B.WR1.

³⁰ WECC standard BAL-STD-002-0 B.WR1.

³¹ See ISO tariff such as Section 34.9.

³² Measured in MWhs of exceptional dispatch volume. See Contingency Modeling Enhancements Issue Paper, March 11, 2013, Technical Paper attachment, p. 3.

procured the "right" amount of capacity to address the WECC SOL standard. In fact, without a contingency actually occurring, we cannot say whether we have over- or under-procured (column [E]).

For MOC constraints, the main purpose is to address the WECC SOL standard but some are used for non-flow based constraints (such as those related to voltage support) as shown in column [B]. Each MOC constraint has a predefined static location and list of units (columns [C] and [D]). However, MOC constraints are only partially effective in addressing the WECC SOL standard because the units within the constraint are manually selected and only moved to their Pmin. Most importantly, the MOC constraint definition is static while the need is dynamic and depends on the post-contingency topology.

6.6. Efficiency challenges in current mechanisms

In addition to reliability challenges, exceptional dispatch and MOC constraints are not the product of an optimization and therefore could benefit from more efficient procurement and dispatch. Our definition of efficiency also includes market efficiency where pricing signals reflect need, operationally desirable characteristics are valued, and reliability is maintained via lowest cost. Table 5 compares the efficiency of the ISO's current mechanisms to meet the WECC SOL standard.

Table 5
Efficiency comparison of ISO mechanisms to meet WECC SOL standard

Mechanism	Optimized procurement	Efficiently dispatched post-contingency?	Bid cost	Fast response valued?
[A]	[B]	[C]	[D]	[E]
10 minute contingency reserves	Yes, for system-wide need co-optimized with energy	May have deliverability issues	Reflected in LMP	Yes
Exceptional dispatch	No, manual process	Very likely	Not reflected in LMP	Inadvertently
MOC constraints	No, constraint is pre- defined and not dynamic	Likely	Not reflected in LMP	No, units within constraint not differentiated

Column [B] shows that only 10 minute ancillary reserves are procured through an optimization (co-optimized with energy). However, the optimization is for system-wide needs (and the need is broader than the WECC SOL standard) so there may be deliverability limitations in real-time as shown in Column [C]. On the other hand, exceptional dispatches and MOC constraints are not optimized as one is a manual process and the other is a pre-defined, non-dynamic constraint added to the market. Exceptional dispatches are very likely efficiently dispatched post-contingency because the operator has selected (to the best of his or her knowledge) a highly effective unit with no deliverability constraints that can meet the 30 minute time limit.

CAISO 15 May 15, 2013

MOC constraints are also likely to provide efficient dispatch but the actual mechanism of the constraint only *commits* units that could be effective but does not consider the energy that may be provided once a contingency occurs. Both mechanisms are "likely" effective but this is not verified unless the contingency occurs. Column [D] shows that only the bid costs of 10 minute reserves are reflected in the LMP, which signals the need for generation in the market at a nodal level. Column [E] asks whether the mechanism values the fast response nature of the resources being procured. Since contingency reserves must respond within 10 minutes, their fast response is directly valued. Exceptional dispatch, on the other hand, is inadvertently valued because the operator has likely selected the particular unit because of its fast response; but this is not reflected in any price signal or payment. Lastly, the MOC constraint does not value fast response directly because it does not differentiate between the units within the constraint based on energy but rather the total capacity needed.

The Federal Energy Regulatory Commission (FERC) has directed the ISO in several instances to reduce reliance on exceptional dispatches and increase market-based solutions.³³ This includes using market-based solutions to address system needs as well as developing appropriate compensation via LMPs or through other market signals. In summary, more efficient procurement of the most effective resources will improve reliability. To the extent we can leverage the market in procuring needed capacity and compensate those resources, we will be increasing the overall effectiveness of the ISO markets.

6.7. Potential solutions considered

The ISO's current procurement of 10 minute reserves at first glance could potentially provide a model to address the WECC SOL standard. The ISO could procure a 30 minute reserve product in the same manner as it procures 10 minute reserves. This seems logical because it would appear to provide the benefits of the 10 minute product, but avoid using more expensive (faster response) resources than needed for the WECC 30 minute SOL standard. However, as explained in Section 6.2, the ISO's current ancillary services are procured to meet a system capacity requirement rather than the flow-based requirement under the WECC SOL standard. In an attempt to address the flow-based requirement, some stakeholders have suggested procurement of 30 minute reserves at a subregional level assuming that smaller regions will provide greater granularity. This is a false premise. The only way to accurately evaluate whether the WECC SOL standard is being met is via a nodal model for capacity. Without it, we will not know if we have adequately procured enough 30 minute reserves and will likely err on the side of over-procurement in order to ensure reliability. The lack of a 30 minute product in the current ISO market does not reflect a refusal to consider such a proposal but rather a careful consideration of a broader range of solutions that could provide superior performance efficiently.

In our review of other ISOs and RTOs, the closest proxy they have to the WECC's SOL standard is NERC standard TOP-007-0 R2 (see Table 1), which also has a 30 minute time limit for IROL violation. We have found that 30 minute reserves in those markets are not expressly procured to meet this NERC standard and that primary 10 minute reserves and manual

CAISO 16 May 15, 2013

 $^{^{33}}$ See for example 126 FERC \P 61,150 and 128 FERC \P 61,218.

operations are the first line of defense. While the ISO also has these options, it does not have firm load shedding and reserve sharing opportunities. In summary, the ISO has a more stringent reliability standard to meet but fewer effective tools with which to meet it.

The issue paper introduced a preventive-corrective constraint to address the WECC SOL standard. Given the technical nature of this issue, we provided the description of the constraint ahead of time to help facilitate discussion with stakeholders. The technical paper, *Preventive-Corrective Market Optimization Model*, proposed a framework that will maintain reliability by modeling the ISO's post-contingency need with subsequent compensation to affected generators or demand response providers. The enhancements include the modeling of post-contingency preventive-corrective constraints in the market optimization so that the need to position units to meet applicable reliability criteria would be incorporated into the market model. The constraints will reduce exceptional dispatches, replace some MOC constraints, provide greater compensation through LMPs and may likely result in a separate capacity payment for resources (both generation and demand response) that help meet the reliability standards.³⁴ The major concepts discussed in the technical attachment were introduced to stakeholders at the last Market Surveillance Committee meeting on January 17, 2013 by Dr. Lin Xu of the ISO. The next section discusses the preventive-corrective constraint in greater detail.

