Table of Contents

PURPOSE.. 1

1. RESPONSIBILITIES .. 1

2. SCOPE/APPLICABILITY .. 2
 2.1. Background .. 2
 2.2. Scope/ Applicability .. 2

3. PROCEDURE DETAIL ... 3
 3.1. Contributions to Overgeneration ... 3
 3.2. Prior to DAM Run ... 4
 3.3. DAM Run .. 5
 3.4. Post DAM ... 6
 3.5. Overgeneration in Real-Time ... 7
 3.5.1. Prior to HASP FMM ... 8
 3.5.2. Post HASP FMM .. 9
 3.6. Recovering from Overgeneration ... 11

4. SUPPORTING INFORMATION .. 13
 Operationally Affected Parties .. 13
 References ... 13
 Definitions ... 13
 Version History .. 14

5. PERIODIC REVIEW PROCEDURE .. 14
 Review Criteria & Incorporation of Changes .. 14
 Frequency ... 15

APPENDIX .. 15

Purpose

This procedure outlines the steps that may be taken to mitigate an anticipated or actual Oversupply condition known as Overgeneration.

1. Responsibilities

<table>
<thead>
<tr>
<th>ISO System Operator</th>
<th>Implement the procedural steps set forth in this Operating Procedure as directed by ISO Shift Manager Desk.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduling Coordinator</td>
<td>Follow all dispatch instructions and operating orders issued by the ISO during an Overgeneration Condition and any circumstances in which the ISO</td>
</tr>
</tbody>
</table>
2. Scope/Applicability

2.1. Background

Overgeneration is a condition that occurs when total Supply exceeds total Demand in the ISO Balancing Authority Area. Within the market structure, overgeneration conditions occur when the cleared supply and demand from the Day Ahead Market run differs from the actual supply or demand in Real-Time resulting in additional energy during Real-Time. This condition may affect the reliable operation of the ISO Controlled Grid, Balancing Authority Area, and the WECC interconnected Bulk Electric System. Severe Overgeneration may result in critically loaded transmission facilities, significant frequency deviations, high or low voltage conditions, and unacceptable system performance.

2.2. Scope/ Applicability

This procedure addresses how overgeneration is prevented in market processes prior to Real-Time; some common contributors to overgeneration, and steps to mitigate overgeneration in Real-Time.

For the purposes of this procedure, overgeneration in any market process addressed by market software is considered an oversupply wherein the market software process attempts to mitigate by balancing supply and demand. It is not the overgeneration condition referred to and mitigated by steps in this procedure.
3. Procedure Detail

3.1. Contributions to Overgeneration

The following are conditions that occur prior to Real-Time which can serve as contributors to overgeneration realized in Real-Time:

1. **Self-Scheduled Resources:**
 - Self-scheduled resources are resources for which a Scheduling Coordinator submits to the ISO Market a Bid that indicates the quantities in megawatt-hours (MWhs) available to the market but does not specify a price for the corresponding MWhs. This indicates that the Scheduling Coordinator is a price taker. Scheduling Coordinators can submit self-schedules for regular supply resources as well as self-schedules that apply specifically for Regulatory Must-Run Generation or Regulatory Must-Take Generation, Existing Transmission Contracts, and Transmission Ownership Right Self-Schedules. Self-scheduled resources do not simultaneously provide decremental bids to the system to assist in the mitigation of oversupply. The ISO honors self-schedules to the extent feasible and to the extent the market clearing process must modify any self-schedules to clear the market. The market systems follow the relative priorities as specified in the CAISO Tariff.

2. **Variable Energy Resources:**
 - A Variable Energy Resource (VER) is device for the production of electricity that is characterized by an Energy source that:
 - Is renewable;
 - Cannot be stored by the facility owner or operator; and
 - Has variability that is beyond the control of the facility owner or operator. The Day-Ahead (DA) market balances bid-in supply with bid-in demand to meet the ISO forecasted load.

