BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF CALIFORNIA Order Instituting Rulemaking to Oversee the Resource Adequacy Program, Consider Program Refinements, and Establish Forward Resource Adequacy Procurement Obligations. Rulemaking 19-11-009 (Filed November 7, 2019) #### CALIFORNIA INDEPENDENT SYSTEM OPERATOR CORPORATION DRAFT 2022 LOCAL CAPACITY TECHNICAL ANALYSIS AND UPDATE REGARDING DRAFT 2022 FLEXIBLE CAPACITY NEEDS ASSESSMENT The California Independent System Operator Corporation (CAISO) hereby provides its Draft Local Capacity Technical Analysis for 2022. The CAISO is providing the draft local study as requested in the December 11, 2020 Assigned Commissioner's Amended Track 3B and Track 4 Scoping Memo and Ruling (Scoping Memo). Because the Local Capacity Technical Study remains a draft, the final results are subject to change based on feedback received in the CAISO's stakeholder processes or the CAISO's own internal review. The CAISO will provide the final Local Capacity Technical Study by April 30, 2021, as provided in the Scoping Memo. The Draft Local Capacity Technical Analysis is included as Attachment A to and can be found at: http://www.caiso.com/InitiativeDocuments/Draft2022LocalCapacityTechnicalReport.pdf. The Scoping Memo also requested the CAISO file the draft 2022 flexible resource adequacy requirements by April 2, 2021. However, the CAISO is unable to provide the draft 2022 flexible resource adequacy requirements at this time due to information delays outside the CAISO's control. The CAISO's 2022 flexible capacity study process has been delayed due to the late receipt of 2022 demand forecast data, which is a necessary input in the study process. The CAISO is currently planning to produce 2022 draft flexible capacity requirements during the week of April 19, 2021. The CAISO will file the draft 2022 flexible capacity requirements with the Commission as soon as they are available. The CAISO plans to file the final 2022 Local Capacity Technical Analysis by April 30, 2021, as requested in the Scoping Memo. The 2022 Flexible Capacity Needs Assessment, however, will not be finalized by April 30, 2021. The CAISO currently plans to finalize the 2022 Flexible Capacity Needs Assessment by May 14, 2021. The CAISO will file the final 2022 Flexible Capacity Needs Assessment with the Commission as soon as possible after finalizing. Respectfully submitted, #### By: /s/ Jordan Pinjuv Roger E. Collanton General Counsel Anthony Ivancovich Deputy General Counsel Jordan Pinjuv Senior Counsel California Independent System Operator Corporation 250 Outcropping Way Folsom, CA 95630 Tel: (916) 351-4429 Fax: (916) 608-7222 jpinjuv@caiso.com Attorneys for the California Independent System Operator Corporation Dated: April 2, 2021 # ATTACHMENT A 2022 Local Capacity Technical Study Draft Report and Study Results # **2022 LOCAL CAPACITY TECHNICAL STUDY** # DRAFT REPORT AND STUDY RESULTS # **Intentionally left blank** # **Executive Summary** This Report documents the results and recommendations of the 2022 Local Capacity Technical (LCT) Study. The LCT Study assumptions, processes, and criteria were discussed and recommended through the 2022 Local Capacity Technical Study Criteria, Methodology and Assumptions Stakeholder Meeting held on November 3, 2020. On balance, the assumptions, and processes used for the 2022 LCT Study mirror those used in the 2007-2021 LCT Studies. Overall, the capacity needed for LCR has increased by about 953 MW or about 3.9% from 2021 to 2022. The LCR needs have decreased in the following areas: Humboldt, Kern and Big Creek/Ventura due to load forecast decrease, Sierra due to load forecast decrease and new transmission projects. The LCR needs have increased in the following areas: North Coast/North Bay and Fresno due to load forecast increase, Bay Area due to load increase in San Jose (SVP), San Diego-Imperial Valley due to load forecast increase and higher imports from IID area, Stockton due to lower rating for the limiting equipment, and the LA Basin due to splitting the Mesa 230 kV bus for fault duty mitigation. With the final phase of the Mesa 500 kV Substation project completed, the 2026 LA Basin needs decreased compared to the 2020 requirements by more than 1000 MW. However, the 2021 and 2022 LA Basin needs reflect temporary fluctuations as described in the corresponding reports. The 2022 LCT study results are provided to the CPUC for consideration in its 2022 resource adequacy requirements program. These results will also be used by the CAISO as "Local Capacity Requirements" or "LCR" (minimum quantity of local capacity necessary to meet the LCR criteria) and for assisting in the allocation of costs of any CAISO procurement of capacity needed to achieve the Reliability Standards notwithstanding the resource adequacy procurement of Load Serving Entities (LSEs).¹ The load forecast used in this study is based on the final adopted California Energy Demand Forecast Update 2020-2030, developed by the CEC; namely the load-serving entity (LSE) and balancing authority (BA) mid baseline demand with low additional achievable energy efficiency and photo voltaic (AAEE-AAPV), posted in March 2021: <a href="https://urlisolation.com/browser?url=https%3A%2F%2Fefiling.energy.ca.gov%2Fgetdocument.aspx%3Ftn%3D237320&traceToken=1617047779;caiso-production2;https://www.energy.ca.gov/data-re&clickId=47351499-79A3-4436-9F5D-AECCB72A13A4. To aide procurement, this LCT study provides load profiles and transmission capacity information that shows the effectiveness of local resources in meeting temporal local reliability needs. - ¹ For information regarding the conditions under which the CAISO may engage in procurement of local capacity and the allocation of the costs of such procurement, please see Sections 41 and 43 of the current CAISO Tariff, at: http://www.caiso.com/238a/238acd24167f0.html. The studied results for 2022 are provided below and 2026 LCR needs are provided for comparison: ### **2022 Local Capacity Needs** | | A | ugust Quali | fying Capa | Capacity
Available
at Peak | 2022 LCR Need | | |----------------------------|---------------------|-------------------|---------------|----------------------------------|---------------|-----------------| | Local Area Name | QF/
Muni
(MW) | Non-Solar
(MW) | Solar
(MW) | Total
(MW) | Total
(MW) | Capacity Needed | | Humboldt | 0 | 181 | 0 | 181 | 181 | 111 | | North Coast/ North Bay | 119 | 715 | 0 | 834 | 834 | 834* | | Sierra | 1193 | 894 | 5 | 2092 | 2087 | 1220* | | Stockton | 129 | 445 | 12 | 586 | 574 | 562* | | Greater Bay | 611 | 7129 | 8 | 7748 | 7748 | 7231* | | Greater Fresno | 194 | 2819 | 357 | 3370 | 3172 | 1987* | | Kern | 4 | 333 | 81 | 418 | 337 | 356* | | Big Creek/ Ventura | 424 | 4853 | 369 | 5646 | 5646 | 2173 | | LA Basin | 1160 | 7603 | 11 | 8774 | 8774 | 6646 | | San Diego/ Imperial Valley | 8 | 3985 | 369 | 4362 | 3993 | 3993 | | Total | 3842 | 28957 | 1212 | 34011 | 33346 | 25113 | ### 2026 Local Capacity Needs | | Α | ugust Quali | fying Capa | Capacity
Available
at Peak | 2026 LCR Need | | |----------------------------|---------------------|-------------------|---------------|----------------------------------|---------------|-----------------| | Local Area Name | QF/
Muni
(MW) | Non-Solar
(MW) | Solar
(MW) | Total
(MW) | Total
(MW) | Capacity Needed | | Humboldt | 0 | 181 | 0 | 181 | 181 | 128 | | North Coast/ North Bay | 119 | 715 | 0 | 834 | 834 | 834* | | Sierra | 1193 | 894 | 5 | 2092 | 2087 | 1690* | | Stockton | 129 | 445 | 12 | 586 | 574 | 586* | | Greater Bay | 611 | 7055 | 8 | 7674 | 7674 | 7674* | | Greater Fresno | 194 | 2819 | 357 | 3370 | 3172 | 2314* | | Kern | 4 | 333 | 81 | 418 | 337 | 418* | | Big Creek/ Ventura | 424 | 3362 | 369 | 4155 | 4155 | 982 | | LA Basin | 1159 | 6223 | 11 | 7393 | 7393 | 6359 | | San Diego/ Imperial Valley | 8 | 4676 | 391 | 5075 | 4684 | 3394 | | Total | 3841 | 26703 | 1234 | 31778 | 31091 | 24379 | ^{*} Details about magnitude of deficiencies can be found in the applicable section below. Resource deficient areas and sub-area implies that in order to comply with the criteria, at summer peak, load may be shed immediately after the first contingency. The estimated results for years 2023 and 2024 LCR needs are provided below: #### 2023 Estimated Local Capacity Needs (No technical studies conducted) | | А | ugust Qual | ifying Capa | Capacity
Available
at Peak | 2023 LCR Need | | |----------------------------|---------------------|-------------------|---------------|----------------------------------|---------------|-----------------| | Local Area Name | QF/
Muni
(MW) | Non-Solar
(MW) | Solar
(MW) | Total
(MW) | Total
(MW) | Capacity Needed | | Humboldt | 0 | 181 | 0 | 181 | 181 | 115 | | North Coast/ North Bay | 119 | 715 | 0 | 834 | 834 | 834* | | Sierra | 1193 | 894 | 5 | 2092 | 2087 | 1338* | | Stockton | 129 | 445 | 12 | 586 | 574 | 562* | | Greater Bay | 611 | 7055 | 8 | 7674 | 7674 | 7418* | | Greater Fresno | 194 | 2819 | 357 | 3370 | 3172 | 2069* | | Kern | 4 | 333 | 81 | 418 | 337 | 375* | | Big Creek/ Ventura | 424 | 4853 | 369 | 5646 | 5646 | 935 | | LA Basin | 1160 | 7603 | 11 | 8774 | 8774 | 6196 | | San Diego/ Imperial Valley | 8 | 4071 | 383 | 4462 | 4079 | 3540 | | Total | 3842 | 28969 | 1226 | 34037 | 33358 | 23382 | #### 2024 Estimated Local Capacity Needs (No technical studies conducted) | | А | ugust Qual | ifying Capa | Capacity
Available
at Peak | 2024 LCR Need | | |----------------------------|---------------------|---------------------|-------------|----------------------------------|---------------|-----------------| | Local Area Name | QF/
Muni
(MW) | Muni (MW) (MW) (MW) | | | | Capacity Needed | | Humboldt | 0 | 181 | 0 | 181 | 181 | 120 | | North Coast/ North Bay | 119 | 715 | 0 | 834 | 834 | 834* | | Sierra |
1193 | 894 | 5 | 2092 | 2087 | 1455* | | Stockton | 129 | 445 | 12 | 586 | 574 | 562* | | Greater Bay | 611 | 7055 | 8 | 7674 | 7674 | 7605* | | Greater Fresno | 194 | 2819 | 357 | 3370 | 3172 | 2151* | | Kern | 4 | 333 | 81 | 418 | 337 | 394* | | Big Creek/ Ventura | 424 | 3362 | 369 | 4155 | 4155 | 951 | | LA Basin | 1159 | 6223 | 11 | 7393 | 7393 | 6251 | | San Diego/ Imperial Valley | 8 | 4676 | 391 | 5075 | 4684 | 3330 | | Total | 3841 | 26703 | 1234 | 31778 | 31091 | 23653 | ^{*} Details about magnitude of deficiencies can be found in the applicable section below. Resource deficient areas and sub-area implies that in order to comply with the criteria, at summer peak, load may be shed immediately after the first contingency. The studied results for year 2021 LCR needs are provided below for comparison: #### **2021 Local Capacity Needs** | | | August Qual | Capacity
Available at
Peak | 2021 LCR Need | | | |----------------------------|---------------------|-------------------|----------------------------------|---------------|---------------|-----------------| | Local Area Name | QF/
Muni
(MW) | Non-Solar
(MW) | Solar
(MW) | Total
(MW) | Total
(MW) | Capacity Needed | | Humboldt | 0 | 191 | 0 | 191 | 191 | 130 | | North Coast/ North Bay | 119 | 723 | 0 | 842 | 842 | 842* | | Sierra | 1183 | 920 | 5 | 2108 | 2103 | 1821* | | Stockton | 139 | 445 | 12 | 596 | 584 | 596* | | Greater Bay | 604 | 6806 | 8 | 7418 | 7418 | 6353 | | Greater Fresno | 216 | 2815 | 361 | 3392 | 3191 | 1694* | | Kern | 5 | 330 | 78 | 413 | 335 | 413* | | Big Creek/ Ventura | 424 | 4454 | 250 | 5128 | 5128 | 2296 | | LA Basin | 1197 | 8456 | 11 | 9664 | 9664 | 6127 | | San Diego/ Imperial Valley | 2 | 4003 | 356 | 4361 | 4005 | 3888 | | Total | 3889 | 29143 | 1081 | 34113 | 33461 | 24160 | ^{*} Details about magnitude of deficiencies can be found in the applicable section below. Resource deficient areas and sub-area implies that in order to comply with the criteria, at summer peak, load may be shed immediately after the first contingency. The narrative for each Local Capacity Area lists important new projects included in the base cases as well as a description of the reason for changes between the 2021 and 2022 LCT study results. # **Intentionally left blank** # Table of Contents | Exect | | eryof the Study: Inputs, Outputs and Options | | |-------|--|--|------------------------------| | | 1.1 | Objectives | 8 | | | 1.2
1.2.1 | Key Study AssumptionsInputs, Assumptions and Methodology | | | | 1.3 | Grid Reliability | 10 | | | 1.4 | Application of N-1, N-1-1, and N-2 Criteria | 10 | | 2. | 1.5
1.5.1
1.5.2
Assumpti | Performance Criteria Performance Criteria CAISO Statutory Obligation Regarding Safe Operation on Details: How the Study was Conducted | 11
12 | | | 2.1
2.1.1
2.1.2
2.1.3
2.1.4 | System Planning Criteria Power Flow Assessment: Post Transient Load Flow Assessment: Stability Assessment: Engineering Estimate for Intermediate Years: | 19
20
20 | | | 2.2
2.2.1
2.2.2 | Load Forecast | 22 | | | 2.3 | Power Flow Program Used in the LCR analysis | 23 | | 3. | 2.4
Locationa | Estimate of Battery Storage Needs due to Charging Constraints I Capacity Requirement Study Results | | | | 3.1 | Summary of Study Results | 26 | | | 3.2 | Summary of Zonal Needs | 29 | | | 3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11 | Summary of Results by Local Area Humboldt Area North Coast / North Bay Area Sierra Area Stockton Area Greater Bay Area Greater Fresno Area Kern Area Big Creek/Ventura Area LA Basin Area San Diego-Imperial Valley Area Valley Electric Area | 31
55
64
101
113 | | | 3.4 | Summary of Engineering Estimates for Intermediate Years by Local A | | | | | List of physical resources by PTO, local area and market ID