7. Preventive-Corrective Market Optimization Model

7.1. Background

In order to operate the power system reliably, the ISO must comply with the reliability standards set forth by North American Electric Reliability Corporation (NERC) and Western Electricity Coordinating Council (WECC). Among the standards are security standards that are related to contingencies. The most fundamental one is the N-1 secure standard that the system must not violate any operating limit after a transmission element outage. Currently, the ISO's market optimization is able to model the N-1 standard as preventive security constraints³⁵. The term "preventive" means that the optimization will produce a pre-contingency dispatch that keeps the post contingency system conditions within operating limits. There are other mandatory standards that would require re-dispatch to resolve post contingency operating limits. These standards include but are not limited to System Operating Limits (SOLs) and generation contingencies. The post contingency re-dispatches are "corrective" actions taken after the contingency occurs. By incorporating the corrective actions into the preventive model, we will have a more advanced market optimization model which co-optimizes the preventive precontingency dispatch and the corrective post contingency re-dispatch. This new model is called the preventive-corrective model, which can help the ISO systematically meet the N-1 standard

³⁴ While some level of exceptional dispatch is needed in every market, minimizing such manual operations and preferably replacing them with optimized solutions improves reliability.

³⁵ Sometimes the impact of contingency is included in the pre contingency system operating limit (SOL), so as long as the pre contingency condition is within the SOL, the system is N-1 secure. In this case, a preventive optimization only models base case constraints for these SOLs.

and SOL standard. The preventive model and the preventive-corrective model are both classic models in academic research. For example, these models are taught in a graduate level power engineering course in Iowa State University³⁶.

Without this preventive-corrective model in production, currently the ISO has to meet the SOL standard by enforcing minimum online capacity constraints (MOCs) or through manual exceptional dispatches. The ISO estimated the SOL related exceptional dispatches through operator logs³⁷, and showed the volume by month in 2012 in Figure 2. The percentage of SOL related exceptional dispatches varied from 21 percent to 77 percent month by month in 2012.

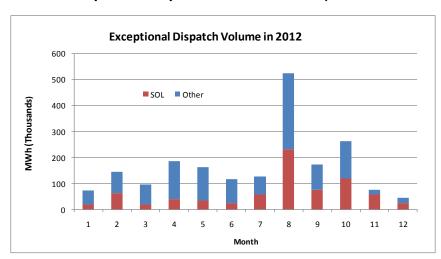


Figure 2
SOL Related Exceptional Dispatch Volume in 2012 (Thousands of MWhs)

The ISO proposes to enhance the contingency model in the market optimization to handle the post contingency corrective actions. With the contingency model enhancement (CME), the market optimization advances from a pure preventive mode to a preventive-corrective mode, where both pre contingency dispatches and post contingency re-dispatches are co-optimized to meet the reliability standards. With the mandatory standards incorporated into the market optimization, the need for operators to exceptionally dispatch resources to their dispatchable Pmin or utilize MOCs to comply with the SOL standards is expected to significantly decrease.

James McCalley, EE553, Steady-state analysis, Class 18: security constrained OPF, Iowa State University, http://home.eng.iastate.edu/~jdm/ee553/SCOPF.pdf
 The numbers shown in Figure 2 may over or under estimate the actual volume of SOL related

³⁷ The numbers shown in Figure 2 may over or under estimate the actual volume of SOL related exceptional dispatches due to the complexity of analyzing operator logs.

7.2. Preventive-corrective market optimization

In this section, we will first review the power system security framework, and then discuss the modeling enhancement to the market optimization. For simplicity and ease of understanding, we use a linear lossless model throughout the straw proposal. The ISO employs marginal loss model in the market optimization and full AC power flow in the network applications. How the preventive-corrective model works on top of the marginal loss model is excluded from the straw proposal. We can provide these details in the future when the need arises.

7.2.1. Power system security framework

The modeling enhancement is related to contingency. Contingency is the key concept in the power system security framework. It will be helpful to review the power system framework for a better understanding the modeling enhancement.

Power system security is the ability of the system to withstand disturbances without unduly impacting the service to the loads or its quality. In powers system operations, security assessment analyzes the vulnerability of the system to a set of contingencies, known as the contingency list. Contingencies are predefined disturbances/outages that have not occurred yet. The ISO maintains a contingency list that contains the most severe and/or most likely disturbances yet to occur. The classic power system security study framework is illustrated in Figure 3.

In the classic security study framework, power system can be operating under one of the three states:

- Normal state: when all loads are serviced without any operating limits being violated.
 Normal state can be further classified into two states:
 - Secure state: when the system is still under normal state post contingency,
 - Insecure state: when the system is under emergency state post contingency.
- Emergency state: when all loads are serviced with one or more operating limits being violated.
- Restorative state: when there is loss of load without any operating limits being violated.

A significant disturbance, e.g. loss a generator or a transmission element, may change the power system operating state. Power system state may change from secure to insecure, from insecure to emergency, and from emergency to restorative. These transitions are automatically triggered without human intervention.

System operators may take control actions that also change the power system states. The control actions either try to resolve a current violation of operating limits or prevent a violation after one of the contingencies occurs. They can be classified as follows:

- Restorative control transitions the system from restorative state to secure state.
- Corrective control transitions the system from emergency state to normal state.
- Preventive control transitions the system from insecure state to secure state.

CAISO 19 May 15, 2013

 Controlled load shedding transitions the system from emergency state to restorative state.

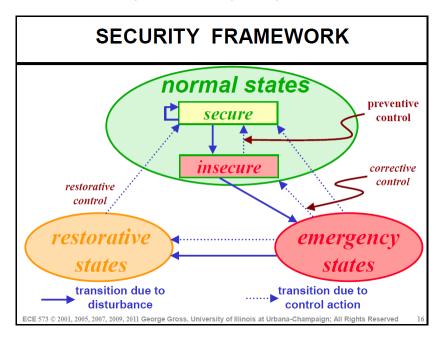


Figure 3
Power System Security Study Framework

Implementing the security framework into the Energy Management System (EMS) can provide the operators online security analysis functionality to closely monitor, assess and control system security.

7.2.2. Preventive market optimization

Section 7.2.1 discussed the security framework that is applicable to system operations. In this section, we will focus on the market aspect of power system security. As discussed in the last section, the preferred power system operating state is the secure state. In electricity markets, the market solution typically tries to operate the system under secure state. In order to achieve N-1 security, the market optimization, typically an optimal power flow (OPF) program or a unit commitment (UC) program, will:

- enforce SOL on applicable paths, and
- consider each contingency in the contingency list, and include constraints of the immediate post contingency system conditions.

The decision variables are the pre contingency unit commitments and dispatches. The post contingency system conditions are solely determined by the pre contingency dispatches and the post contingency network topology. If there is a violation after the contingency occurs, then the

CAISO 20 May 15, 2013

optimization will try to change the pre contingency dispatches to prevent it from occurring. That is why this model is called a preventive model.

The terms preventive model and preventive control can be confusing. Both have the term preventive, but they are different things. Preventive control is the actions operators take to transition the current system state from insecure state to secure state. Preventive model is the market optimizations model that produces a secure market solution for the future. See Section 11 for a list of nomenclature used in this paper.