3. **Integrated Forward Market (IFM) Initial Conditions:**
 - The IFM Initial Conditions feature allows:
 - Resources whose Day-Ahead Scheduled Energy ended prior to HE24 and who has chosen to self-schedule the remaining hours of the current Trade Day.
 - Bridging of the energy self-schedules into the beginning of the next trade day.
 - The ISO has the ability to disable the IFM Initial Conditions feature indicating that the market participants should adhere to the Day-Ahead Schedules, to shut down the resource as per the Day-Ahead Schedule, and limiting the potential reliability impact of additional generation online over the early morning hours.
4. **Terminal Conditions:**

 - Terminal Conditions is a feature, in the market optimization, that ensures a resource will remain online to meet its Day-Ahead Schedule for next operating day in the event a resource is kept online past its Day-Ahead Schedule energy for the current day due to system needs. If a binding Day-Ahead committed resource is coming to the end of its Day-Ahead commitment, and there are economic bids that are optimal, the Real-Time commitment may be extended. If the extended commitment of the resource jeopardizes its ability to meet its Day-Ahead commitment for the subsequent day (based on minimum down time), the market mechanisms will ensure that the resource remains online to meet the next day’s binding Day-Ahead Schedules. Terminal Conditions will maintain multi-stage generating resources at a higher configuration to the extent they cannot transition to a lower configuration and meet their Day-Ahead Schedules, even if they have decremental economic bids.

5. **IFM Results vs. ISO Forecast for ISO Demand (CFCD):**

 - If the IFM does not clear against the CFCD, it is possible for the IFM to clear with demand that exceeds the forecast. The Residual Unit Commitment (RUC) process will commit additional resources to the extent the IFM does not meet sufficient resources to meet the CFCD. The RUC process does not de-commit binding commitments; therefore awarded supply may exceed demand in Real-Time. However, the ISO may modify the CFCD to ensure, to the extent the RUC process commits additional resources so it does not over-commit resources.

6. **Virtual Bids:**

 - The DA Market could clear a large amount of virtual load/export schedules with a large amount of physical generation/import schedules that would need to be reconciled in Real-Time.

7. **Test Energy:**

 - Test energy can contribute to oversupply from the Day-Ahead Market because the resource testing may be producing at energy levels unavailable for reduced dispatch.

3.2. Prior to DAM Run

To the extent oversupply condition is anticipated to occur, continue with the steps referenced below: (consider any potential reliability impact to the system in the
immediate and/or future operating time horizon such as congestion, resource minimum down time, start-up time and number of start-ups per day).

Note: The order of the actions taken may vary due to system conditions or other operational concerns. It may be necessary to skip actions due to the severity of the situation and/or how quickly the Overgeneration condition develops. To the extent possible, and when prudent, actions that were skipped in order to maintain reliability may be implemented at a later time.

ISO System Operator

1. **Determine** the potential for, and the estimated magnitude of, Overgeneration in the ISO Balancing Authority area relevant to particular hour(s) of the next Operating Day or days and use the following resources to assist in determining Overgeneration:
 - Scheduled Supply vs. updated Demand forecasts; and
 - Real-Time market infeasibilities results (from the Real-Time Economic Dispatch process).
2. **Disable** the Initial Condition feature before Day-Ahead Market run.
3. **Send** a Market Notification to all SC’s indicating the following:
 - The expected Operating Day and timeframe of anticipated overgeneration; and
 - Request decremental Energy bids and limited self-schedules to address the potential Overgeneration and to prevent invoking other steps within this procedure.

Example Market Notification to all SCs:

<table>
<thead>
<tr>
<th>Overgeneration Market Notification to All SCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>The ISO has determined a potential for Overgeneration for the Operating Day ______ during hour(s) ending _____ and will not consider that day’s Self-Schedules in setting initial conditions. Overgeneration can potentially affect reliability. The ISO is requesting decremental Energy bids and limited self-schedules to prevent invoking additional steps in Procedure 2390, Overgeneration. As necessary, additional notices from the ISO will follow.</td>
</tr>
</tbody>
</table>

3.3. DAM Run

The Integrated Forward Market (IFM) will attempt to manage oversupply as part of the IFM Unit Commitment process by balancing the bid in supply with bid in demand to the extent feasible. If all economic bids are exhausted, IFM will automatically adjust non-priced quantities per Section 31.4 of the CAISO Tariff. These self-scheduled reductions will be indicated to the Scheduling Coordinators through DA awards.