Effectiveness factors for procurement guidance | | # **Intentionally left blank** # 1. Overview of the Study: Inputs, Outputs and Options ## 1.1 Objectives The intent of the 2022 LCT Study is to identify specific areas within the CAISO Balancing Authority Area that have limited import capability and determine the minimum generation capacity (MW) necessary to mitigate the local reliability problems in those areas, as was the objective of all previous Local Capacity Technical Studies. To aid procurement, this LCT study provides load profiles and transmission capacity information that shows the effectiveness of local resources in meeting temporal local reliability needs. ## 1.2 Key Study Assumptions #### 1.2.1 Inputs, Assumptions and Methodology The inputs, assumptions and methodology were discussed and agreed to by stakeholders at the 2022 LCT Study Criteria, Methodology and Assumptions Stakeholder Meeting held on November 3, 2020. Except for Study Criteria all other Methodology and Assumptions are similar to those used and incorporated in previous LCT studies. The following table sets forth a summary of the approved inputs and methodology that have been used in this 2022 LCT Study: Table 1.2-1 Summary Table of Inputs and Methodology Used in this LCT Study: | Issue | How Incorporated into this LCT Study: | |-----------------------------------|--| | Input Assumptions: | | | Transmission System Configuration | The existing transmission system has been modeled, including all projects operational on or before June 1, of the study year and all other feasible operational solutions brought forth by the PTOs and as agreed to by the CAISO. | | Generation Modeled | The existing generation resources has been modeled and also includes all projects that will be on-line and commercial on or before June 1, of the study year | | Load Forecast | Uses a 1-in-10 year summer peak load forecast | | Methodology: | | | Maximize Import Capability | Import capability into the load pocket has been maximized, thus minimizing the generation required in the load pocket to meet applicable reliability requirements. | |--|---| | QF/Nuclear/State/Federal Units | Regulatory Must-take and similarly situated units like QF/Nuclear/State/Federal resources have been modeled on-line at qualifying capacity output values for purposes of this LCT Study. | | Maintaining Path Flows | Path flows have been maintained below all established path ratings into the load pockets, including the 500 kV. For clarification, given the existing transmission system configuration, the only 500 kV path that flows directly into a load pocket and will, therefore, be considered in this LCT Study is the South of Lugo transfer path flowing into the LA Basin. | | Performance Criteria: | | | All Performance Levels, including incorporation of PTO operational solutions | This LCT Study is being published based on the most stringent of all mandatory reliability standards. In addition, the CAISO will incorporate all new projects and other feasible and CAISO-approved operational solutions brought forth by the PTOs that can be operational on or before June 1, of the study year. Any such solutions that can reduce the need for procurement to meet the mandatory standards will be incorporated into the LCT Study. | | Load Pocket: | | | Fixed Boundary, including limited reference to published effectiveness factors | This LCT Study has been produced based on load pockets defined by a fixed boundary. The CAISO only publishes effectiveness factors where they are useful in facilitating procurement where excess capacity exists within a load pocket. | Further details regarding the 2022 LCT Study methodology and assumptions are provided in Section III, below. ## 1.3 Grid Reliability Service reliability builds from grid reliability because grid reliability is reflected in the Reliability Standards of the North American Electric Reliability Council (NERC) and the Western Electricity Coordinating Council ("WECC") Regional Criteria (collectively "Reliability Standards"). The Reliability Standards apply to the interconnected electric system in the United States and are intended to address the reality that within an integrated network, whatever one Balancing Authority Area does can affect the reliability of other Balancing Authority Areas. Consistent with the mandatory nature of the Reliability Standards, the CAISO is under a statutory obligation to ensure efficient use and reliable operation of the transmission grid consistent with achievement of the Reliability Standards.² The CAISO is further under an obligation, pursuant to its FERC-approved Transmission Control Agreement, to secure compliance with all "Applicable Reliability Criteria." Applicable Reliability Criteria consists of the Reliability Standards as well as reliability criteria adopted by the CAISO (Grid Planning Standards). The Reliability Standards define reliability on interconnected electric systems using the terms "adequacy" and "security."
"Adequacy" is the ability of the electric systems to supply the aggregate electrical demand and energy requirements of their customers at all times, taking into account physical characteristics of the transmission system such as transmission ratings and scheduled and reasonably expected unscheduled outages of system elements. "Security" is the ability of the electric systems to withstand sudden disturbances such as electric short circuits or unanticipated loss of system elements. The Reliability Standards are organized by Performance Categories. Certain categories require that the grid operator not only ensure that grid integrity is maintained under certain adverse system conditions (e.g., security), but also that all customers continue to receive electric supply to meet demand (e.g., adequacy). In that case, grid reliability and service reliability would overlap. But there are other levels of performance where security can be maintained without ensuring adequacy. # 1.4 Application of N-1, N-1-1, and N-2 Criteria The CAISO will maintain the system in a safe operating mode at all times. This obligation translates into respecting the Reliability Criteria at all times, for example during normal operating conditions (N-0) the CAISO must protect for all single contingencies (N-1) and common mode (N-2) double line outages. Also, after a single contingency, the CAISO must re-adjust the system to support the loss of the next most stringent contingency. This is referred to as the N-1-1 condition. The N-1-1 vs N-2 terminology was introduced only as a temporal differentiation between two existing NERC Category P6 and P7 events. N-1-1 represents NERC Category C6 ("category P1 contingency, manual system adjustment, followed by another category P1 contingency"). The N-2 represents NERC Category P7 ("any two circuits of a multiple circuit tower line") as well as WECC-S2 (for 500 kV only) ("any two circuits in the same right-of-way") with no manual system adjustment between the two contingencies. - ² Pub. Utilities Code § 345 #### 1.5 Performance Criteria As set forth on the Summary Table of Inputs and Methodology, this LCR Report is based on the most stringent mandatory standard (NERC, WECC or CAISO). The CAISO tests the electric system in regards to thermal overloads as well as dynamic and reactive margin compliance with the existing standards. #### 1.5.1 Performance Criteria Category P0, P1 & P3 system performance requires that all thermal and voltage limits must be within their "Applicable Rating," which, in this case, are the emergency ratings as generally determined by the PTO or facility owner. Applicable Rating includes a temporal element such that emergency ratings can only be maintained for certain duration. Under this category, load cannot be shed in order to assure the Applicable Ratings are met however there is no guarantee that facilities are returned to within normal ratings or to a state where it is safe to continue to operate the system in a reliable manner such that the next element out will not cause a violation of the Applicable Ratings. The NERC Planning Standards require system operators to "look forward" to make sure they safely prepare for the "next" N-1 following the loss of the "first" N-1 (stay within Applicable Ratings after the "next" N-1). This is commonly referred to as N-1-1. Because it is assumed that some time exists between the "first" and "next" element losses, operating personnel may make any reasonable and feasible adjustments to the system to prepare for the loss of the second element, including, operating procedures, dispatching generation, moving load from one substation to another to reduce equipment loading, dispatching operating personnel to specific station locations to manually adjust load from the substation site, or installing a "Special Protection Scheme" that would remove pre-identified load from service upon the loss of the "next " element.³ All Category P2, P4, P5, P6, P7 and extreme event requirements in this report refer to situations when in real time (N-0) or after the first contingency (N-1) the system requires additional readjustment in order to prepare for the next worst contingency. In this time frame, load drop is not allowed per existing planning criteria. Generally, Category P2, P4, P5, P6, P7 and extreme event describes system performance that is expected following the loss of two or more system elements. This loss of two elements is generally expected to happen simultaneously, referred to as N-2. It should be noted that once the "next" element is lost after the first contingency, as discussed above under the Performance Criteria P1, the event is effectively a Category P6 or N-1-1 scenario. As noted above, depending on system design and expected system impacts, the **planned and controlled** interruption of - ³ A Special Protection Scheme is typically proposed as an operational solution that does not require additional generation and permits operators to effectively prepare for the next event as well as ensure security should the next event occur. However, these systems have their own risks, which limit the extent to which they could be deployed as a solution for grid reliability augmentation. While they provide the value of protecting against the next event without the need for pre-contingency load shedding, they add points of potential failure to the transmission network. This increases the potential for load interruptions because sometimes these systems will operate when not required and other times they will not operate when needed. supply to customers (load shedding), the removal from service of certain generators and curtailment of exports may be utilized to maintain grid "security." #### 1.5.2 CAISO Statutory Obligation Regarding Safe Operation The ISO must maintain the system in a safe operating mode at all times. This obligation translates into respecting the Reliability Criteria at all times. For example, during normal operating conditions (8760 hours per year), the ISO must protect for all single contingencies (P1, P2) and multiple contingencies (P4, P5) as well as common mode double line outages (P7). As a further example, after a single contingency, the ISO must readjust the system in order to be able to support the loss of the next most stringent contingency (P3, P6 and P1+P7 resulting in potential voltage collapse or dynamic instability). Figure 1.5-1 Temporal graph of LCR Category P0-P7 P0 Loading within A/R (normal) as well as making sure the system can support the loss of the most stringent next single element or credible double and be within post-contingency A/R (emergency). Loading Within A/R (emergency) (30 min) P0 P1, P2, P3, P4, P5 Loading Within A/R (within A/R (emergency)) First N-1 occurs After P1 Manual System Adjustment per NERC P6 in order to support the Loss of the next element. trip occurs P6 Within A/R (emergency) Second **Load Shedding Not Allowed After:** P0, P1, P2.1, P2.2EHV, P2.3EHV, P3, P4.1-5EHV, P5.1-5EHV, P6(High Density), P7(High Density) Planned and Controlled Load Shedding Allowed After: P2.2HV, P2.3HV, P2.4, P4.1-5HV, P4.6, P5.1-5HV, P6(Non-High Density), P7(Non-High Density) The following definitions guide the CAISO's interpretation of the Reliability Criteria governing safe mode operation and are used in this LCT Study: #### **Applicable Rating:** This represents the equipment rating that will be used under certain contingency conditions. Normal rating is to be used under normal conditions. <u>Long-term emergency ratings</u>, if available, will be used in all emergency conditions as long as "system readjustment" is provided in the amount of time given (specific to each element) to reduce the flow to within the normal ratings. If not available, the normal rating is to be used. <u>Short-term emergency ratings</u>, if available, can be used as long as "system readjustment" is provided in the "short-time" available in order to reduce the flow to within the long-term emergency ratings where the element can be kept for another length of time (specific to each element) before the flow needs to be reduced the below the normal ratings. If not available long-term emergency rating should be used. <u>Temperature-adjusted ratings</u> shall not be used because this is a year-ahead study, not a real-time tool, and as such the worst-case scenario must be covered. In case temperature-adjusted ratings are the only ratings available then the minimum rating (highest temperature) given the study conditions shall be used. <u>CAISO Transmission Register</u> is the only official keeper of all existing ratings mentioned above. Ratings for future projects provided by PTO and agreed upon by the CAISO shall be used. <u>Other short-term ratings</u> not included in the CAISO Transmission Register may be used as long as they are engineered, studied and enforced through clear operating procedures that can be followed by real-time operators. <u>Path Ratings</u> need to be maintained within their limits in order to assure that proper capacity is available in order to operate the system in real-time in a safe operating zone. #### **Controlled load drop:** This is achieved with the use of a Special Protection Scheme. #### Planned load drop: This is achieved when the most limiting equipment has short-term emergency ratings AND the operators have an operating procedure that clearly describes the actions that need to be taken in order to shed load. #### **Special Protection Scheme:** All known SPS shall be assumed. New SPS must be verified and approved by the CAISO and must comply with the new SPS guideline described in the CAISO Planning Standards. #### **System Readjustment:** This represents the actions taken by operators in order to bring the system within a safe operating zone after any given contingency in the system. Actions that can be taken as system readjustment after a Category P1, P2.1, P2.2(EHV), P2.3(EHV), P3, P4.1-5(EHV), P5.1-5(EHV),