The structure of a typical preventive market optimization is as follows:

$$\min \sum_{i=1}^n C_i(P_i^0)$$

s.t.

$$g^0(P^0)=0$$

$$h^0(P^0)\leq h^{0,max}$$

$$h^k(P^0)\leq h^{k,max}, \forall k=1,2,\cdots,K$$

where

- the numeric superscript represents the case number with 0 being the based case, and 1,
 up to K are the contingency cases,
- $g^0(\cdot)$ are the equality constraints.
- $h^k(\cdot), \forall k = 0,1,\dots,K$ are the inequality constraints.

Market optimization has become more and more sophisticated with more and more constraints. Among these constraints, there are two crucial ones, namely the power balance constraint and the transmission constraint, because their associated Lagrangian multipliers are needed to calculate the locational marginal prices (LMPs).

The energy balance constraint is an equality constraint

$$\sum_{i=1}^{n} P_i^0 = \sum_{i=1}^{n} L_i$$

which says the total generation equals total load in a lossless model. Note that power balance constraint is only enforced in the base case, but not in any contingency case in the preventive model. This is because power injections do not change in any transmission contingency case

CAISO 21 May 15, 2013

immediately after the transmission contingency occurs, so the power balance in a transmission contingency case will be automatically satisfied if it is satisfied in the base case.

The transmission constraint is an inequality constraint, which says that for every case k, the power flow on a transmission line l has to be within its flow limit $\overline{FL_l^k}$. In a linear lossless model, the transmission constraint is

$$\sum_{i=1}^{n} SF_{l,i}^{k} (P_{i}^{k} - L_{i}) \leq \overline{FL}_{l}^{k}$$

where $SF_{l,i}^k$ is the shift factor from location i to constraint l in case k. Note that the transmission constraint is enforced for every case, including both the base case and contingency cases³⁸. In addition, the shift factors are case specific, because the post contingency system topology changes from case to case.

Denote the Lagrangian multiplier for the power balance constraint by λ^0 and the Lagrangian multiplier for the transmission constraint by μ_l^k . The LMP³⁹ at location *i* is

$$\lambda^0 + \sum_{k=0}^K \sum_{l=1}^m SF_{l,i}^k \cdot \mu_l^k$$

where the first term is the energy component, and the second term is the congestion component. Note that congestion in a contingency case will impact LMP in a similar way as congestion in the base case.

7.3. Preventive-corrective market optimization

Assume the system operates at the N-1 secure state from the solution of the preventive market optimization. Suddenly, a system disturbance occurs. Because the pre contingency case is N-1 secure, the post contingency system is under a normal state without any violations. However, it may be insecure, and vulnerable to the next contingency yet to occur. NERC reliability standard NERC TOP-007-0 R2 and WECC reliability standard TOP-007-WECC-1 R1 require the ISO to transition the system back to a secure state within 30 minutes after the system disturbance. These reliability standards require the system to be not only N-1 secure (below the original SOL rating), but also be able to reach another N-1 secure state (below the new SOL rating) 30 minutes after a contingency. An example of SCIT is illustrated in Figure 4.

_

³⁸ Transmission constraints for contingency cases are often referred as security constraints.

³⁹ In the lossless model, the LMP only has two components: the energy component and the congestion component.

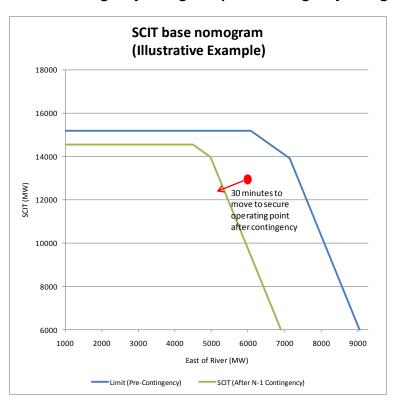


Figure 4
SCIT Pre-contingency rating and post-contingency rating

If all elements are in service, the normal SCIT nomogram limit (SOL) is the blue curve. If the system operates inside the blue curve, it is N-1 secure. Assume that pre contingency, the system is operating at the red dot with 13,000 MW flow on SCIT and 6,000 MW flow on East of River. Suddenly, one of the SCIT lines trips. With one element out of service, the new SCIT nomogram limit is the green curve. To comply with the NERC and WECC standards, the ISO needs to bring the operating point from the red dot to inside the green curve in 30 minutes such that the system operates under new N-1 secure state 30 minutes after the disturbance. In addition, it is expected that the re-dispatch function execution set up, run time, publishing results, and resources start ramping may take some time (e.g. few minutes) to complete after the disturbance occurs. Therefore, we need to reduce the 30-minute timeframe to the practical available response time in the preventive-corrective model. In this paper, we will assume this time to be *T*. The corrective re-dispatch may or may not involve operating reserve deployment depending on the relevant NERC and WECC reliability standards.

CAISO 23 May 15, 2013

7.3.1. Preventive-corrective optimization model

A preventive-corrective market optimization can explicitly model the timeframe to re-dispatch resources to comply with the new limit. The structure of a preventive-corrective model is as follows.

$$\min \sum_{i=1}^n C_i(P_i^0)$$

s.t.

$$\begin{split} g^0(P^0) &= 0 \\ h^0(P^0) &\leq h^{0,max} \\ h^k(P^0) &\leq h^{k,max}, \forall k = 1,2,\cdots,K \\ g^{kc}\big(P^0 + \Delta P^{kc}\big) &= 0, \forall kc = K+1,K+2,\cdots,K+KC \\ h^{kc}\big(P^0 + \Delta P^{kc}\big) &\leq h^{kc,max}, \forall kc = K+1,K+2,\cdots,K+KC \\ \Delta P^{kc} &\leq RCU(P^0), \forall kc = K+1,K+2,\cdots,K+KC \end{split}$$

 $RCD(P^0) \le \Delta P^{kc} \le RCU(P^0), \forall kc = K+1, K+2, \cdots, K+KC$ where

- $kc = K + 1, K + 2, \dots, K + KC$ are contingencies that involve corrective re-dispatch,
- $RCU(P^0)$ is the upward ramping capability from the base case P^0 in the given timeframe T,
- $RCD(P^0)$ is the downward ramping capability from the base case P^0 in the given timeframe T.

Compared with the preventive model, the preventive-corrective model adds corrective contingency cases indexed by kc. The corrective contingency cases allow re-dispatching resources after the contingency occurs. The re-dispatch capability from the base case dispatch is ΔP^{kc} , which is limited by the resource's ramp rate and the given timeframe. The preventive-corrective model is only concerned about the feasibility of capacity to comply with the post contingency new limit, but not the energy cost of post contingency re-dispatch. This is because the probability that a contingency would occur is close to zero, and thus the expected re-dispatch cost is also close to zero.

As long as a resource that can deliver energy in the given time frame, it can provide the corrective capacity. Operating reserves will be included in the corrective capacity supply as applicable. The supply of corrective capacity includes but not limited to generators, demand response, and pump storage. Offline generators can provide corrective capacity as long as it can start within the given time frame.