RUC utilizes bid in supply and ISO forecasted demand to commit additional resource as necessary for reliable grid operations. The ISO will adjust the RUC target to meet reliable grid operations without unnecessary over procurement.
3.4. Post DAM
Take the following actions to evaluate the potential for Overgeneration after the DAM run completes:

<table>
<thead>
<tr>
<th>ISO System Operator</th>
</tr>
</thead>
</table>
| 1. **Determine** the potential for, and the estimated magnitude of, Overgeneration in the ISO Balancing Authority area relevant to particular hour(s) of the next Operating Day and use the following resources to assist in determining Overgeneration:
| - Scheduled Supply vs. updated Demand forecasts. |
| 2. **Send** a Market Notification via the Market Messaging System (MNS), indicating the following:
| - Amount of Overgeneration expected;
| - Expected timeframe;
| - Request decremental Energy bids to mitigate the Overgeneration;
| - Request notification of Must-Take and/or Must-Run Generation that can be decremented;
| - Advise SCs that generating units should be operating at their dispatch operating target; and
| - Advise SCs of threats to system reliability. In the event that Scheduling Coordinators do not respond to this Notice of Overgeneration, the ISO may invoke other steps in this procedure (Overgeneration, including but not limited to utilizing Exceptional Dispatch decremental energy, Pro-Rata Generator Reductions, and/or mandatory Generator Reductions).

Example of Market Notification to all SCs:

```
Over Generation Market Notification to All SCs
For Operating Day _____, hour(s) ending ____ through ____, the ISO anticipates Overgeneration in the amount(s) of ____ MW. Scheduling Coordinators are directed to follow all ADS and verbal dispatch instructions and take any additional actions to reduce their contribution to the anticipated Overgeneration condition. Scheduling Coordinators with available decremental energy that was not bid into the Real-Time market should contact the ISO Generation Desk to make this energy available for dispatch, including Must-Take and/or Must-Run Generation.

With this threat to system reliability, in the event that Scheduling Coordinators do not respond to this Notice of Overgeneration the ISO may invoke other steps within this procedure (Overgeneration, including but not limited to utilizing Exceptional Dispatch decremental energy, Pro-Rata Generator Reductions, to the extent possible, and/or mandatory Generator Reductions).
```
3. Send Reliability Messaging Tool (RMT) Notification to distribution list indicating the following:

- The amount of Overgeneration expected;
- The expected timeframe;
- Request entities, with ability, to take energy from ISO BA and to contact the ISO Real-Time operator to arrange transaction; and
- Indicate, due to the lack of sufficient decremental bids, the settlement price will be LMP.

Example of Market Notification to all SCs:

```
<table>
<thead>
<tr>
<th>Over Generation Notification to All RMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Operating Day ____, hour(s) ending __ through __, the ISO anticipates Overgeneration in the amount(s) of ____ MW. Entities with ability to take Energy from ISO BA, contact the ISO Real-Time Interchange Scheduler to arrange transaction.</td>
</tr>
</tbody>
</table>
```

3.5. Overgeneration in Real-Time

The Fifteen-Minute Market (FMM) automatically optimizes bid in supply to meet demand. If the bid in supply exceeds the ISO Forecasted Demand, FMM processes will mitigate the overgeneration condition economically by optimizing the following:

- The reduction of fifteen minute energy imports;
- Clearance of Export Bids;
- Dispatch of generation resources to lower economic limits;
- Transition of MSG resources to lower configurations; or
- Decommitment of fast-start resources.

The above market actions will utilize the submitted decremental bids to reduce hydro and thermal resources to their minimum operating limits while ensuring all reliability requirements are met. These actions are taken through the market mechanisms to prevent invoking manual intervention to decrease generation or reduce Self-Schedules in Real-Time.

If overgeneration conditions are not resolved through market mechanisms, System Operators will take into consideration any potential reliability impact to the system, in the immediate and/or future operating time horizon, such as congestion, resource minimum down time, start-up time, and number of start-ups per day.
3.5.1. Prior to HASP FMM

If overgeneration conditions are not resolved through market mechanisms, System Operators will take into consideration any potential reliability impact to the system, in the immediate and/or future operating time horizon, such as congestion, resource minimum down time, start-up time, and number of start-ups per day.