P6(high density area) & Contingency: - 1. System configuration change based on validated and approved operating procedures - 2. Generation re-dispatch - a. Decrease generation (up to 1150 MW) limit given by single contingency SPS as part of the ISO Grid Planning standards (ISO SPS3) - b. Increase generation this generation will become part of the LCR need Actions, which shall not be taken as system readjustment after a Category P1, P2.1, P2.2(EHV), P2.3(EHV), P3, P4.1-5(EHV), P5.1-5(EHV), P6(high density area)&P7(high density area) contingency: Load drop – based on the intent of the ISO/WECC and NERC criteria for category P1 contingencies. An objective of the planning process is to minimize the likelihood and magnitude of Non-Consequential Load Loss following Contingency events. NERC and ISO Planning standards mandate that no load shedding should be done immediately after a Category P1, P2.1, P2.2(EHV), P2.3(EHV), P3, P4.1-5(EHV), P5.1-5(EHV), P6(high density area)&P7(high density area) contingency. The system should be planned with no load shedding regardless of when it may occur (immediately or within 15-30 minutes after the first contingency). It follows that load shedding may not be utilized as part of the system readjustment period – in order to protect for the next most limiting contingency. Therefore, if there are available resources in the local area, such resources should be used during the manual adjustment period (and included in the LCR need) before resorting to shedding firm load. Firm load shedding is allowed in a planned and controlled manner after the first contingency in P2.2(HV), P2.3(HV), P2.4, P4.1-5(HV), P4.6, P5.1-5(HV) and after the second contingency in P6(non-high density area), P7(non-high density area) & P1 system adjusted followed by P7 category events. This interpretation tends to guarantee that firm load shedding is used to address Category P1, P2.1, P2.2(EHV), P2.3(EHV), P3, P4.1-5(EHV), P5.1-5(EHV), P6(high density area)&P7(high density area) conditions only under the limited circumstances where no other resource or validated operational measure is available. A contrary interpretation would constitute a departure from existing practice and degrade current service expectations by increasing load's exposure to service interruptions. #### Time allowed for manual readjustment: Tariff Section 40.3.1.1, requires the CAISO, in performing the Local Capacity Technical Study, to apply the following reliability criterion: Time Allowed for Manual Adjustment: This is the amount of time required for the Operator to take all actions necessary to prepare the system for the next Contingency. The time should not be more than thirty (30) minutes. The CAISO Planning Standards also impose this manual readjustment requirement. As a parameter of the Local Capacity Technical Study, the CAISO must assume that as the system operator the CAISO will have sufficient time to: - (1) make an informed assessment of system conditions after a contingency has occurred; - (2) identify available resources and make prudent decisions about the most effective system redispatch; - (3) manually readjust the system within safe operating limits after a first contingency to be prepared for the next contingency; and - (4) allow sufficient time for resources to ramp and respond according to the operator's redispatch instructions. This all must be accomplished within 30 minutes. Local capacity resources can meet this requirement by either (1) responding with sufficient speed, allowing the operator the necessary time to assess and redispatch resources to effectively reposition the system within 30 minutes after the first contingency, or (2) having sufficient energy available for frequent dispatch on a pre-contingency basis to ensure the operator can meet minimum online commitment constraints or reposition the system within 30 minutes after the first contingency occurs. Accordingly, when evaluating resources that satisfy the requirements of the CAISO Local Capacity Technical Study, the CAISO assumes that local capacity resources need to be available in no longer than 20 minutes so the CAISO and demand response providers have a reasonable opportunity to perform their respective and necessary tasks and enable the CAISO to reposition the system within the 30 minutes in accordance with applicable reliability criteria. # 2. Assumption Details: How the Study was Conducted ## 2.1 System Planning Criteria The following table provides a comparison of system planning criteria, based on the NERC performance standards, used in the study: Table 2.1-1: Criteria Comparison for Bulk Electric System contingencies | Contingency Component(s) | Mandatory
Reliability
Standards | Old Local
Capacity
Criteria | Local Capacity
Criteria | |--|---------------------------------------|-----------------------------------|----------------------------| | P0 - No Contingencies | Х | Х | Х | | P1 – Single Contingency | | | | | 1. Generator (G-1) | X | X1 | X1 | | 2. Transmission Circuit (L-1) | X | X 1 | X1 | | 3. Transformer (T-1) | X | X1,2 | X1 | | 4. Shunt Device | X | | X1 | | 5. Single Pole (dc) Line | X | X1 | X ¹ | | P2 – Single contingency | | | | | Opening a line section w/o a fault | X | | X | | 2. Bus Section fault | X | | X | | 3. Internal Breaker fault (non-Bus-tie Breaker) | X | | X | | 4. Internal Breaker fault (Bus-tie Breaker) | X | | X | | P3 – Multiple Contingency – G-1 + system adjustment and: | | | | | 1. Generator (G-1) | X | X | X | | 2. Transmission Circuit (L-1) | X | X | X | | 3. Transformer (T-1) | X | X2 | X | | 4. Shunt Device | X | | X | | 5. Single Pole (dc) Line | X | X | X | | P4 - Multiple Contingency - Fault plus stuck breaker | | | | | 1. Generator (G-1) | X | | X | | 2. Transmission Circuit (L-1) | X | | X | | 3. Transformer (T-1) | X | | X | | 4. Shunt Device | X | | X | | 5. Bus section | X | | X | | 6. Bus-tie breaker | X | | X | | P5 - Multiple Contingency - Relay failure (delayed clearing) | | | | | 1. Generator (G-1) | X | | X | | 2. Transmission Circuit (L-1) | X | | X | | 3. Transformer (T-1) | X | | X | | 4. Shunt Device | X | | X | | 5. Bus section | X | | X | | P6 – Multiple Contingency – P1.2-P1.5 system adjustment | | | | |--|----------------|----------------|----------------| | and: | X | X | X | | 1. Transmission Circuit (L-1) | X | x | Х | | 2. Transformer (T-1) | Х | | Х | | 3. Shunt Device | Х | | Х | | 4. Bus section | | | | | P7 – Multiple Contingency - Fault plus stuck breaker | | | | | 1. Two circuits on common structure (L-2) | X | X | Х | | 2. Bipolar DC line | X | X | Х | | Extreme event – loss of two or more elements | | | | | Two generators (Common Mode) G-2 | X^4 | X | X ⁴ | | Any P1.1-P1.3 & P1.5 system readjusted (Common Mode) L-2 | X ⁴ | X ³ | X ⁵ | | All other extreme combinations. | X ⁴ | | X^4 | - ¹ System must be able to readjust to a safe operating zone in order to be able to support the loss of the next contingency. - A thermal or voltage criterion violation resulting from a transformer outage may not be cause for a local area reliability requirement if the violation is considered marginal (e.g. acceptable loss of facility life or low voltage), otherwise, such a violation will necessitate creation of a requirement. - ³ Evaluate for risks and consequence, per NERC standards. No voltage collapse or dynamic instability allowed. - ⁴ Evaluate for risks and consequence, per NERC standards. - Expanded to include any P1 system readjustment followed by any P7 without stuck breaker. For voltage collapse or dynamic instability situations mitigation is required "if there is a risk of cascading" beyond a relatively small predetermined area less than 250 MW directly affected by the outage. Table 2.1-2: Criteria Comparison for non-Bulk Electric System contingencies | Contingency Component(s) | Mandatory
Reliability
Standards | Old Local
Capacity
Criteria | Local Capacity
Criteria | |---|---------------------------------------|-----------------------------------|----------------------------| | P0 – No Contingencies | X | Х | Х | | P1 – Single Contingency | | | | | 1. Generator (G-1) | X | X1 | Х | | 2. Transmission Circuit (L-1) | X | X1 | X | | 3. Transformer (T-1) | X | X1,2 | X | | 4. Shunt Device | X | | X | | 5. Single Pole (dc) Line | X | X ¹ | X | | P2 – Single contingency | | | | | 1. Opening a line section w/o a fault | | | | | 2. Bus Section fault | | | | | 3. Internal Breaker fault (non-Bus-tie Breaker) | | | | | 4. Internal Breaker fault (Bus-tie Breaker) | | | | | | 1 | Г | Г | |---|------------------------|------------------------|-------------| | P3 – Multiple Contingency – G-1 + system adjustment and: | | | | | 1. Generator (G-1) | X | X | X | | 2. Transmission Circuit (L-1) | X | X | X | | 3. Transformer (T-1) | X | X ² | X | | 4. Shunt Device | X | | Х | | 5. Single Pole (dc) Line | X | X | Х | | P4 – Multiple Contingency - Fault plus stuck breaker | | | | | 1. Generator (G-1) | | | | | 2. Transmission Circuit (L-1) | | | | | 3. Transformer (T-1) | | | | | 4. Shunt Device | | | | | 5. Bus section | | | | | 6. Bus-tie breaker | | | | | P5 – Multiple Contingency – Relay failure (delayed clearing) | | | | | 1. Generator (G-1) | | | | | 2. Transmission Circuit (L-1) | | | | | 3. Transformer (T-1) | | | | | 4. Shunt Device | | | | | 5. Bus section | | | | | P6 – Multiple Contingency – P1.2-P1.5 system adjustment and: | | | | | 1. Transmission Circuit (L-1) | | Х | | | 2. Transformer (T-1) | | x | | | 3. Shunt Device | | | | | 4. Bus section | | | | | P7 – Multiple Contingency - Fault plus stuck breaker | | | | | Two circuits on common structure (L-2) | | Х | | | 2. Bipolar DC line | | X | | | Extreme event – loss of two or
more elements | | | | | Two generators (Common Mode) G-2 | | Х | | | Any P1.1-P1.3 & P1.5 system readjusted (Common Mode) L-2 | | X ³ | | | All other extreme combinations. | | ^ | | | 1 System must be able to readjust to a safe operating zone in order | r to be able to suppor | t the loss of the next | contingonov | System must be able to readjust to a safe operating zone in order to be able to support the loss of the next contingency. A significant number of simulations were run to determine the most critical contingencies within each local area. Using power flow, post-transient load flow, and stability assessment tools, the system performance results of all tested contingencies were measured against the system performance requirements defined by the criteria shown in Tables 1 and 2. Where the specific system performance requirements were not met, generation was adjusted until performance requirements were met for the local area. The adjusted generation constitutes the minimum A thermal or voltage criterion violation resulting from a transformer outage may not be cause for a local area reliability requirement if the violation is considered marginal (e.g. acceptable loss of facility life or low voltage), otherwise, such a violation will necessitate creation of a requirement. ³ Evaluate for risks and consequence, per NERC standards. No voltage collapse or dynamic instability allowed. generation needed in the local area. The following describes how the criteria were tested for the specific type of analysis performed. #### 2.1.1 Power Flow Assessment: Table 2.1-3 Power flow criteria | Contingencies | Thermal Criteria ¹ | Voltage Criteria ² | |----------------------|-------------------------------|-------------------------------| | P0 | Applicable Rating | Applicable Rating | | P1 ³ | Applicable Rating | Applicable Rating | | P2 | Applicable Rating | Applicable Rating | | P3 | Applicable Rating | Applicable Rating | | P4 | Applicable Rating | Applicable Rating | | P5 | Applicable Rating | Applicable Rating | | P6 ⁴ | Applicable Rating | Applicable Rating | | P7 | Applicable Rating | Applicable Rating | | P1 + P7 ⁴ | - | No Voltage Collapse | - ¹ Applicable Rating Based on CAISO Transmission Register or facility upgrade plans including established Path ratings. - ² Applicable Rating CAISO Grid Planning Criteria or facility owner criteria as appropriate. - ³ Following the first contingency (N-1), the generation must be sufficient to allow the operators to bring the system back to within acceptable