When a contingency occurs, ΔP^{kc} is a feasible solution to comply with the new limit. However, ΔP^{kc} may not be the most economic re-dispatch to comply with the new limit. The dispatch cost

CAISO 24 May 15, 2013

from resources without the corrective capacity awards may be lower than from the resources with the capacity awards. In this case, the actual dispatch is not ΔP^{kc} , but the more economic solution from re-dispatching resources without the corrective capacity awards. This design provides better market efficiency and robustness than restricting the re-dispatch to resources with capacity awards. The same design also applies to the ancillary service procurement and deployment.

We will specifically discuss the power balance constraint and transmission constraint in the corrective contingency cases indexed by kc. These constraints are referred to as the preventive-corrective constraints in the earlier sections of the paper. Recall that in the preventive model, there is no power balance constraint for a contingency case, because the power balance condition remains the same immediately after the transmission contingency occurs. In the preventive-corrective model, we allow a timeframe to re-dispatch resources, and we evaluate the system at time T after the actual time at which the contingency occurs. In order to make sure the re-dispatches do not violate power balance, we enforce a power balance constraint for each corrective transmission line contingency case kc as follows:

$$\sum_{i=1}^{n} \Delta P_i^{kc} = 0$$

Denote the Lagrangian multiplier for the power balance constraint for corrective contingency case kc by λ^{kc} .

The power balance constraint for the base case is energy constraints. In contrast, the new power balance constraints for corrective contingencies are capacity constraints. If there is transmission constraint violation in any contingency case, the optimization may resolve the violation with corrective capacities. The capacity balance constraints are needed to make sure the established energy balance in the base case is not adversely affected in the transmission congestion management process, such as resulting in involuntary load shedding. The capacity balance constraints do not directly affect the feasibility of the energy balance constraint in the base case, because the energy dispatches do not participate in the capacity balance constraints.

The transmission constraint in the corrective contingency case kc says the power flow on a transmission line l has to be within its flow limit $\overline{FL_l^{kc}}$ after the corrective re-dispatches. In a linear lossless model, for each corrective contingency case kc, the transmission constraint is

$$\sum_{i=1}^{n} SF_{l,i}^{kc} \left(P_i^0 + \Delta P_i^{kc} - L_i \right) \le \overline{FL}_l^{kc}$$

Note that in the preventive-corrective model, the transmission constraint is enforced for every case, including the base case, normal contingency cases indexed by k, and corrective contingency cases indexed by kc. Denote the Lagrangian multiplier for the transmission constraint for corrective contingency case kc by μ_l^{kc} .

If the pure preventive model market solution already has enough corrective capacity to resolve any possible post contingency violation within the given timeframe, the system wide λ^{kc} and shadow price of the post contingency transmission constraint μ_l^{kc} are zeroes. This is because

CAISO 25 May 15, 2013

there is no cost associated with corrective capacities in the preventive-corrective model objective function, and thus the preventive-corrective model will produce the same precontingency dispatch as the pure preventive model. If the pure preventive model market solution does not have enough corrective capacity to resolve the post contingency violation within the specified timeframe, then the preventive-corrective model will adjust the precontingency dispatch to create more corrective capacity and/or reduce the pre contingency flow such that the violation can be resolved within the timeframe after contingency occurs. In this case, because the pre contingency base case dispatch cost is included in the objective function, the marginal dispatch adjustment cost due to resolving the post contingency violation will manifest itself in λ^{kc} and μ^{kc} .

Similar to an offline resource providing non-spin reserve, an offline resource can also provide the corrective capacity as long as the resource can start up within the allowed time frame. The corrective capacity award is limited by the capacity that the resource can reach within the allowed the time frame.

7.3.2. Preventive-corrective model compensation

For the base case, the LMP for energy dispatch at location *i* is

$$\lambda^{0} + \sum_{k=0}^{K} \sum_{l=1}^{m} SF_{l,i}^{k} \cdot \mu_{l}^{k} + \sum_{kc=K+1}^{K+KC} \sum_{l=1}^{m} SF_{l,i}^{kc} \cdot \mu_{l}^{kc}$$

The structure of the LMP in the preventive-corrective model is the same as the LMP in the preventive model except that the preventive-corrective model has included more contingencies, i.e. the corrective contingencies indexed by kc. The LMP breaks down to the energy component λ^0 , and the congestion component $\sum_{k=0}^K \sum_{l=1}^m SF_{l,i}^k \cdot \mu_l^k + \sum_{kc=K+1}^K \sum_{l=1}^m SF_{l,i}^{kc} \cdot \mu_l^{kc}$. Note that the LMP congestion component includes congestion impact from every case. A resource will receive energy compensation at the LMP.

Because LMP includes congestion impact from every case, the local market power mitigation triggered by LMP non-competitive congestion component works effectively in the preventive-corrective model. Regardless of whether a binding constraint is uncompetitive in the base case, in a normal contingency case, or in a corrective contingency case, the potential impact will manifest itself in the LMP non-competitive congestion component so that the market power mitigation is able to mitigate the resources that are potentially benefiting from the locally uncompetitive constraint. Department of Market Monitoring (DMM) expressed concern of market power that a resource may bid below its marginal energy cost in order to increase the LMCP, and provided two examples to illustrate the issues. DMM's example 1 demonstrates that if the corrective capacity market is uncompetitive, a generator (G3 in the example) can bid lower than the true energy marginal cost, and effectively increase the opportunity cost for the corrective capacity. As a result, the resource could benefit from the higher LMCP. A generator can take advantage in the capacity market even if the energy market is competitive. DMM's example 2 demonstrates that when a scheduling coordinator clears more corrective capacity than energy, it could game the market by sacrificing energy payment for higher capacity

CAISO 26 May 15, 2013

payment. Both DMM's concerns are valid, and are generally applicable to all capacity products, including ancillary services. Since these issues are not originated from this contingency modeling enhancement initiative, and are more general than the contingency modeling enhancement initiative could handle, this stakeholder process may not be the right place to deal with them. The ISO will work with DMM to closely monitor market power issue in capacity markets. Once the market power is observed in the capacity markets, and the impact is significant enough, the ISO will pursue developing a market power mitigation mechanism for all capacity products.

As discussed in the previous section, the marginal values of corrective capacities depend on λ^{kc} and μ_l^{kc} , and thus depend on location. Therefore, the corrective capacity will have a locational marginal capacity price (LMCP). The LMCP at location *i* for case kc is

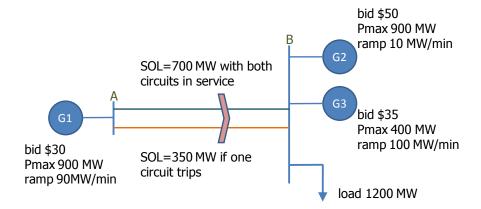
$$LMCP_i^{kc} = \lambda^{kc} + \sum_{l=1}^{m} SF_{l,i}^{kc} \cdot \mu_l^{kc}$$

The LMCP may reflect

- a resource's opportunity cost of being dispatched out of merit,
- the marginal congestion cost saving, and/or
- the marginal capacity value to null the incentive of uninstructed deviations in order to support the dispatch.