ISO System Operator

- **Determine** the potential for, and the estimated magnitude of, Overgeneration in the ISO Balancing Authority area relevant to particular hour(s) of the current Operating Day and use the following resources to assist in determining Overgeneration:
 - Scheduled Supply vs. updated Demand forecasts; and
 - Real-Time Market infeasibilities results (from the Real-Time Economic Dispatch process).

- **Send** a Market Notification via the Market Messaging system (MNS), indicating the following:
 - Amount of Overgeneration expected;
 - Expected timeframe;
 - **Request** decremental Energy bids to mitigate the Overgeneration;
 - **Request** notification of Must-Take and/or Must-Run Generation that can be decremented;
 - **Advise** SCs that generating units should be operating at their dispatch operating target; and
 - **Advise** SCs, any threat to system reliability, in the event that Scheduling Coordinators do not respond to this Notice of Overgeneration that the ISO may invoke other steps outlined in this procedure. (Overgeneration, including but not limited to utilizing Exceptional Dispatch decremental energy, and Pro-Rata Generator Reductions and/or mandatory Generator Reductions).

Example Market Notification to all SCs:

<table>
<thead>
<tr>
<th>Over Generation Market Notification to All SCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>For hour(s) ending ____ through ____ , the ISO anticipates Overgeneration in the amount(s) of ____ MW. Scheduling Coordinators are directed to follow all ADS and verbal dispatch instructions and take any additional actions to reduce their contribution to the anticipated Overgeneration condition. Scheduling Coordinators with available decremental energy that was not bid into the Real-Time Market should contact the ISO Generation Desk to make this energy available for dispatch, including Must-Take and/or Must-Run Generation.</td>
</tr>
</tbody>
</table>
With this threat to system reliability, in the event that Scheduling Coordinators do not respond to this Notice of Overgeneration, that the ISO may invoke other steps outlined in this procedure. (Overgeneration, including but not limited to utilizing Exceptional Dispatch decremental energy, and Pro-Rata Generator Reductions and/or mandatory Generator Reductions).

- **Send** Reliability Messaging Tool (RMT) Notification to distribution list indicating the following:
 - Amount of Overgeneration expected;
 - The expected timeframe;
 - **Request** that entities with ability to take Energy from ISO BA, contact the ISO Real-Time Operator to arrange transaction; and
 - Indicate, due to the lack of sufficient decremental bids, the settlement price will be LMP.

Example Market Notification to all SCs:

<table>
<thead>
<tr>
<th>Over Generation Notification to All SCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>For hour(s) ending _____ through _____, the ISO anticipates Overgeneration in the amount(s) of ____ MW. Entities with ability to take Energy from ISO BA, contact the ISO Real-Time Interchange Scheduler to arrange transaction.</td>
</tr>
</tbody>
</table>

- **Cancel** all test energy for duration of the anticipated overgeneration.

3.5.2. Post HASP FMM

If an Overgeneration condition occurs or persists in Real-Time, the Real-Time Market (RTM) attempts to relieve overgeneration, taking into account reliability needs by dispatching resources down using economic Bids. Additionally, based on resources’ bids, RTUC may optimally de-commit resources in Real-Time.

If the overgeneration condition persists, or is expected to persist, System Operators will take into consideration any potential reliability impact to the system, in the immediate and/or future operating time horizon, such as congestion, resource minimum down time, start-up time and number of start-ups per day.
ISO System Operator

1. **Send** a Market Notification via the Market Messaging system (MNS), indicating the following:
 - Amount of Overgeneration expected;
 - **Request** decremental Energy bids to mitigate the Overgeneration;
 - **Request** notification of Must-Take and/or Must-Run Generation that can be decremented;
 - Advise SCs that generating units should be operating at their dispatch operating target; and
 - Advise SCs that with this threat to system reliability, in the event that Scheduling Coordinators do not respond to this Notice of Overgeneration the ISO may invoke other steps within this procedure (Overgeneration, including but not limited to utilizing Exceptional Dispatch decremental energy, Pro-Rata Generator Reductions and/or mandatory Generator Reductions).