operating range (voltage and loading) and/or appropriate OTC following the studied outage conditions and be able to safely prepare for the loss of the next most stringent element and be within Applicable Rating after the loss of the second element. - During normal operation or following the first contingency (N-1), the generation must be sufficient to allow the operators to prepare for the next worst N-1 or common mode N-2 without pre-contingency interruptible or firm load shedding. SPS/RAS/Safety Nets may be utilized to satisfy the criteria after the second N-1 or common mode N-2 except if the problem is of a thermal nature such that short-term ratings could be utilized to provide the operators time to shed either interruptible or firm load. #### 2.1.2 Post Transient Load Flow Assessment: Table 2.1-4 Post transient load flow criteria | Contingencies | Reactive Margin Criteria ² | |-----------------------|---------------------------------------| | Selected ¹ | Applicable Rating | - If power flow results indicate significant low voltages for a given power flow contingency, simulate that outage using the post transient load flow program. The post-transient assessment will develop appropriate Q/V and/or P/V curves. - Applicable Rating positive margin based on the higher of imports or load increase by 5% for N-1 contingencies, and 2.5% for N-2 contingencies. #### 2.1.3 Stability Assessment: Table 2.1-5 Stability criteria | Contingencies | Stability Criteria ² | |-----------------------|---------------------------------| | Selected ¹ | Applicable Rating | - Base on historical information, engineering judgment and/or if power flow or post transient study results indicate significant low voltages or marginal reactive margin for a given contingency. - ² Applicable Rating CAISO Grid Planning Criteria or facility owner criteria as appropriate. #### 2.1.4 Engineering Estimate for Intermediate Years: Due to combined CEC/CPUC/CAISO timelines required by the RA process, the ISO must estimate LCR requirement for intermediate years, between the technical studies run for years one and five. ISO will be using an engineering estimate for intermediate years. Elements of the engineering judgement estimates are described below: #### 2.1.4.1 Net Peak Load Growth driven estimate Assuming nothing else changes, no transmission or resource mix changes, including no changes to long-term contractual arrangements, the increase (or decrease) in LCR, assuming a linear function, will be estimated based on ratio of load growth to ratio of LCR needs to be multiplied by the number of years using the following formula: LCR for Year of Need = Year 1 LCR + [(Year 5 LCR-Year 1 LCR)/4] X (Year of Need-Year 1) For non-linear functions, like voltage collapse or dynamic instability, ISO will use engineering judgment in order to provide estimated LCR requirement. #### 2.1.4.2 Single New Transmission driven estimate Assuming nothing else changes, no load growth, no other new transmission projects or resource mix changes, including no changes to long-term contractual arrangements, the increase (or decrease in LCR) will be estimated based on a step function (usually decreasing the LCR needs) in the year when the transmission project is supposed to be first operational (if in-service before June 1-st of estimated year for summer peaking areas). #### 2.1.4.3 Single New Resource driven estimate Assuming nothing else changes, no load growth, no new transmission projects or any other resource mix changes, including no changes to long-term contractual arrangements, the increase (or decrease in LCR) will be estimated based on a step function if: - a) The new resource is catalogued with a higher dispatch priority or the same priority as the marginal resource used for establishment of LCR need AND - b) The new resource has a significantly different (10% or more) effectiveness factor difference vs. the marginal resource used for the establishment of the LCR need. Priority dispatch order (from LCR study manual): - 1. QF/MUNI/State/Federal - RA resources under long-term contracts - 3. Unknown contractual status #### 2.1.4.4 Single Change in Resource contractual status driven estimate Assuming nothing else changes, no load growth, no new transmission projects or resource mix changes, including no changes to other long-term contractual arrangements, the increase (or decrease in LCR) will be estimated based on a step function if: - a) The resource is moving to a higher dispatch priority or the same priority as the marginal resource used for establishment of LCR need AND - b) The resource has a significantly different (10% or more) effectiveness factor difference vs. the marginal resource used for the establishment of the LCR need. #### 2.1.4.5 Single Known Resource Retirement driven estimate Assuming nothing else changes, no load growth, no new transmission projects or other resource mix changes, including no changes to long-term contractual arrangements, the increase (or decrease in LCR) will be estimated based on a step function if: - The retired resource was included in a higher dispatch priority or the same priority as the marginal resource used for establishment of LCR need AND - b) The resource has a significantly different (10% or more) effectiveness factor difference vs. the marginal resource used for the establishment of the LCR need. #### 2.1.4.6 Multi Reason Change driven estimate From multi-year available LCR studies the ISO will use engineering judgement, guided by the above explain single change principles, in order to estimate intermediate year LCR needs any time more than one factor is influencing the LCR results: - a) Net peak load growth - b) New transmission project(s) - c) New resource(s) - d) Change in resource contractual status - e) Known resource retirement(s) #### 2.2 Load Forecast #### 2.2.1 System Forecast The California Energy Commission (CEC) derives the load forecast at the system and Participating Transmission Owner (PTO) levels. This relevant CEC forecast is then distributed across the entire system, down to the local area, division and substation level. The PTOs use an econometric equation to forecast the system load. The predominant parameters affecting the system load are (1) number of households, (2) economic activity (gross metropolitan products, GMP), (3) temperature and (4) increased energy efficiency and distributed generation programs. #### 2.2.2 Base Case Load Development Method The method used to develop the load in the base case is a melding process that extracts, adjusts and modifies the information from the system, distribution and municipal utility forecasts. The melding process consists of two parts: Part 1 deals with the PTO load and Part 2 deals with the municipal utility load. There may be small differences between the methodologies used by each PTO to disaggregate the CEC load forecast to their level of local area as well as bar-bus model. #### 2.2.2.1 PTO Loads in Base Case The methods used to determine the PTO loads are, for the most part, similar. One part of the method deals with the determination of the division⁴ loads that would meet the requirements of 1-in-5 or 1-in-10 system or area base cases and the other part deals with the allocation of the division load to the transmission buses. #### a. Determination of division loads The annual division load is determined by summing the previous year division load and the current
division load growth. Thus, the key steps are the determination of the initial year division load and ⁴ Each PTO divides its territory in a number of smaller area named divisions. These are usually smaller and compact areas that have the same temperature profile. the annual load growth. The initial year for the base case development method is based heavily on recorded data. The division load growth in the system base case is determined in two steps. First, the total PTO load growth for the year is determined, as the product of the PTO load and the load growth rate from the system load forecast. Then this total PTO load growth is allocated to the division, based on the relative magnitude of the load growth projected for the divisions by the distribution planners. For example, for the 1-in-10 area base case, the division load growth determined for the system base case is adjusted to the 1-in-10 temperature using the load temperature relation determined from the latest peak load and temperature data of the division. #### b. Allocation of division load to transmission bus level Since the loads in the base case are modeled at the various transmission buses, the division loads developed must be allocated to those buses. The allocation process is different depending on the load types. For the most part, each PTO classifies its loads into four types: conforming, non-conforming, self-generation and generation-plant loads. Since the non-conforming and self-generation loads are assumed to not vary with temperature, their magnitude would be the same in the system or area base cases of the same year. The remaining load (the total division load developed above, less the quantity of non-conforming and self-generation load) is the conforming load. The remaining load is allocated to the transmission buses based on the relative magnitude of the distribution forecast. The summation of all base case loads is generally higher than the load forecast because some load, i.e., self-generation and generation-plant, are behind the meter and must be modeled in the base cases. However, for the most part, metered or aggregated data with telemetry is used to come up with the load forecast. #### 2.2.2.2 Municipal Loads in Base Case The municipal utility forecasts that have been provided to the CEC and PTOs for the purposes of their base cases were also used for this study. # 2.3 Power Flow Program Used in the LCR analysis The technical studies were conducted using General Electric's Power System Load Flow (GE PSLF) program version 21.0_07 and PowerGem's Transmission Adequacy and Reliability Assessment (TARA) program version 2002_1. This GE PSLF program is available directly from GE or through the Western System Electricity Council (WECC) to any member and TARA program is commercially available. To evaluate Local Capacity Areas, the starting base case was adjusted to reflect the latest generation and transmission projects as well as the one-in-ten-year peak load forecast for each Local Capacity Area as provided to the CAISO by the PTOs. Electronic contingency files provided by the PTOs were utilized to perform the numerous contingencies required to identify the LCR. These contingency files include remedial action and special protection schemes that are expected to be in operation during the year of study. A CAISO created EPCL (a GE programming language contained within the GE PSLF package) routine and/or TARA software were used to run the combination of contingencies; however, other routines are available from WECC with the GE PSLF package or can be developed by third parties to identify the most limiting combination of contingencies requiring the highest amount of generation within the local area to maintain power flows within applicable ratings. ## 2.4 Estimate of Battery Storage Needs due to Charging Constraints Local areas and sub-areas have limited transmission capability and therefore rely on internal resources to be available in order to reliably serve internal load. Battery storage will help serve local load during the discharge cycle, however it will also increase local load during the charging cycle. Due to recent procurement activities geared toward the acquisition of this type of technology, the CAISO is herein estimating the characteristics (MW, MWh, discharge duration) required from battery storage technology in order to seamlessly integrate in each local area and sub-area. The CAISO expects that for batteries that displace other local resource adequacy resources, the transmission capability under the most limiting contingency and the other local capacity resources must be sufficient to recharge the batteries in anticipation of the outage continuing through the night and into the next day's peak load period. For each local area and sub-area, the CAISO has estimated the battery storage characteristics, given their unique load shape, constraints and requirements as well as the energy characteristics of other resources required to meet standards. Due to this fact, the strict addition of the sub-area battery storage characteristics (MW, MWh and duration) may not closely align with the overall local area battery storage characteristic requirements (MW, MWh and duration). #### **Assumptions** - 1) Total load serving capability includes capability from transmission system and local generation needed for LCR under the worst contingency. - 2) Storage added replaces existing generation MW for MW. First the batteries will replace as much as possible of existing gas resources, Second if the area and/or sub-area has run out of gas resources to displace then other technologies may be reduced in order to determine the maximum battery charging limit. - Effectiveness factors are assumed not to be a factor. Battery storage is assumed to be installed at the same sites where resources are displaced or assumed to have the same effectiveness factors. - 4) Deliverability of incremental storage capacity is not evaluated. It is assumed battery storage will take over deliverability from old resources through repower. Any new battery storage resource needs to go through the generation interconnection