We will demonstrate the meaning and appropriateness in the following section through examples.

7.4. Examples


In this section, we will go through several examples. Each example will serve one more purposes. The first example is a very basic example, and the other examples will be variations of the first example. To keep the examples simple, generation is used in each one; however, the corrective capacity can be supplied by demand response as well.

7.4.1.Example 1: Out-of-merit dispatch with LMCP reflecting opportunity cost

This is a two-node example with three generators. Branch A-B has two circuits. Assume K = 0, and the KC = 1. Branch A-B has pre contingency SOL of 700 MW with both circuits in service, which is N-1 secure. If one of the two A-B circuits trips, and next N-1 secure SOL for branch A-B is 350 MW. The load is 1200 MW at node B.

CAISO 27 May 15, 2013

Figure 5
A two-node system with three generators

We will compare the following models:

- Weak preventive model: N-1 secure, but may not be able to meet the post contingency limit within 30 minutes after the contingency occurs (or assume 20 minutes after the redispatch instruction) without using MOCs or exceptional dispatch. This is the model that the ISO currently uses.
- Strong preventive model: N-2 secure, enforce the post contingency rating in the pre contingency dispatch.
- Preventive-corrective model: not only N-1 secure, but also meet the post contingency rating 30 minutes after contingency occurs (or assume 20 minutes after the re-dispatch instruction).

The weak preventive solution is listed in Table 6. The total generation cost is 40,000. If the contingency occurs, the 700 MW flow on branch 2-3 will exceed the next SOL 350 MW, which protects again the next contingency. The weak preventive model produces N-1 secure solution, but may not be able to meet the new limit 30 minutes after the contingency occurs.

Table 6
Weak preventive solution

Generator	Dispatch	LMP ^{EN}	LMP ^{CONG}	LMP	Bid cost	Revenue	Profit
G1	700	\$50	-\$20	\$30	\$21,000	\$21,000	\$0
G2	100	\$50	\$0	\$50	\$5,000	\$5,000	\$0
G3	400	\$50	\$0	\$50	\$14,000	\$20,000	\$6,000
total	1,200	N/A	N/A	N/A	\$40,000	\$46,000	\$6,000

To meet the next contingency SOL, one could enforce the new post contingency limit (350 MW) in the pre contingency dispatch even if the first contingency has not occurred yet. This is called the strong preventive model, which protects against N-2 contingency. The solution of strong

preventive model is listed in Table 7. The total generation cost is \$47,000. The strong preventive solution is much more costly than the weak preventive solution. The cost difference \$47,000–\$40,000=\$7,000 is the cost to resolve the post contingency violation with the N-2 secure strong preventive model. Because it is often very costly to maintain N-2 secure, it is not a common reliability standard in power system operations. Instead, NERC and WECC allow certain timeframe (no more than 30 minutes) to reach another N-1 secure state after one contingency occurs. As will be shown in the preventive-corrective case, the solution will be more economic than the strong preventive case.

Table 7
Strong preventive solution

Generator	Dispatch	LMP ^{EN}	LMP ^{CONG}	LMP	Bid cost	Revenue	Profit
G1	350	\$50	- \$20	\$30	\$10,500	\$10,500	\$0
G2	450	\$50	\$0	\$50	\$22,500	\$22,500	\$0
G3	400	\$50	\$0	\$50	\$14,000	\$20,000	\$6,000
total	1,200	N/A	N/A	N/A	\$47,000	\$53,000	\$6,000

In the preventive-corrective model, in addition to the N-1 secure limit (700 MW), we allow 30 minutes after the contingency occurs (or assume 20 minutes after the re-dispatch instruction) to meet the next SOL 350 MW. The preventive-corrective solution is listed in Table 8. When the A-B SOL is reduced by 350 MW in the post contingency case, G2 and G3 need to ramp up the same amount in 20 minutes in order to meet load and provide counter flow. G2 has 10 MW/minute ramp rate, and can only ramp 200 MW in 20 minutes. The rest 150 MW ramp needs to come from G3. In order to provide this 150 MW ramp, G3 needs to be dec'ed 150 MW in the pre contingency case.

G1

G2

G3

-350

200

150

\$0

\$15

\$15

\$0

\$3,000

\$2,250

Energy in base case P^0 λ^0 **LMP** Bid cost Revenue **Profit** Gen 700 \$-5 \$21,000 \$21,000 \$0 G1 \$30 \$50 250 \$50 \$12,500 \$12,500 \$0 G2 \$50 \$-5 G3 250 \$50 \$50 \$-5 \$8,750 \$12,500 \$3,750 Corrective Capacity in contingency kc=1 LMCP1 λ^1 Bid cost Gen ΔP^1 Revenue Profit μ_{AB}^1

\$-15

\$-15

\$–15

\$0

\$0

\$0

\$0

\$3,000

\$2,250

\$15

\$15

\$15

Table 8
Preventive-corrective solution and LMCP compensation

The LMPs and LMCPs are listed in Table 8. As described in section 7.3, for each corrective contingency case, we calculate a set of case specific LMCPs. The LMP for the base case dispatch has an energy component λ^0 , and a congestion component $SF_{AB,i}^0 \cdot \mu_{AB}^0 + SF_{AB,i}^1 \cdot \mu_{AB}^1$, the sum of shift factors times shadow prices over all cases. Take G3 as an example. The base case λ^0 is \$50, and G3's congestion component is $0 \cdot (-5) + 0 \cdot (-15) = \0 , so G3's LMP is \$50. In this example the LMCP to compensate the corrective capacity 150 MW is equal to $\lambda^1 + SF_{AB,B}^1 \cdot \mu_{AB}^1 = 15 + 0 \cdot (-15) = 15 . In this case, the LMCP reflects G3's the opportunity cost, which equals to the LMP minus its energy bid (\$50 -\$35 = \$15). Without this capacity payment, G3 is under compensated because it is dec'ed to help meet the post contingency constraint, and has lost profit from the reduced energy dispatch. It is a common misperception that bid cost recovery can make whole for the opportunity cost, so the capacity payment is unnecessary. Bid cost recovery only makes whole for dispatched energy, but not for opportunity cost of undispatched energy. In this example, bid cost recovery cannot make whole for G3's 150 MW corrective capacity. That is why we need the capacity payment to prevent G3 from being under compensated by holding its capacity for corrective contingency.