Example Market Notification to all SCs:

```
Over Generation Market Notification to All SCs

For hour(s) ending ____ through ____, the ISO anticipates Overgeneration in the amount(s) of ____ MW. Scheduling Coordinators are directed to follow all ADS and verbal dispatch instructions and take any additional actions to reduce their contribution to the anticipated Overgeneration condition. Scheduling Coordinators with available decremental energy that was not bid into the Real-Time Market should contact the ISO Generation Desk to make this energy available for dispatch, including Must-Take and/or Must-Run Generation.

With this threat to system reliability, in the event that Scheduling Coordinators do not respond to this Notice of Overgeneration the ISO may invoke other steps in Operating Procedure 2390, Overgeneration, including but not limited to utilizing Exceptional Dispatch decremental energy, Pro-Rata Generator Reductions (to the extent possible) and/or mandatory Generator Reductions.
```

2. **Contact** Scheduling Coordinators, via phone with participating resources that are not following their ADS instructions and still operating above their dispatch operating target, and instruct them to return to DOT, regardless of their resource type:
 - **Monitor** the response of these resources to confirm that the dispatch instructions have been followed.
3. **Ensure** the market dispatches any resources with unused decremental bids via economic dispatch.

4. **Contact** SCs for any available additional pump load that can be placed on-line.

5. Based on response to market message, **initiate** transactions as needed with the neighboring BAs for energy sales for the affected hours:
 - **Issue** Manual Dispatch for these transactions.

6. **Evaluate** resources with Self-Schedules (not previously reduced automatically by the market), such as Hourly Block Self-Schedules, and resources without market bids, for possible reductions:
 - **Issue** an Exceptional Dispatch decrementing Self-Scheduled resources as necessary pro-rata to the extent feasible) to maintain reliable operation of the grid using the list of units identified.

7. **Consider** fast start units that can be shut down and are not needed for reliability **Issue** Exceptional Dispatch as necessary to de-commit the units.

8. **Evaluate** resources with must take provisions that have the availability to decrement in Real-Time:
 - **Issue** an Exceptional Dispatch for any Regulatory Must-Take Generating Units that are able to be decremented.

9. **Direct** the most effective and least impactful resources on Automatic Generation Control (AGC) to go off AGC and reduce their output to P-Min:
 - **Issue** an Exceptional Dispatch instruction to resources to meet applicable operating parameters.

 - **Note:** *This action is a last resort and reduces the availability of automatic generation control to control the system potentially reducing system reliability.*

To the extent the above steps are successful in reducing the Overgeneration condition the Real-Time prices may reflect the normal balanced conditions.

3.6. Recovering from Overgeneration

Actions taken as the Overgeneration condition improves and the ISO’s supply and demand imbalance reduces:
Overgeneration

Note: Previously committed energy sales will be honored through the arranged hours.

ISO

1. **Return** resources to AGC.
2. **Return** Regulatory Must-Take Generating Units to their schedules.
3. **Return** the Generating Units and Pump Load to their Schedules, one at a time, by reversing the previously implemented steps while ensuring system reliability:

 - **Terminate** new requests for Exceptional Dispatch Exports;
 - **Restore** Exceptional Dispatch Generation that was previously decremented;
 - **Remove** Exceptional Dispatch Pump Load.
 - **Allow** canceled test energy to resume.
 - **Send** a Market Notification via the MNS.

Example Market Notification to all SCs:

<table>
<thead>
<tr>
<th>Market Notification for Recovering from Overgeneration</th>
</tr>
</thead>
<tbody>
<tr>
<td>“For hour(s) ending _____, the ISO expects the Overgeneration condition to subside.”</td>
</tr>
</tbody>
</table>

Or

“From hour(s) ending ____ to ____ , the ISO mitigated an overgeneration condition per ISO Operating Procedure 2390. The ISO is not anticipating an overgeneration condition for hour(s) ending ____.”

4. **Send** RMT Notification to All within distribution list.

Example RMT Notification to all SCs:

<table>
<thead>
<tr>
<th>RMT Notification for Recovering from Overgeneration</th>
</tr>
</thead>
<tbody>
<tr>
<td>“For hour(s) ending _____, the ISO expects the Overgeneration condition to subside.”</td>
</tr>
</tbody>
</table>

Or

“From hour(s) ending ____ to ____ , the ISO mitigated an overgeneration condition per ISO Operating Procedure 2390. The ISO is not anticipating an overgeneration condition for hour(s) ending ____.”
4. Supporting Information

Operationally Affected Parties

Shared with Public.