process in order to receive deliverability and it is not evaluated in this study. CAISO cannot guaranty that there is enough deliverability available for new resources. New transmission upgrades may be required in order to make such new resources deliverable to the aggregate of load. - 5) Includes battery storage charging/discharging efficiency of 85%. - 6) Daily charging required is distributed to all non-discharging hours proportionally using delta between net load and the total load serving capability. - 7) Energy required for charging, beyond the transmission capability under contingency condition, is produced by other LCR required resources within the local area and sub-area that are available for production during off-peak hours. - 8) Hydro resources are considered to be available for production during off-peak hours, however these resources are energy limited themselves and based on past availability data they can have severely limited output during off-peak hours especially during late summer peaks under either normal or dry hydro years. - 9) The study assumes the ability to provide perfect dispatch and the ability to enforce charging requirements for multiple contingency conditions (like N-1-1) in the day ahead time frame while the system is under normal (no contingency) conditions. CAISO software improvements and/or augmentations are required in order to achieve this goal. Installing battery storage with insufficient characteristics (MW, MWh and duration) will not result in a one for one reduction of the local area or sub-area need for other types of resources. The CAISO expects that the overall RA portfolio provided by all LSEs to account for the uplift, beyond the minimum LCR need, in MWs required from other type of resources for all areas and sub-areas where LSEs have procured battery storage beyond the charging capability or with incorrect characteristics (MW, MWh and duration). If uplift is not provided the CAISO may use its back stop authority to assure that reliability standards are met throughout the day, including off-peak hours. # 3. Locational Capacity Requirement Study Results # 3.1 Summary of Study Results LCR is defined as the amount of resource capacity that is needed within a Local Capacity Area to reliably serve the load located within this area. The results of the CAISO's analysis are summarized in the Executive Summary Tables. Table 3.1-1 2022 Local Capacity Needs vs. Peak Load and Local Area Resources | | 2022 Total
LCR (MW) | Peak Load
(1 in10)
(MW) | 2022 LCR as
% of Peak
Load | Total NQC Local Area
Resources (MW) | 2022 LCR as % of
Total NQC | |---------------------------|------------------------|-------------------------------|----------------------------------|--|-------------------------------| | Humboldt | 111 | 144 | 77% | 181 | 61% | | North Coast/North Bay | 834 | 1509 | 55% | 834 | 100%** | | Sierra | 1220 | 1618 | 75% | 2092 | 58%** | | Stockton | 562 | 1027 | 55% | 586 | 96%** | | Greater Bay | 7231 | 10746 | 67% | 7748 | 93%** | | Greater Fresno | 1987 | 3435 | 58% | 3370 | 59%** | | Kern | 356 | 1029 | 35% | 418 | 85%** | | Big Creek/Ventura | 2173 | 4394 | 49% | 5646 | 38% | | LA Basin | 6646 | 18929 | 35% | 8774 | 76% | | San Diego/Imperial Valley | 3993 | 4580 | 87% | 4362 | 92% | | Total* | 25113 | 47411 | 53% | 34011 | 74% | Table 3.1-2 2021 Local Capacity Needs vs. Peak Load and Local Area Resources | | 2021 Total
LCR (MW) | Peak Load
(1 in10)
(MW) | 2021 LCR as
% of Peak
Load | Total Dependable
Local Area Resources
(MW) | 2021 LCR as % of
Total Area
Resources | |---------------------------|------------------------|-------------------------------|----------------------------------
--|---| | Humboldt | 130 | 153 | 85% | 191 | 68% | | North Coast/North Bay | 842 | 1456 | 58% | 842 | 100%** | | Sierra | 1821 | 1865 | 98% | 2108 | 86%** | | Stockton | 596 | 1113 | 54% | 596 | 100%** | | Greater Bay | 6353 | 10780 | 59% | 7418 | 86 | | Greater Fresno | 1694 | 3189 | 53% | 3392 | 50%** | | Kern | 413 | 1285 | 32% | 413 | 100%** | | LA Basin | 2296 | 4451 | 52% | 5128 | 45% | | Big Creek/Ventura | 6127 | 18930 | 32% | 9664 | 63% | | San Diego/Imperial Valley | 3888 | 4523 | 86% | 4361 | 89% | | Total* | 24160 | 47745 | 51% | 34113 | 71% | ^{*} Value shown only illustrative, since each local area peaks at a different time. ** Resource deficient LCA (or with sub-area that are deficient). Resource deficient area implies that in order to comply with the criteria, at summer peak, load must be shed immediately after the first contingency. Table 3.1-1 and Table 3.1-2 shows how much of the Local Capacity Area load is dependent on local resources and how many local resources must be available in order to serve the load in those Local Capacity Areas in a manner consistent with the Reliability Criteria. These tables also indicate where new transmission projects, new resource additions or demand side management programs would be most useful in order to reduce the dependency on existing, generally older and less efficient local area resources. The term "Qualifying Capacity" used in this report is the "Net Qualifying Capacity" ("NQC") posted on the CAISO web site at: #### http://www.caiso.com/planning/Pages/ReliabilityRequirements/Default.aspx The NQC list includes the area (if applicable) where each resource is located for units already Neither the NQC list nor this report incorporates Demand Side Management programs and their related NQC. Units scheduled to become operational before June 1 of 2022 have been included in this 2022 LCT Study Report and added to the total NQC values for those respective areas (see detail write-up for each area). Regarding the main tables up front (page 2), the first column, "August Qualifying Capacity," reflects three sets of resources. The first set is comprised of resources that would normally be expected to be on-line such as Municipal and Regulatory Must-take resources (state, federal, municipal and QFs). The second set is "market" based resources (market, net seller, wind and battery). The third set are solar resources, since they may or may not be available during the actual peak hour for the respective local area. The second column, "Capacity at Peak" identifies how much of the August Qualifying Capacity is expected to be available during the peak time for each particular local area. The third column, "YEAR LCR Need", sets forth the local capacity requirements, without the deficiencies that must be addressed, necessary to attain a service reliability level required to comply with NERC/WECC/CAISO mandatory reliability standards. Table 3.1-3 includes estimated characteristics (MW, MWh, discharge duration) required from battery storage technology in order to seamlessly integrate in each local area and sub-area. The CAISO expects that for batteries that displace other local resource adequacy resources, the transmission capability under the most limiting contingency and the other local capacity resources must be sufficient to recharge the batteries in anticipation of the outage continuing through the night and into the next day's peak load period. Table 3.1-3 2022 Battery Storage Characteristics Limited by Charging Capability | Area/Sub-area | Pmax
MW | Energy
MWh | Max. # of
discharge
hours | i Reniacement | Replacing mostly | Comment | |-------------------------------|------------|---------------|---------------------------------|---------------|------------------|---------| | Humboldt | 28 | 106 | 9 | 26 | gas | | | North Coast/North Bay Overall | 410 | 2141 | 10 | 55 | geothermal | | | Eagle Rock | 38 | 247 | 9 | 15 | geothermal | | | Fulton | 402 | 824 | 8 | 205 | geothermal | | 27 | Area/Sub-area | Pmax
MW | Energy
MWh | Max. # of
discharge
hours | 1 for 1
Replacement
with 4-hour
battery | Replacing mostly | Comment | |--------------------------------------|------------|---------------|---------------------------------|--|------------------|-----------------------| | Sierra | 1 | - | - | - | - | Flow through | | Placer | 59 | 472 | 9 | 24 | hydro | | | Pease | 51 | 408 | 9 | 30 | gas | Need to be eliminated | | Gold Hill-Drum | 187 | 1496 | 9 | 83 | hydro | | | Stockton | - | - | - | - | - | Sum of sub-areas | | Lockeford | 0 | 0 | 0 | 0 | gas | Need to be eliminated | | Tesla-Bellota | 440 | 3080 | 8 | 195 | gas | | | Greater Bay Overall | 2100 | 14578 | 11 | 900 | gas | | | Llagas | 21 | 89 | 7 | 17 | gas | | | San Jose | 375 | 2757 | 12 | 190 | gas | | | South Bay-Moss Landing | 450 | 3042 | 16 | 250 | gas | | | Oakland | 22 | 181 | 10 | 11 | distillate | | | Greater Fresno Overall | 710 | 4811 | 12 | 400 | hydro | | | Panoche | 85 | 422 | 11 | 85 | gas | | | Herndon | 475 | 1114 | 11 | 280 | hydro | | | Hanford | 70 | 382 | 8 | 65 | gas | | | Coalinga | 48 | 356 | 13 | 25 | solar | | | Borden | 22 | 80 | 7 | 12 | gas | | | Reedley | 25 | 185 | 12 | 10 | hydro | | | Kern Overall | - | - | - | - | - | N/A | | Westpark | 9 | 36 | 6 | 9 | gas | | | Kern Power-Tevis | 45 | 280 | 8 | 25 | solar | | | Kern Oil | 96 | 578 | 10 | 63 | gas | | | South Kern PP | 395 | 2904 | 12 | 152 | gas | | | Big Creek/Ventura Overall | 1181 | 8140 | 17 | 390 | gas | | | Vestal | 163 | 1293 | 13 | 50 | gas | | | Santa Clara | 185 | 1442 | 12 | 37 | gas | | | LA Basin Overall | 3612 | 29332 | 11 | 1020 | gas | | | Eastern | 1834 | 13584 | 11 | 690 | gas | | | Western | 1840 | 15148 | 11 | 580 | gas | | | El Nido | 238 | 1591 | 11 | 106 | gas | | | San Diego/Imperial Valley
Overall | 1165 | 6690 | 9 | 670 | gas | | | San Diego | 1165 | 6697 | 9 | 670 | gas | | | El Cajon | 40 | 202 | 8 | 40 | gas | | | Area/Sub-area | Pmax
MW | Energy
MWh | Max. # of
discharge
hours | 1 for 1
Replacement
with 4-hour
battery | Replacing mostly | Comment | |---------------|------------|---------------|---------------------------------|--|------------------|---------| | Border | 20 | 110 | 7 | 17 | gas | | ## 3.2 Summary of Zonal Needs Based on the existing import allocation methodology, the only major 500 kV constraint not accounted for is path 26 (Midway-Vincent). Table 3.2-1 shows the total resources needed (based on the latest CEC load forecast) in each the two relevant zones, SP26 and NP26. | | Load | 15% | (-) Allocated | (-) Maximum | Total Zonal | |----------------|----------|----------|---------------|--------------|-------------| | Zone | Forecast | reserves | imports | Path 26 Flow | Resource | | | (MW) | (MW) | (MW) | (MW) | Need (MW) | | SP26 | 27474 | 4121 | -7594 | -3750 | 20251 | | NP26=NP15+ZP26 | 20403 | 3060 | -3451 | -3000 | 17012 | Table 3.2-1 Total Zonal Resource Needs #### Where: <u>Load Forecast</u> is the most recent 1 in 2 CEC forecast for year 2022 - California Energy Demand Update 2020-2030, Mid Demand Baseline, Mid AAEE Savings updated in March, 2021. Reserve Margin is 15% the minimum CPUC approved planning reserve margin. <u>Allocated Imports</u> are the actual 2021 Available Import Capability for loads in the CAISO control area numbers that are not expected to change much by 2022, other then the accounted for increase in MIC from the IID area. <u>Maximum Path 26 flow</u> The CAISO determines the maximum amount of Path 26 transfer capacity available after accounting for (1) Existing Transmission Contracts (ETCs) that serve load outside the CAISO Balancing Area⁵ and (2) loop flow⁶ from the maximum path 26 rating of 4000 MW (North-to-South) and 3000 MW (South-to-North). Both NP 26 and SP 26 load forecast, import allocation and zonal results refer to the CAISO Balancing Area only. This is done in order to be consistent with the import allocation methodology. ⁵ The transfer capability on Path 26 must be de-rated to accommodate ETCs on Path 26 that are used to serve load outside of the CAISO Balancing Area. These particular ETCs represent physical transmission capacity that cannot be allocated to LSEs within the CAISO Balancing Area. ⁶ "Loop flow" is a phenomenon common to large electric power systems like the Western Electricity Coordinating Council. Power is scheduled to flow point-to-point on a Day-ahead and Hour-ahead basis through the CAISO. However, electric grid physics prevails and the actual power flow in real-time will differ from the pre-arranged scheduled flows. Loop flow is real, physical energy and it uses part of the available transfer capability on a path. If not accommodated, loop flow will cause overloading of lines, which can jeopardize the security and reliability of the grid. All resources that are counted as part of the Local Area Capacity Requirements fully count toward the Zonal Need. The local areas of San Diego, LA Basin and Big Creek/Ventura are all situated in SP26 and the remaining local areas are in NP26. ## 3.2.19.1 Changes compared to last year's results: The load forecast went up in Northern California by about 300 MW while Southern California stayed about the same. The Import Allocations went up in Southern California by about 500 MW and down in Northern California by about 200 MW. The Path 26 maximum transfer capability has not changed and is not envisioned to change in the near future. # 3.3 Summary of Results by Local Area Each Local Capacity Area's overall requirement is determined by also achieving each sub-area requirement. Because these areas are a part of the interconnected electric system, the total for each Local Capacity Area is not simply a summation of the sub-area needs. For example, some sub-areas