G2 will also receive the same LMCP as G3, because they are located at the same location, and their corrective capacities have the same marginal value. Providing the G2 the LMCP payment gives the correct incentive for infra marginal resources to improve the ramp rate. If the ramp rate is improved by, say 0.1 MW/minute, G2 could be awarded 0.1*20 = 2 MW of more corrective capacity, and be paid 2*15 = \$30. Because the LMCP is a marginal price, the market incentive it provides only holds for a limited amount. If the corrective capacity supply is increased by a large account, the LMCP incentive may diminish. This is not something unique to the LMCP. The LMP may decrease if additional resources are committed at the same location. Shadow price for a transmission constraint may decrease or diminish if an additional transmission line is built. Some stakeholders argued that LMCP incentive is invalid because if G2's ramp rate is increased by 10 MW/min, the LMCP will become zero. Increasing G2's ramp rate by 10 MW/minute is equivalent to increase 200 MW of corrective capacity supply at \$0 cost.

CAISO 30 May 15, 2013

With such a big change in supply, it is very likely the LMCP will diminish in this case, just like the LMP may diminish if a 200 MW resource bidding \$0 is committed at the same location. The fact that marginal price may diminish if a large supply is introduced into the market does not imply the marginal price incentive is invalid. To the contrary, it implies the marginal price not only provides incentive for capacity investment, but also discourages over investment.

The total generation cost of the preventive-corrective solution is 42,250. It resolves the post contingency constraint at the cost 42,250-40,000 = 2,250. This is much more economic than the strong preventive solution, which incurs additional cost of 7,000 compared with the weak preventive case. The relationship between these three models is summarized in Table 9.

Table 9
Comparison of different optimization models

Model properties	Weak preventive	Preventive-corrective	Strong preventive
30-minute SOL compliance	Not modeled	Accurately modeled	Over modeled
Total bid cost	Lowest	Medium	Highest

7.4.2. Example 2: Reducing pre-contingency flow with LMCP reflecting congestion cost saving

Now we consider another scenario with G3 out of service. The preventive-corrective solution is listed in Table 10. Because G2 has maximum 200 MW corrective capacity limited by its ramp rate, G1 and G2 can resolve at most 200 MW of overload in 20 minutes. The optimization dispatches G1 at 550 MW in the base case, which is 200 MW above the post contingency 350 MW SOL. In this case, the optimization cannot create more corrective capacity, so it reduces the base case flow. As a result, the transmission constraint is not binding in the base case, but it is binding in the contingency case at 350 MW. Also, the total generation cost increases to \$49,000. G2's corrective capacity has a marginal value, because if there is 1 more MW corrective capacity, the base case flow can be increased by 1 MW, and result in a cost saving of \$20 by dispatching up G1 1 MW at \$30 and dispatching G2 down 1 MW at \$50. In this case, LMCP reflects the contingency case marginal congestion cost impact.

Under the LMCP compensation, G2 will receive its capacity payment 200 MW * \$20=\$4,000. This provides incentive for market participants to improve ramping capability at location B.

CAISO 31 May 15, 2013

Table 10 Preventive-corrective solution and LMCP compensation with G3 out of service

	Energy in base case						
Gen	P^0	LMP	λ^0	μ_{AB}^0			
G1	550	\$30	\$50	\$0			
G2	650	\$50	\$50	\$0			
G3	0	\$50	\$50	\$0			
	Corrective Capacity in contingency <i>kc</i> =1						
Gen	ΔP^1	LMCP ¹	λ^1	μ_{AB}^1			
G1	-200	\$0	\$20	- \$20			
G2	200	\$20	\$20	- \$20			
G3		\$20	\$20	- \$20			

7.4.3. Example 3: Dynamic ramp rate with LMCP zeroing out uninstructed deviation incentive

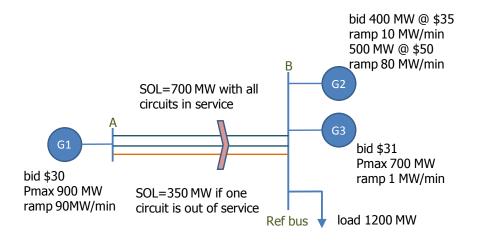


Table 11
Preventive-corrective solution and LMCP compensation with G2 having dynamic ramp rate

	Energy in base case					
Gen	P^0	LMP	λ^0	μ_{AB}^0		
G1	700	\$30	\$31	-\$0.43		
G2	218.57	\$31	\$31	-\$0.43		
G3	281.43	\$31	\$31	-\$0.43		
	Corrective	Capacity i	n conting	ency <i>kc</i> =1		
Gen	ΔP^1	LMCP ¹	λ^1	μ_{AB}^1		
G1	-350	\$0	\$0.57	- \$0.57		
G2	330	\$0.57	\$0.57	- \$0.57		

In this example, G2 has a dynamic ramp rate:

- from 0 MW to 400 MW, the ramp rate is 10 MW/min,
- from 400 MW to 900 MW, the ramp rate is 80 MW/min.

If G1 generates 700 MW in the base case, the system needs to have 350 MW upward ramping capability at node B to cover the 350 MW of SOL reduction. G3 can provide 20 MW in 20 minutes limited by its 1 MW/minute ramp rate. The rest 330 MW needs to come from G2. G2 has 10 MW/minute ramp rate from 0 MW to 400 MW, so it can provide 200 MW in 20 minutes. In order to provide more, it has to be dispatch up to use the higher ramp rate starting from 400 MW. However, because the energy bid is also higher in the higher ramp rate range, the optimization will not try to position the resource in the higher ramp rate range. Instead, the dispatch will position the resource in the lower ramp rate range at a position such that it can exactly provide 330 MW in 20 minutes. By doing so, it meets the post contingency needs without incurring the higher cost in the higher ramp rate region. The optimal dispatch position is 218.57 MW:

- from 218.57 MW to 400 MW, ramp 181.43 MW in 181.43/10 = 18.14 minutes,
- from 400 to 548.57, ramp 148.57 MW in 148.57/80=1.86 minutes,

so the total corrective capacity is 181.43+148.57 = 330 MW in 18.14+1.86=20 minutes.

The LMP at node B is \$31, as the incremental load will be met by G3. In order to get 1 MW of incremental corrective capacity at node B, we will need to dispatch up G2 by 0.143 MW and dispatch G3 down by 0.143 MW. The 0.143 MW upward dispatch for G2 will enable G2 to provide 331 MW in 20 minutes as follows:

- from 218.71 MW to 400 MW, ramp 181.29 MW in 181.29/10 = 18.13 minutes,
- from 400 to 549.71, ramp 149.71 MW in 149.71/80=1.87 minutes.

CAISO 33 May 15, 2013

The LMCP at node B is 0.57, so the incremental dispatch cost is 0.143*\$35-0.143*\$31 = <math>0.57, which sets the LMCP at node B.

The LMP at node B is \$31 set by G3. The LMP \$31 at node B is lower than G2's bid \$35. Even with the corrective capacity payment, G2 is still short of revenue, so G2 needs to go through bid cost recovery to make up the payment shortage.