References

Resources studied in the development of this procedure and that may have an effect upon some steps taken herein include but are not limited to:

<table>
<thead>
<tr>
<th>Reference Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAISO Tariff</td>
<td>Section 7.8.</td>
</tr>
<tr>
<td>CAISO Operating Procedure</td>
<td>2390B Overgeneration Mitigation</td>
</tr>
<tr>
<td></td>
<td>2390C Legacy QFs Curtailment Restrictions</td>
</tr>
<tr>
<td></td>
<td>5210 SLIC Logging</td>
</tr>
<tr>
<td>NERC Requirements</td>
<td></td>
</tr>
<tr>
<td>WECC Criterion</td>
<td></td>
</tr>
<tr>
<td>Other References</td>
<td></td>
</tr>
</tbody>
</table>

Definitions

Unless the context otherwise indicates, any word or expression defined in the Master Definitions Supplement to the CAISO Tariff shall have that meaning when capitalized in this Operating Procedure.

The following additional terms are capitalized in this Operating Procedure when used as defined below:

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory Must-Run Generation</td>
<td>Hydro Spill Generation and Generation which is required to run by applicable federal or California laws, regulations, or other governing jurisdictional authority. Such requirements include but are not limited to hydrological flow requirements, environmental requirements, such as minimum fish releases, fish pulse releases and water quality requirements, irrigation and water supply requirements, or the requirements of solid waste Generation, or other Generation contracts specified or designated by the jurisdictional regulatory authority as it existed on December 20, 1995, or as revised by federal or California law or Local Regulatory Authority.</td>
</tr>
</tbody>
</table>
Overgeneration

<table>
<thead>
<tr>
<th>Regulatory Must-Take Generation</th>
<th>Generation from the following resources that the relevant Scheduling Coordinator schedules directly with the ISO as Regulatory Must-Take Generation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Generation from Generating Units subject to</td>
</tr>
<tr>
<td></td>
<td>• an Existing QF Contract or an Amended QF Contract, or</td>
</tr>
<tr>
<td></td>
<td>• a QF power purchase agreement for a QF 20 MW or smaller pursuant to a mandatory purchase obligation as defined by federal law</td>
</tr>
<tr>
<td></td>
<td>• Generation delivered from a CHP Resource needed to serve its host thermal requirements up to RMT Max in any hour; and</td>
</tr>
<tr>
<td></td>
<td>• Generation from nuclear units.</td>
</tr>
</tbody>
</table>

Version History

<table>
<thead>
<tr>
<th>Version</th>
<th>Change</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3</td>
<td>Section 3.2: Changed market notification message. Section 3.3, Step 4: Changed market notification message. Section 3.4.1, Step 3: Changed ‘directive’ to ‘dispatch instruction’.</td>
<td>1/28/2015</td>
</tr>
<tr>
<td>13</td>
<td>Major rework.</td>
<td>6/2/2015</td>
</tr>
<tr>
<td>13.1</td>
<td>Corrected steps referenced in Step 11</td>
<td>6/24/2015</td>
</tr>
<tr>
<td>13.4</td>
<td>Conversion from SharePoint Word to Centric</td>
<td>3/9/2016</td>
</tr>
<tr>
<td>13.5</td>
<td>Updated formatting and grammar. Removed WECC Net references and replaced with RMT throughout.</td>
<td>3/9/2017</td>
</tr>
<tr>
<td>13.6</td>
<td>Updated Sections 3.5, 3.5.1 and 3.5.2 to provide clarity (highlighted as applicable).</td>
<td>4/14/2017</td>
</tr>
</tbody>
</table>

5. Periodic Review Procedure

There are no specific criteria for reviewing or changing this document, follow instructions in Procedures 5510 and 5520.
Overgeneration

Frequency

Every 3 Years

Appendix

2390B Overgeneration Mitigation
2390C Legacy QFs Curtailment Restrictions
2390D DCPP Non-Urgent Curtailment