may overlap and therefore the same units may count for meeting the needs in both sub-areas. #### 3.3.1 Humboldt Area #### 3.3.1.1 Area Definition The transmission tie lines into the area include: Bridgeville-Cottonwood 115 kV line #1 Humboldt-Trinity 115 kV line #1 Laytonville-Garberville 60 kV line #1 Trinity-Maple Creek 60 kV line #1 The substations that delineate the Humboldt Area are: Bridgeville is in, Low Gap, Wildwood and Cottonwood are out Humboldt is in, Trinity is out Kekawaka and Garberville are in, Laytonville is out Maple Creek is in, Trinity and Ridge Cabin are out #### **Humboldt LCR Area Diagram** Figure 3.3-1 Humboldt LCR Area # **Humboldt LCR Area Load and Resources** Table 3.3-1 provides the forecasted load and resources. The list of generators within the LCR area are provided in Attachment A. In year 2022 the estimated time of local area peak is 18:00 PM. This area does not contain models of solar resources capable of providing resource adequacy. If required, all non-solar technology type resources are dispatched at NQC. Table 3.3-1 Humboldt LCR Area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-----|------------------------------------|---------|---------| | Gross Load | 132 | Market and Net Seller | 181 | 181 | | AAEE | -1 | MUNI | 0 | 0 | | Behind the meter DG | 0 | QF | 0 | 0 | | Net Load | 131 | LTPP Preferred Resources | 0 | 0 | | Transmission Losses | 13 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 144 | Total | 181 | 181 | ## **Humboldt LCR Area Hourly Profiles** Figure 3.3-2 illustrates the forecast 2022 profile for the peak day for the Humboldt LCR area with the Category P6 transmission capability without resources. Figure 3.3-3 illustrates the forecast 2022 hourly profile for Humboldt LCR area with the Category P6 transmission capability without resources. Humboldt LCR Area: 2022 projected pk day load profile & approx. LSC (transmission + LCR Gen + ES) Approx, size of storage that can be added to this area from charging restriction perspective = 28 MW and 106 MWh. Approx. max 4-hr storage = N/A ■ Load serving capability E ■ Load serving capability N ■ ■ LSC with ES Figure 3.3-2 Humboldt 2022 Peak Day Forecast Profiles Figure 3.3-3 Humboldt 2022 Forecast Hourly Profile ## Approved transmission projects included in base cases None # 3.3.1.2 Humboldt Overall LCR Requirement Table 3.3-2 identifies the area LCR requirements. The LCR requirement for Category P6 contingency is 111 MW. | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|-------------------------|---|--------------------------| | 2022 | First Limit | P6 | Humboldt-Trinity 115 kV | Cottonwood-Bridgeville 115 kV &
Humboldt - Humboldt Bay 115 kV | 111 | Table 3.3-2 Humboldt LCR Area Requirements #### **Effectiveness factors** For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7110 posted at: http://www.caiso.com/Documents/2210Z.pdf ## Changes compared to last year's results Compared with 2021 the load forecast is down by 9 MW and the total LCR is down by 19 MW mostly due to load forecast decrease. # 3.3.2 North Coast / North Bay Area #### 3.3.2.1 Area Definition The transmission tie facilities coming into the North Coast/North Bay area are: Cortina-Mendocino 115 kV Line Cortina-Eagle Rock 115 kV Line Willits-Garberville 60 kV line #1 Vaca Dixon-Lakeville 230 kV line #1 Tulucay-Vaca Dixon 230 kV line #1 Lakeville-Sobrante 230 kV line #1 Ignacio-Sobrante 230 kV line #1 The substations that delineate the North Coast/North Bay area are: Cortina is out, Mendocino and Indian Valley are in Cortina is out, Eagle Rock, Highlands and Homestake are in Willits and Lytonville are in, Kekawaka and Garberville are out Vaca Dixon is out, Lakeville is in Tulucay is in, Vaca Dixon is out Lakeville is in, Sobrante is out Ignacio is in, Sobrante and Crocket are out ## North Coast and North Bay LCR Area Diagram Figure 3.3-4 North Coast and North Bay LCR Area # North Coast and North Bay LCR Area Load and Resources Table 3.3-3 provides the forecasted load and resources. The list of generators within the LCR area are provided in Attachment A. In year 2022 the estimated time of local area peak is 17:50 PM. This area does not contain models of solar resources capable of providing resource adequacy. If required, all non-solar technology type resources are dispatched at NQC. Table 3.3-3 North Coast and North Bay LCR Area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|------|------------------------------------|---------|---------| | Gross Load | 1485 | Market and Net Seller | 715 | 715 | | AAEE | -19 | MUNI | 114 | 114 | | Behind the meter DG | 0 | QF | 5 | 5 | | Net Load | 1466 | Wind | 0 | 0 | | Transmission Losses | 43 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 1509 | Total | 834 | 834 | ## North Coast and North Bay LCR Area Hourly Profiles Figure 3.3-5 5 illustrates the forecast 2022 profile for the peak day for the North Coast North Bay LCR sub-area with the Category P3 normal and emergengy load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-6 illustrates the forecast 2022 hourly profile for North Coast North Bay LCR sub-area with the Category P3 emergency load serving capability without local resources. Figure 3.3-5 North Coast and North Bay 2022 Peak Day Forecast Profiles Figure 3.3-6 North Coast and North Bay 2022 Forecast Hourly Profile # Approved transmission projects modeled in base cases Lakeville 60 kV Area System Reinforcement Clear Lake 60 kV System Reinforcement Ignacio Area Upgrade # 3.3.2.2 Eagle Rock LCR Sub-area Eagle Rock is a Sub-area of the North Coast and North Bay LCR Area. # Eagle Rock LCR Sub-area Diagram Figure 3.3-7 Eagle Rock LCR Sub-area **EAGLE ROCK POCKET** # Eagle Rock LCR sub-area Load and Resources Table 3.3-4 provides the forecasted load and resources. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-4 Eagle Rock LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-----|------------------------------------|---------|---------| | Gross Load | 253 | Market and Net Seller | 249 | 249 | | AAEE | -3 | MUNI | 2 | 2 | | Behind the meter DG | 0 | QF | 0 | 0 | | Net Load | 250 | Solar | 0 | 0 | | Transmission Losses | 14 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 264 | Total | 251 | 251 | #### Eagle Rock LCR Sub-area Hourly Profiles Figure 3.3-8 illustrates the forecast 2022 profile for the peak day for the Eagle Rock LCR subarea with the Category P3 normal and emergengy load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-9 illustrates the forecast 2022 hourly profile for Eagle Rock LCR sub-area with the Category P3 emergency load serving capability without local resources. NCNB - Eagle Rock LCR Subarea: 2022 projected pk day load profile & approx. LSC (trans + LCR Gen + ES) Approx storage size that can be added to this area from charging restriction perspective = 38 MW and 247 MWh. Max 4-hr storage = 15 MW Figure 3.3-8 Eagle Rock LCR Sub-area 2022 Peak Day Forecast Profiles 250 ≥ 150 100 11 13 14 15 17 18 19 Load serving capability E Load serving capability N --- LSC with ES Figure 3.3-9 Eagle Rock LCR Sub-area 2022 Forecast Hourly Profiles # **Eagle Rock LCR Sub-area Requirement** Table 3.3-5 identifies the sub-area LCR requirements. The LCR requirement for Category P3 contingency is 213 MW. | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|--------------------------------|--|--------------------------| | 2022 | First Limit | P3 | Eagle Rock-Cortina 115 kV line | Cortina-Mendocino 115 kV with
Geyser #11 unit out | 213 | Table 3.3-5 Eagle Rock LCR Sub-area Requirements #### **Effectiveness factors** Effective factors for generators in the Eagle Rock LCR sub-area are in Attachment B table titled Eagle Rock. For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7120 posted at: http://www.caiso.com/Documents/2210Z.pdf #### 3.3.2.3 Fulton Sub-area Fulton is a sub-area of the North Coast and North Bay LCR area. # Fulton LCR Sub-area Diagram Fulton 115 kV Silverado Rincon Pueblo Sonoma Fulton 115 kV St.Helena Calistoga Fulton 1230 kV St.Helena Calistoga Fulton 1230 kV NCPA2 230 kV OUTAGE Bellevue Penngrove Corona 115 kV Was N.O 230 kV Lakeville 115 kV Lakeville 60 kV Figure 3.3-10 Fulton LCR Sub-area #### Fulton LCR Sub-area Load and Resources Table 3.3-6 provides the forecasted load and resources. The list of generators within the LCR sub-area are provided in Attachment A. | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-----|------------------------------------|---------|---------| | Gross Load | 895 | Market | 462 | 462 | | AAEE | -11 | MUNI | 54 | 54 | | Behind the meter DG | 0 | QF | 5 | 5 | | Net Load | 884 | Solar | 0 | 0 | | Transmission Losses | 25 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 909 | Total | 521 | 521 | Table 3.3-6
Fulton LCR Area 2022 Forecast Load and Resources # **Fulton LCR Sub-area Hourly Profiles** Figure 3.3-11 illustrates the forecast 2022 profile for the peak day for the Fulton LCR sub-area with the Category P6 normal and emergengy load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-12 illustrates the forecast 2022 hourly profile for Fulton LCR sub-area with the Category P6 emergency load serving capability without local resources. Figure 3.3-11 Fulton LCR Sub-area 2022 Peak Day Forecast Profiles #### **Fulton LCR Sub-area Requirement** Table 3.3-7 identifies the sub-area LCR requirements. The LCR requirement for Category P6 contingency is 243 MW. Table 3.3-7 Fulton LCR Sub-area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|---|--|--------------------------| | 2022 | First Limit | P6 | Thermal overload on Sonoma-
Pueblo 115 kV Line | Fulton-Lakeville #1 230 kV &
Fulton-Ignacio #1 230 kV | 243 | #### **Effectiveness factors** Effective factors for generators in the Fulton LCR sub-area are in Attachment B table titled Fulton. # 3.3.2.4 North Coast and North Bay Overall ## North Coast and North Bay Overall Requirement Table 3.3-8 identifies the sub-area LCR requirements. The LCR requirement for Category P3 contingency is 868 MW including 34 MW of deficincy. Table 3.3-8 North Coast and North Bay LCR area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|-------------------------------------|---|--------------------------| | 2022 | First Limit | P3 | Tulucay - Vaca Dixon
230 kV Line | Vaca Dixon-Tulucay 230 kV with DEC power plant out of service | 868 (34) | #### **Effectiveness factors** Effective factors for generators in the North Coast and North Bay LCR area are in Attachment B table titled North Coast and North Bay. #### Changes compared to last year's results Compared to 2021 load forecast went up by 53 MW; and, the total LCR need went up by 25 MW due to load forecast increase. #### 3.3.3 Sierra Area ## 3.3.3.1 Area Definition The transmission tie lines into the Sierra Area are: Table Mountain-Rio Oso 230 kV line Table Mountain-Palermo 230 kV line Table Mt-Pease 60 kV line Caribou-Palermo 115 kV line Drum-Summit 115 kV line #1 Drum-Summit 115 kV line #2 Spaulding-Summit 60 kV line Brighton-Bellota 230 kV line Rio Oso-Lockeford 230 kV line Gold Hill-Eight Mile Road 230 kV line Lodi-Eight Mile Road 230 kV line Gold Hill-Lake 230 kV line The substations that delineate the Sierra Area are: Table Mountain is out Rio Oso is in Table Mountain is out Palermo is in Table Mt is out Pease is in Caribou is out Palermo is in Drum is in Summit is out Drum is in Summit is out Spaulding is in Summit is out Brighton is in Bellota is out Rio Oso is in Lockeford is out Gold Hill is in Eight Mile is out Lodi is in Eight Mile is out Gold Hill is in Lake is out ## Sierra LCR Area Diagram Figure 3.3-13 Sierra LCR Area #### Sierra LCR Area Load and Resources Table 3.3-9 provides the forecasted load and resources. The list of generators within the LCR area are provided in Attachment A. In year 2022 the estimated time of local area peak is 19:10 PM. At the local area peak time the estimated, ISO metered, solar output is 2.00%. If required, all non-solar technology type resources are dispatched at NQC. Table 3.3-9 Sierra LCR Area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|------|------------------------------------|---------|---------| | Gross Load | 1564 | Market and Net Seller | 894 | 894 | | AAEE | -13 | MUNI | 1142 | 1142 | | Behind the meter DG | 0 | QF | 51 | 51 | | Net Load | 1551 | Solar | 5 | 0 | | Transmission Losses | 68 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 1619 | Total | 2092 | 2087 | # **Approved transmission projects modeled:** South of Palermo 115 kV Reinforcement Project (Pease to Palermo Line) Pease 115/60 kV transformer addition #### 3.3.3.2 Placer Sub-area Placer is sub-area of the Sierra LCR area. # Placer LCR Sub-area Diagram Figure 3.3-14 Placer LCR Sub-area #### Placer LCR Sub-area Load and Resources Table 3.3-10 provides the forecasted load and resources. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-10 Placer LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-----|------------------------------------|---------|---------| | Gross Load | 158 | Market and Net Seller | 55 | 55 | | AAEE | -1 | MUNI | 42 | 42 | | Behind the meter DG | 0 | QF | 0 | 0 | | Net Load | 157 | Solar | 0 | 0 | | Transmission Losses | 3 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 160 | Total | 97 | 97 | # **Placer LCR Sub-area Hourly Profiles** Figure 3.3-15 illustrates the forecast 2022 profile for the peak day for the Placer sub-area with the Category P6 normal and emergency load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area. Figure 3.3-16 illustrates the forecast 2022 hourly profile for Placer sub-area with the Category P6 emergency load serving capability without local resources. Figure 3.3-15 Placer LCR Sub-area 2022 Peak Day Forecast Profiles Figure 3.3-16 Placer LCR Sub-area 2022 Forecast Hourly Profiles ### **Placer LCR Sub-area Requirement** Table 3.3-11 identifies the sub-area requirements. The Category P6 LCR requirement is 80 MW. Table 3.3-11 Placer LCR Sub-area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|---------------------|---|--------------------------| | 2022 | First Limit | P6 | Drum–Higgins 115 kV | Gold Hill-Placer #1 115 kV & Gold Hill-Placer #2 115 kV | 80 | #### **Effectiveness factors** All units within the Placer Sub-area have the same effectiveness factor. For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7240 posted at: http://www.caiso.com/Documents/2210Z.pdf #### 3.3.3.3 Pease Sub-area Pease is sub-area of the Sierra LCR area. ## Pease LCR Sub-area Diagram Figure 3.3-17 Pease LCR Sub-area # Pease LCR Sub-area Load and Resources Table 3.3-12 provides the forecasted load and resources. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-12 Pease LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-----|------------------------------------|---------|---------| | Gross Load | 133 | Market and Net Seller | 98 | 98 | | AAEE | -1 | MUNI | 0 | 0 | | Behind the meter DG | 0 | QF | 49 | 49 | | Net Load | 132 | Solar | 0 | 0 | | Transmission Losses | 2 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 134 | Total | 147 | 147 | # **Pease LCR Sub-area Hourly Profiles** Figure 3.3-18 illustrates the forecast 2022 profile for the peak day for the Pease sub-area with the Category P6 normal and emergency load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-19 illustrates the forecast 2022 hourly profile for Pease sub-area with the Category P6 load serving capability without local resources. Sierra - Pease LCR Subarea: 2022 projected pk day load profile & approx. LSC (transmission + LCR Gen + ES) Approx. size of storage that can be added from charging restriction perspective = 51 MW and 408 MWh. Approx. max 4-hr storage = 30 MW Σ Figure 3.3-18 Pease LCR Sub-area 2022 Peak Day Forecast Profiles Load serving capability N Load serving capability E = Figure 3.3-19 Pease LCR Sub-area 2022 Forecast Hourly Profiles # Pease LCR Sub-area Requirement Table 3.3-13 identifies the sub-area LCR requirements. The Category P6 LCR requirement is 60 MW. | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|------------------------------|--|--------------------------| | 2022 | First Limit | P6 | Table Mountain – Pease 60 kV | Palermo – Pease 115 kV and
Pease – Rio Oso 115 kV lines | 60 | Table 3.3-13 Pease LCR Sub-area Requirements #### **Effectiveness factors:** All units within the Pease sub-area have the same effectiveness factor. For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7230 posted at: http://www.caiso.com/Documents/2210Z.pdf #### 3.3.3.4 Drum-Rio Oso Sub-area Drum-Rio Oso is a sub-area of the Sierra LCR area. # Drum-Rio Oso LCR Sub-area Diagram Figure 3.3-20 Drum-Rio Oso LCR Sub-area #### Drum-Rio Oso LCR Sub-area Load and Resources The Drum-Rio Oso sub-area does not have a defined load pocket with the limits based upon power flow through the area. Table 3.3-14 provides the forecasted resources in the sub-area. The list of generators within the LCR area are provided in Attachment A. Table 3.3-14 Drum-Rio Oso LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | Generation (MW) | Aug NQC | At Peak | |---|------------------------------------|---------|---------| | | Market and Net Seller
| 374 | 374 | | | MUNI | 199 | 199 | | | QF | 51 | 51 | | The Drum-Rio Oso Sub-area does not have a defined load pocket with the limits based | Solar | 5 | 0 | | upon power flow through the area. | Existing 20-minute Demand Response | 0 | 0 | | | Mothballed | 0 | 0 | | | Total | 629 | 624 | ## **Drum-Rio Oso LCR Sub-area Hourly Profiles** The Drum-Rio Oso sub-area does not has a defined load pocket with the limits based upon power flow through the area. As such, no load profile is provided for this sub-area. ## **Drum-Rio Oso LCR Sub-area Requirement** Table 3.3-15 identifies the sub-area LCR requirements. The Category P6 LCR requirement is 748 MW including 192 MW of NQC deficiency or 187 MW of at peak deficiency. Table 3.3-15 Drum-Rio Oso LCR Sub-area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|--------------------------|---|----------------------------| | 2022 | First Limit | P6 | Rio Oso #1 230/115 kV Tx | Rio Oso #2 230/115 kV &
Palermo #2 230/115 kV Txrs | 748
(192 NQC/ 187 Peak) | #### **Effectiveness factors** All units within the Drum-Rio Oso sub-area have the same effectiveness factor. For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7240 posted at: http://www.caiso.com/Documents/2210Z.pdf #### 3.3.3.5 Gold Hill-Drum Sub-area Gold Hill-Drum is sub-area of the Sierra LCR area. # Gold Hill-Drum LCR Sub-area Diagram Figure 3.3-21 Gold Hill-Drum LCR Sub-area ## Gold Hill-Drum LCR Sub-area Load and Resources Table 3.3-16 provides the forecasted load and resources. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-16 Gold Hill-Drum LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-----|------------------------------------|---------|---------| | Gross Load | 441 | Market and Net Seller | 77 | 77 | | AAEE | -4 | MUNI | 42 | 42 | | Behind the meter DG | 0 | QF | 0 | 0 | | Net Load | 437 | Solar | 0 | 0 | | Transmission Losses | 7 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 444 | Total | 119 | 119 | # **Gold Hill-Drum LCR Sub-area Hourly Profiles** Figure 3.3-22 illustrates the forecast 2022 profile for the peak day for the Gold Hill-Drum sub-area with the Category P6 normal and emergency load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-23 illustrates the forecast 2022 hourly profile for Gold Hill-Drum sub-area with the Category P6 load serving capability without local resources. Sierra - Gold Hill - Drum LCR area: 2022 projected pk day load profile & approx. LSC (transmission + LCR Gen + ES) Approx. size of storage that can be added from charging restriction perspective = 187 MW and 1496 MWh. Approx. max 4-hr storage = 83 MW Figure 3.3-22 Gold Hill-Drum LCR Sub-area 2022 Peak Day Forecast Profiles 450 ₹ 250 200 Load serving capability E Figure 3.3-23 Gold Hill-Drum LCR Sub-area 2022 Forecast Hourly Profiles # Gold Hill-Drum LCR Sub-area Requirement Table 3.3-17 identifies the sub-area LCR requirements. The Category P6 LCR requirement is 366 MW including 276 MW of NQC and peak deficiency. | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|-----------------------|---|--------------------------| | 2022 | First Limit | P6 | Drum – Higgins 115 kV | Gold Hill 230/115 kV #1 and
Gold Hill 230/115 kV #2 Txrs | 366 (276) | Table 3.3-17 Gold Hill-Drum LCR Sub-area Requirements #### **Effectiveness factors:** All units within the Gold Hill-Drum Sub-area have the same effectiveness factor. For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7230 and 7240 posted at: http://www.caiso.com/Documents/2210Z.pdf ## 3.3.3.6 South of Rio Oso Sub-area South of Rio Oso is sub-area of the Sierra LCR area. # South of Rio Oso LCR Sub-area Diagram Figure 3.3-24 South of Rio Oso LCR Sub-area # South of Rio Oso LCR Sub-area Load and Resources The South of Rio Oso sub-area does not have a defined load pocket with the limits based upon power flow through the area. Table 3.3-18 provides the forecasted resources in the sub-area. The list of generators within the LCR area are provided in Attachment A. Table 3.3-18 South of Rio Oso LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | Generation (MW) | Aug NQC | At Peak | |---|------------------------------------|---------|---------| | | Market and Net Seller | 114 | 114 | | | MUNI | 619 | 619 | | | QF | 0 | 0 | | The South of Rio Oso Sub-area does not have a defined load pocket with the limits | Solar | 0 | 0 | | based upon power flow through the area. | Existing 20-minute Demand Response | 0 | 0 | | | Mothballed | 0 | 0 | | | Total | 733 | 733 | #### South of Rio Oso LCR Sub-area Hourly Profiles The South of Rio Oso sub-area does not have a defined load pocket with the limits based upon power flow through the area. As such, no load profile is provided for this sub-area. # South of Rio Oso LCR Sub-area Requirement Table 3.3-19 identifies the sub-area LCR requirements. The LCR requirement for Category P6 is 256 MW. Table 3.3-19 South of Rio Oso LCR Sub-area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|---------------------------|---|--------------------------| | 2022 | First limit | P6 | Rio Oso – Atlantic 230 kV | Rio Oso – Gold Hill 230 kV
Rio Oso – Brighton 230 kV | 256 | #### **Effectiveness factors:** Effective factors for generators in the South of Rio Oso LCR sub-area are in Attachment B table titled Rio Oso. For other helpful procurement information please read procedure 2210Z Effectiveness Factors under 7230 posted at: http://www.caiso.com/Documents/2210Z.pdf #### 3.3.3.7 South of Palermo Sub-area South of Palermo is a sub-area of the Sierra LCR area. South of Palermo sub-area will be eliminated due to the South of Palermo transmission project. #### 3.3.3.8 Sierra Area Overall ## **Sierra LCR Area Hourly Profiles** The Sierra LCR Area limits are based upon power flow through the area. As such, no load profile is provided for the area. ## Sierra LCR Area Requirement Table 3.3-20 identifies the area requirements. The LCR requirement for Category P6 is 1220 MW. Table 3.3-20 Sierra LCR Area Requirements | Ye | ar | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |----|----|-------------|----------|------------------------------|--|--------------------------| | 20 | 22 | First limit | P6 | Table Mountain – Pease 60 kV | Table Mountain – Palermo 230 kV
Table Mountain – Rio Oso 230 kV | 1220 | #### Effectiveness factors: Effective factors for generators in the Sierra Overall LCR area are in Attachment B table titled Sierra Overall. For other helpful procurement information please read procedure 2210Z Effectiveness Factors under 7230 and 7240 posted at: http://www.caiso.com/Documents/2210Z.pdf ## Changes compared to last year's results: The load forecast went down by 246 MW, the total LCR need has decreased by 558 MW and the total existing capacity required has decreased by 601 MW mostly due to lower load forecast and implementation of the South of Palermo transmission project. #### 3.3.4 Stockton Area The LCR requirement for the Stockton Area is driven by the sum of the requirements for the Tesla-Bellota and Lockeford sub-areas. #### 3.3.4.1 Area Definition Tesla-Bellota Sub-Area Definition The transmission facilities that establish the boundary of the Tesla-Bellota sub-area are: Bellota 230/115 kV Transformer #1 Bellota 230/115 kV Transformer #2 Tesla-Tracy 115 kV Line Tesla-Salado 115 kV Line Tesla-Salado-Manteca 115 kV line Tesla-Schulte #1 115 kV Line Tesla-Schulte #2 115kV line The substations that delineate the Tesla-Bellota Sub-area are: Bellota 230 kV is out Bellota 115 kV is in Bellota 230 kV is out Bellota 115 kV is in Tesla is out Tracy is in Tesla is out Salado is in Tesla is out Salado and Manteca are in Tesla is out Schulte is in Tesla is out Schulte is in Lockeford Sub-Area Definition The transmission facilities that establish the boundary of the Lockeford Sub-area are: Lockeford-Industrial 60 kV line Lockeford-Lodi #1 60 kV line Lockeford-Lodi #2 60 kV line Lockeford-Lodi #3 60 kV line The substations that delineate the Lockeford Sub-area are: Lockeford is out Industrial is in Lockeford is out Lodi is in Lockeford is out Lodi is in Lockeford is out Lodi is in # **Stockton LCR Area Diagram** The Stockton LCR area is comprised of the individual noncontiguous sub-areas with diagrams provided for each of the sub-areas below. #### Stockton LCR Area Load and Resources Table 3.3-21 provides the forecast load and resources in the area. The list of generators within the LCR area are provided in Attachment A. In year 2022 the estimated time of local area peak is 19:10 PM. At the local area peak time the estimated, ISO metered, solar output is 2.00%. If required, all non-solar technology type resources are dispatched at NQC. Table 3.3-21 Stockton LCR Area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|------|------------------------------------|---------|---------| | Gross Load | 1015 | Market and