In this example, the LMCP is neither reflecting G2's opportunity cost (G2 does not have any opportunity cost), nor reflecting the congestion value (the corrective capacity is not affecting the base case congestion cost). Then, what is the interpretation of the LMCP \$0.57? We have observed that G2 has revenue shortage to cover its bid cost. Even we can cover the revenue shortage with bid cost recovery, because bid cost recovery is netted over the day, a resource may still have incentive to avoid the revenue shortage on an interval basis by deviating from the ISO's dispatch. In this case, the value of LMCP is to support the dispatch by eliminating the incentive of uninstructed deviations. Let's assume G2 wants to generate 1 MW less than the ISO's dispatch 218.57 MW, so it could avoid losing \$4. However, by doing so, the corrective capacity it can provide reduces to 323 MW:

- from 217.57 MW to 400 MW, ramp 182.43 MW in 182.43/10 = 18.24 minutes.
- from 400 to 540.56, ramp 140.56 MW in 140.56/80=1.76 minutes,

a total of 323 MW corrective capacity in 20 minutes.

So G2 would lose corrective capacity payment for 7 MW, a total of 0.57*7=\$4. The capacity payment loss offsets the gain from energy dispatch deviation, so G2 has no incentive to deviate from the ISO's dispatch. The fact that LMP and LMCP are able to support the dispatch verifies the correctness of LMP and LMCP in the preventive-corrective model. This example suggests that LMCP payment is necessary to support the dispatch even for resources that do not have lost opportunity cost. Without LMCP payment, a resource may have incentive to deviate from the ISO's dispatch instruction, and compromise system's ability to meet the reliability standards.

CAISO 34 May 15, 2013

7.4.4. Example 4: Multiple contingencies with LMCPs reflecting location opportunity costs

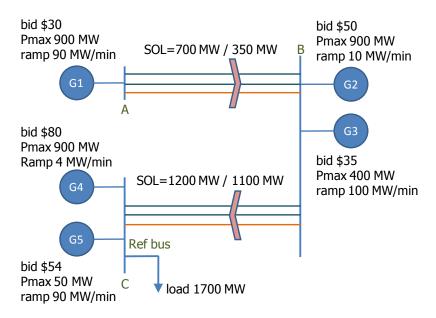


Table 12
Preventive-corrective solution and LMCP compensation with two SOLs

	Energy in base case						
Gen	P^0	LMP	λ^0	μ_{AB}^0	μ_{BC}^0		
G1	700	\$30	\$80	- \$5	- \$19		
G2	150	\$50	\$80	- \$5	- \$19		
G3	350	\$50	\$80	- \$5	- \$19		
G4	470	\$80	\$80	- \$5	- \$19		
G5	30	\$80	\$80	- \$5	- \$19		
	Corrective Capacity in contingency kc=1						
Gen	ΔP^{kc}	LMCP	λ^1	μ_{AB}^1	μ_{BC}^1		
G1	-350	\$0	\$15	- \$15	\$0		
G2	200	\$15	\$15	- \$15	\$0		
G3	50	\$15	\$15	- \$15	\$0		
G4	80	\$15	\$15	- \$15	\$0		
G5	20	\$15	\$15	- \$15	\$0		
	Corrective Capacity in contingency kc=2						
Gen	ΔP^{kc}	LMCP	λ^2	μ_{AB}^2	μ_{BC}^2		
G1	0	\$0	\$11	\$0	- \$11		
G2	-150	\$0	\$11	\$0	- \$11		
G3	50	\$0	\$11	\$0	- \$11		
G4	80	\$11	\$11	\$0	- \$11		
G5	20	\$11	\$11	\$0	- \$11		

In this example, we have added node C, which is connected to node B by branch B-C, and two generators G4 and G5. Branch B-C has SOL reduction from 1200 MW to 1100 MW if one its circuits trips. G4 and G5 will need to have 100 MW upward corrective capacity in order to handle the 100 MW B-C SOL reduction. G4 can only provide 80 MW in 20 minutes, and the rest 20 MW needs to come from G5. G5 is more economic than G4 to meet load. In order to get 20 MW corrective capacity, G2 needs to be dec'ed by 20 MW, and that creates energy opportunity cost. The opportunity cost is \$80 - \$54 = \$26 with G4 setting the LMP at node C.

Next, consider branch A-B's SOL reduction 350 MW. The pool of resources to provide 350 MW upward corrective capacity include G2, G3, G4, and G5. Because G4 and G5 have provided 100 MW upward corrective capacity for branch B-C, this 100 MW also counts towards the 350 MW for SOL of A-B. It is more economic to get the rest of 250 MW corrective capacity from G2 and G3, because the marginal cost to provide corrective capacity at node B is \$15 (as shown in example 1), which is lower than \$26, the marginal cost of corrective capacity at node C. G2 can provide at most 200 MW in 20 minutes, so the rest 50 MW needs to come from G3. G3 is a more economic resource to meet load than G2. In order to get the 50 MW upward corrective capacity, G3 needs to be dec'ed 50 MW in the base case, and that creates energy opportunity cost. Again, the opportunity cost is \$50–\$35 = \$15.

Now we see how the prices are calculated.

$$\mathsf{LMP^A} = \lambda^0 + \mu_{AB}^0 + \mu_{BC}^0 + \mu_{AB}^1 + \mu_{BC}^1 + \mu_{AB}^2 + \mu_{BC}^2 = 80 - 5 - 19 - 15 + 0 + 0 - 11 = \$30.$$

LMP^B =
$$\lambda^0 + \mu_{BC}^0 + \mu_{BC}^1 + \mu_{BC}^2 = 80 - 19 + 0 - 11 = $50$$
.

$$LMP^{C} = \lambda^{0} = $80.$$

The LMPs can be easily verified, as the marginal resources are quite obvious. At node A, G1 sets the LMP \$30; at node B, G2 sets the LMP \$50; and at node C, G4 sets the LMP \$80.

The opportunity cost for G5 is \$80 - \$54 = \$26, and the opportunity cost for G3 is \$50 - \$35 = \$15. As will be shown below, the LMCPs correctly reflect the opportunity costs.

LMCP¹_B =
$$\lambda^1 + \mu_{BC}^1 = 15+0 = $15$$
.

LMCP
$$^{1}_{C} = \lambda^{1} = $15.$$

$$LMCP_B^2 = \lambda^2 + \mu_{BC}^2 = 11-11 = \$0$$

$$LMCP_{C}^{2} = \lambda^{2} = $11$$

Note that G5's 20 MW corrective capacity in contingency case kc=1 will be paid LMCP $_{C}^{1}$ = \$15, and the same 20 MW corrective capacity in contingency case kc=2 will be paid LMCP $_{C}^{2}$ = \$11. So overall, G5 gets paid LMCP $_{C}^{1}$ + LMCP $_{C}^{2}$ = 15+11 = \$26 for each corrective MW, which matches its opportunity cost. This again verifies that the case specific LMCPs are not mutually inclusive, and compensating at the LMCPs will correctly reflect opportunity costs.

8. Conclusion

The ISO is dedicated to ensuring the reliability of the grid by adhering to applicable NERC and WECC standards. The WECC SOL standard presents an operational challenge to secure the appropriate level of reliability when the post-contingency topology is dynamic. Table 13 below (partially reproduced from Table 4) compares the attributes of the preventive-corrective constraint to the ISO's current mechanisms. The preventive-corrective constraint is a general framework that can be applied to the WECC SOL standard by procuring the appropriate capacity at the right nodes via an optimization. The constraint will also utilize the existing 10 minute ancillary services capacity when possible.

CAISO 37 May 15, 2013

Table 13 Comparison of mechanisms to meet WECC SOL standard

Mechanism	Addresses:	Amount of capacity procured determined by:	Locational definition:	Ensures accurate amount of capacity procured at right location?
[A]	[B]	[C]	[D]	[E]
10 minute contingency reserves	NERC/WECC operating reserve requirements ⁴⁰	WECC operating reserve requirements ⁴¹	System-wide	Partially – deliverability issues because not flow-based and granularity
Exceptional dispatch	As specified in ISO tariff ⁴²	Operator judgment	Location specific based on operator judgment	Partially – potential deliverability issues and imprecise procurement
MOC constraints	WECC standard TOP-007-WECC-1 R1 and non-flow based constraints	Predefined static region and requirement	Predefined static region	Partially – predefined static regions and only commits units to Pmin
Preventive- corrective constraint	WECC standard TOP-007-WECC-1 R1	Optimized solution	Nodal	Fully

Table 14 (partially reproduced from Table 5) compares each mechanism based on market efficiency where pricing signals reflect need, whether operationally desirable characteristics are valued, and reliability is maintained via lowest cost. As compared to the other mechanisms, the preventive-corrective constraint is more efficient on all counts.

⁴⁰ WECC standard BAL-STD-002-0 B.WR1. ⁴¹ WECC standard BAL-STD-002-0 B.WR1.

⁴² See ISO tariff such as Section 34.9.

Table 14
Efficiency comparison of mechanisms to meet WECC SOL standard

Mechanism	Optimized procurement	Efficiently dispatched post-contingency?	Bid cost	Fast response valued?
[A]	[B]	[C]	[D]	[E]
10 minute contingency reserves	Yes, for system-wide need co-optimized with energy	May have deliverability issues	Reflected in LMP	Yes
Exceptional dispatch	No, manual process	Very likely	Not reflected in LMP	Inadvertently
MOC constraints	No, constraint is pre- defined and not dynamic	Likely	Not reflected in LMP	No, units within constraint not differentiated
Preventive- corrective constraint	Yes, at nodal level	Yes	Reflected in LMP and potential LMCP payment	Yes

9. Stakeholder feedback

Stakeholders provided written comments and questions based on the issue paper and technical attachment. These can be found at the Contingency Modeling Enhancements webpage. Specific responses to stakeholders can be found in the separate stakeholder matrix posted simultaneously with this straw proposal, also on the webpage. While we have responded to most of the stakeholders' questions or requests, we want to stress, however, that some of the concerns about the preventive-corrective constraint are somewhat misplaced. As we have explained in this straw proposal, the WECC SOL standard is a reliability standard the ISO must meet regardless of the probability of a contingency event. Moreover, the preventive-corrective constraint leverages the current preventive only framework and seeks to improve its effectiveness, thereby increasing reliability.

We also acknowledge and agree with stakeholders call to coordinate any proposal with other market changes and impacts. For example, the proposed constraint will utilize the current 10 minute ancillary services and does not duplicate that procurement. We will ensure that then multiple products are used, only the correct marginal value is reflected. The constraint also has many similarities to the proposed flexible ramping product⁴⁴ and through this stakeholder process we aim to coordinate and align the market designs.

http://www.caiso.com/informed/Pages/StakeholderProcesses/ContingencyModelingEnhancements.aspx

44 See the flexible ramping product stakeholder initiative (which is currently on hold) at:
http://www.caiso.com/informed/Pages/StakeholderProcesses/FlexibleRampingProduct.aspx

CAISO 39 May 15, 2013

⁴³

10. Next Steps

We would like stakeholders to provide written comments on the following issues. **First**, we welcome any questions, comments, or suggestions on this straw proposal so that we can provide clarification points, guidance, or refine the proposal. **Second**, we welcome alternative proposals and would like to see how the alternative is superior to the preventive-corrective constraint. **Third**, some stakeholders have proposed to allow bidding for provision of corrective capacity. The ISO would like to hear more arguments on why bidding should or should not be allowed under the preventive-corrective constraint. Detailed written explanations should include (but are not limited to):

- Assuming bids are technically feasible:
 - What type of cost or lost opportunity would a bid signify?
 - Would a bid be appropriate day-head, real-time, or both? Why?
 - What are potential bidding parameters (such as bid cap)? Why?
 - Are there market power concerns with allowing bids and how can the ISO mitigate those bids?
- Given the above answers, how could ISO evaluate the cost-benefit analysis of including bid functionality? In other words, how much would the benefit be as compared to the added complexity of modeling bid functionality?

Fourth, the ISO proposes removing bid-in ramp rate functionality from the market. We believe this is no longer needed now that multi-stage generating resources are more accurately modeled. Removing the functionality would minimize gaming opportunities in the market and directly benefit the preventive-corrective constraint. As an exception, a resource could still change its ramp rate if it experiences a change in operating capability. We would like to hear from stakeholders on why the bid-in ramp rate functionality should be retained or removed, and potential inefficiencies or benefits from its removal.

The **fifth** topic is a broad consideration of the exercise of local market power and potential manipulation of capacity-based mechanisms such as the preventive-corrective constraint, ancillary services, and the flexible ramping product. We encourage feedback from stakeholders on these issues.

The **sixth** topic is cost allocation. Since the reliability standard is a WECC-wide concern, the current ISO understanding is that costs should be allocated to all load. The ISO would like to hear more detailed arguments for or against this proposal.

The ISO will discuss this straw proposal with stakeholders during a meeting to be held on May 22, 2013. Stakeholders should submit written comments by May 28, 2013 to ContingencyModeling@caiso.com.

CAISO 40 May 15, 2013

11. Nomenclature

i: index for a location

I: index for a transmission constraint

n: total number of nodes in the system

m: total number of transmission constraints in the system

k: index for normal (preventive) contingency

kc: index for corrective contingency

K: total number of normal (preventive) contingencies

KC: total number of corrective contingencies

P: generation dispatch MW

L: load

 \overline{FL} : transmission constraint limit

 $C(\cdot)$: generation bid cost function

SF: shift factor

 ΔP^{kc} : corrective capacity from base case dispatch

 $RCU(\cdot)$: upward ramping capability

 $RCD(\cdot)$: downward ramping capability

 $g(\cdot)$: equality constraint

 $h(\cdot)$: inequality constraint

 λ : system marginal energy cost

 μ : constraint shadow price