Net Seller | 445 | 445 | | AAEE | -7 | MUNI | 129 | 129 | | Behind the meter DG | 0 | QF | 0 | 0 | | Net Load | 1008 | Solar | 12 | 0 | | Transmission Losses | 19 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 1027 | Total | 586 | 574 | #### **Stockton LCR Area Hourly Profiles** The Stockton LCR area is comprised of the individual noncontiguous sub-areas with profiles provided for each of the sub-areas below. ## Approved transmission projects modeled There are no new transmission project that goes into service in this area by year 2022. #### 3.3.4.2 Lockeford Sub-area Lockeford is a sub-area of the Stockton LCR area. # Lockeford LCR Sub-area Diagram Figure 3.3-25 Lockeford LCR Sub-area #### Lockeford LCR Sub-area Load and Resources Table 3.3-22 provides the forecasted load and resources. The list of generators within the LCR Sub-area are provided in Attachment A. Table 3.3-22 Lockeford LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-----|------------------------------------|---------|---------| | Gross Load | 174 | Market | 0 | 0 | | AAEE | -1 | MUNI | 24 | 24 | | Behind the meter DG | 0 | QF | 0 | 0 | | Net Load | 173 | Solar | 0 | 0 | | Transmission Losses | 1 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 174 | Total | 24 | 24 | ## **Lockeford LCR Sub-area Hourly Profiles** Figure 3.3-26 illustrates the forecast 2022 profile for the peak day for the Lockeford sub-area with the Category P3 normal and emergency load serving capabilities without local resources. Figure 3.3-27 illustrates the forecast 2022 hourly profile for Lockeford sub-area with the Category P3 load serving capability without local resources. Figure 3.3-26 Lockeford LCR Sub-area 2022 Peak Day Forecast Profiles #### **Lockeford LCR Sub-area Requirement** Table 3.3-23 identifies the sub-area requirements. Typically the LCR requirement for for this area is based on the Category P3 contingency. However no LCR requirements were identified in this year's study due to lower load forecast. Table 3.3-23 Lockeford LCR Sub-area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|-------------------------|--------------------------------------|--------------------------| | 2022 | First Limit | P3 | Lockeford-Lodi #2 60 kV | Lockeford-Industrial 60 kV & Lodi CT | No requirement | #### Effectiveness factors: No effectiveness factor is required. #### 3.3.4.3 Stanislaus Sub-area Stanislaus is a sub-area within the Tesla – Bellota sub-area of the Stockton LCR area. #### Stanislaus LCR Sub-area Diagram Figure 3.3-28 Stanislaus LCR Sub-area #### Stanislaus LCR Sub-area Load and Resources The Stanislaus sub-area does not has a defined load pocket with the limits based upon power flow through the area. Table 3.3-24 provides the forecasted resources in the sub-area. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-24 Stanislaus LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | Generation (MW) | Aug NQC | At Peak | |--|------------------------------------|---------|---------| | | Market and Net Seller | 118 | 118 | | | MUNI | 81 | 81 | | | QF | 0 | 0 | | The Stanislaus Sub-area does not has a defined load pocket with the limits based | Solar | 0 | 0 | | upon power flow through the area. | Existing 20-minute Demand Response | 0 | 0 | | | Mothballed | 0 | 0 | | | Total | 199 | 199 | # Stanislaus LCR Sub-area Hourly Profiles The Stanislaus sub-area does not has a defined load pocket with the limits based upon power flow through the area. As such, no load profile is provided for this sub-area. ## Stanislaus LCR Sub-area Requirement Table 3.3-25 identifies the sub-area requirements. The LCR requirement for Category P3 contingency is 196 MW. Table 3.3-25 Stanislaus LCR Sub-area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|------------------------|--|--------------------------| | 2022 | First limit | P3 | Ripon – Manteca 115 kV | Bellota-Riverbank-Melones 115 kV and Stanislaus PH | 196 | #### Effectiveness factors: All units within this sub-area have the same effectiveness factor. For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7410 posted at: http://www.caiso.com/Documents/2210Z.pdf #### 3.3.4.4 Tesla-Bellota Sub-area Tesla-Bellota is a sub-area of the Stockton LCR area. ## Tesla-Bellota LCR Sub-area Diagram Figure 3.3-29 Tesla-Bellota LCR Sub-area #### Tesla Bellota LCR Sub-area Load and Resources Table 3.3-26 provides the forecasted load and resources. The list of generators within the LCR Sub-area are provided in Attachment A. | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |---------------------------|-----|------------------------------------|---------|---------| | Gross Load | 842 | Market and Net Seller | 445 | 445 | | AAEE | -5 | MUNI | 105 | 105 | | Behind the meter DG | 0 | QF | 0 | 0 | | Net Load | 835 | Solar | 12 | 0 | | Transmission Losses | 18 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps 853 | | Total | 562 | 550 | Table 3.3-26 Tesla-Bellota LCR Sub-area 2022 Forecast Load and Resources All of the resources needed to meet the Stanislaus sub-area count towards the Tesla-Bellota sub-area LCR need. ## Tesla-Bellota LCR Sub-area Hourly Profiles Figure 3.3-30 illustrates the forecast 2022 profile for the peak day for the Tesla-Bellota sub-area with the Category P6 normal and emergency load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-31 illustrates the forecast 2022 hourly profile for Tesla-Bellota sub-area with the Category P6 emergency load serving capability without local resources. Figure 3.3-30 Tesla-Bellota LCR Sub-area 2022 Peak Day Forecast Profiles Figure 3.3-31 Tesla-Bellota LCR Sub-area 2022 Forecast Hourly Profiles # Tesla-Bellota LCR Sub-area Requirement Table 3.3-27 identifies the sub-area requirements. The LCR requirement for Category P6 contingency is 1373 MW including a 801 MW NQC and 813 MW at peak deficiency. Table 3.3-27 Tesla-Bellota LCR Sub-area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-----------------------------|----------|--|--|-----------------------------| | 2022 | First limit | P6 | Schulte-Kasson-Manteca
115 kV | Schulte – Lammers 115 kV &
Tesla – Tracy 115 kV | 1063
(801 NQC/ 813 Peak) | | 2022 | First limit | P2-4 | Stanislaus – Melones –
Riverbank Jct 115 kV | Tesla 115 kV bus | 642
(70 NQC/ 82 Peak) | | | 1373
(801 NQC/ 813 Peak) | | | | | #### **Effectiveness factors:** All units within this sub-area are needed therefore no effectiveness factor is required. For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7410 posted at: http://www.caiso.com/Documents/2210Z.pdf #### 3.3.4.5 **Stockton Overall** #### **Stockton LCR Area Overall Requirement** The requirement for this area is driven by the sum of requirements for the Tesla-Bellota and Lockeford sub-areas. Table 3.3-28 identifies the area requirements. The LCR requirement is 1373 MW with a 801 MW NQC deficiency or 813 MW at peak deficiency. Table 3.3-28 Stockton LCR Area Overall Requirements | Year | LCR (MW)
(Deficiency) | | |------|-----------------------------|--| | 2022 | 1373
(801 NQC/ 813 Peak) | | #### Changes compared to last year's LCT study The load forecast went down by 86 MW and the total LCR need has increased by 118 MW due to lower line rating for Shulte-Kasson-Manteca 115 kV line. # 3.3.5 Greater Bay Area #### 3.3.5.1 Area Definition: The transmission tie lines into the Greater Bay Area are: Lakeville-Sobrante 230 kV Ignacio-Sobrante 230 kV Parkway-Moraga 230 kV Bahia-Moraga 230 kV Lambie SW Sta-Vaca Dixon 230 kV Peabody-Contra Costa P.P. 230 kV Tesla-Kelso 230 kV Tesla-Delta Switching Yard 230 kV Tesla-Pittsburg #1 230 kV Tesla-Pittsburg #2 230 kV Tesla-Newark #1 230 kV Tesla-Newark #2 230 kV Tesla-Ravenswood 230 kV Tesla-Metcalf 500 kV Moss Landing-Los Banos 500 kV Moss Landing-Coburn #1 230 kV Moss Landing-Las Aguilas #2 230 kV Oakdale TID-Newark #1 115 kV Oakdale TID-Newark #2 115 kV The substations that delineate the Greater Bay Area are: Lakeville is out Sobrante is in Ignacio is out Sobrante is in Parkway is out Moraga is in Bahia is out Moraga is in Lambie SW Sta is in Vaca Dixon is out Peabody is out Contra Costa P.P. is in Tesla is out Kelso is in Tesla is out Delta Switching Yard is in Tesla is out Pittsburg is in Tesla is out Pittsburg is in Tesla is out Newark is in Tesla is out Newark is in Tesla is out Ravenswood is in Tesla is out Metcalf is in Los Banos is out Moss Landing is in Coburn is out Moss Landing is in Las Aquilas is out Moss Landing is in Oakdale TID is out Newark is in Oakdale TID is out Newark is in #### **Greater Bay LCR Area Diagram** Figure 3.3-32 Greater Bay LCR Area ## **Greater Bay LCR Area Load and Resources** Table 3.3-29 provides the forecasted load and resources. The list of generators within the LCR area are provided in Attachment A. In year 2022 the estimated time of local area peak is 17:50 PM. At the local area peak time the estimated, ISO metered, solar output is 44.00%. If
required, all technology type resources, including solar, are dispatched at NQC. Table 3.3-29 Greater Bay Area LCR Area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-------|--|---------|---------| | Gross Load | 10611 | Market, Net Seller, Wind, Battery | 6263 | 6263 | | AAEE | -75 | MUNI | 373 | 373 | | Behind the meter DG | -271 | QF | 238 | 238 | | Net Load | 10264 | Solar | 8 | 8 | | Transmission Losses | 217 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 264 | Future preferred resource and energy storage | 866 | 866 | | Load + Losses + Pumps | 10746 | Total | 7748 | 7748 | # Approved transmission projects modeled EastShore-Oakland J Reconductor Project # 3.3.5.2 Llagas Sub-area Llagas is a sub-area of the Greater Bay LCR area. # Llagas LCR Sub-area Diagram Newark Tesla Soo kV 230 kV 230 kV 115 kV Monta Indian Monta Indian Moss Landing 135 kV nyitem San Jose subarea Los Banos To Panoche Figure 3.3-33 Llagas LCR Sub-area # Llagas LCR Sub-area Load and Resources Table 3.3-30 provides the forecasted load and resources. The list of generators within the LCR Sub-area are provided in Attachment A. Table 3.3-30 Llagas LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |---------------------------|-----|------------------------------------|---------|---------| | Gross Load | 200 | Market | 246 | 246 | | AAEE | -2 | MUNI | 0 | 0 | | Behind the meter DG | -11 | QF | 0 | 0 | | Net Load | 187 | LTPP Preferred Resources | 0 | 0 | | Transmission Losses | 1 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps 188 | | Total | 246 | 246 | # Llagas LCR Sub-area Hourly Profiles Figure 3.3-34 illustrates the forecast 2022 profile for the peak day for the Llagas LCR sub-area with the Category P6 normal and emergency load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-35 illustrates the forecast 2022 hourly profile for Llagas LCR sub-area with the Category P6 emergency load serving capability without local resources. Figure 3.3-34 Llagas LCR Sub-area 2022 Peak Day Forecast Profiles Figure 3.3-35 Llagas LCR Sub-area 2022 Forecast Hourly Profiles # Llagas LCR Sub-area Requirement Table 3.3-31 identifies the sub-area requirements. The LCR requirement for the worst contingency is 20 MW. | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|-----------------------|---|--------------------------| | 2022 | First limit | P6 | Metcalf-Llagas 115 kV | Metcalf-Morgan Hill 115 kV & Morgan Hill-Green Valley 115 kV | 20 | Table 3.3-31 Llagas LCR Sub-area Requirements ### **Effectiveness factors:** All units within this sub-area have the same effectiveness factor. For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7320 posted at: http://www.caiso.com/Documents/2210Z.pdf # 3.3.5.3 San Jose Sub-area San Jose is a Sub-area of the Greater Bay LCR Area. ### San Jose LCR Sub-area Diagram The San Jose LCR Sub-area is identified in Figure 3.3-33. #### San Jose LCR Sub-area Load and Resources Table 3.3-32 provides the forecast load and resources in San Jose LCR sub-area in 2022. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-32 San Jose LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|------|------------------------------------|---------|---------| | Gross Load | 2664 | Market, Net Seller, Battery | 575 | 575 | | AAEE | -21 | MUNI | 198 | 198 | | Behind the meter DG | -56 | QF | 0 | 0 | | Net Load | 2587 | LTPP Preferred Resources | 75 | 75 | | Transmission Losses | 95 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 2682 | Total | 848 | 848 | ## San Jose LCR Sub-area Hourly Profiles Figure 3.3-36 illustrates the forecast 2022 profile for the peak day for the San Jose LCR sub-area with the Category P2 normal and emergency load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-37 illustrates the forecast 2022 hourly profile for San Jose LCR sub-area with the Category P2 emergency load serving capability without local resources. Figure 3.3-36 San Jose LCR Sub-area 2022 Peak Day Forecast Profiles GBA - San Jose LCR Subarea: 2022 projected pk day load profile & approx. LSC (trans + LCR Gen + ES) Approx storage size that can be added to this area from charging restriction perspective = 375 MW and 2757 MWh. Max 4-hr storage = 190 MW 3000 2500 ₹ 1500 1000 10 11 12 13 14 15 16 17 18 19 Load serving capability N --- LSC with ES 2022 Net Load Load serving capability E Figure 3.3-37 San Jose LCR Sub-area 2022 Forecast Hourly Profiles ## San Jose LCR Sub-area Requirement Table 3.3-33 identifies the sub-area LCR requirements. The LCR requirement for the worst contingency is 989 MW including a deficiency of 141 MW. Year Limit Category Limiting Facility Contingency LCR (MW) 2022 First limit P2 Metcalf 230/115 kV transformer # 1 or # 3 METCALF 230kV - Section 2D & 2E 989 (141) Table 3.3-33 San Jose LCR Sub-area Requirements ### **Effectiveness factors:** Effective factors for generators in the San Jose LCR sub-area are in Attachment B table titled <u>San Jose</u>. For other helpful procurement information please read procedure 2210Z Effectiveness Factors under 7320 posted at: http://www.caiso.com/Documents/2210Z.pdf # 3.3.5.4 South Bay-Moss Landing Sub-area South Bay-Moss Landing is a Sub-area of the Greater Bay LCR Area. ### South Bay-Moss Landing LCR Sub-area Diagram The South Bay-Moss Landing LCR sub-area is identified in Figure 3.3-33. ## South Bay-Moss Landing LCR Sub-area Load and Resources Table 3.3-34 provides the forecast load and resources in South Bay-Moss Landing LCR sub-area in 2022. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-34 South Bay-Moss Landing LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|------|------------------------------------|---------|---------| | Gross Load | 4338 | Market, Net Seller, Battery | 2165 | 2165 | | AAEE | -32 | MUNI | 198 | 198 | | Behind the meter DG | -112 | QF | 0 | 0 | | Net Load | 4194 | LTPP Preferred Resources | 658 | 658 | | Transmission Losses | 127 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 4321 | Total | 3021 | 3021 | ### South Bay-Moss Landing LCR Sub-area Hourly Profiles Figure 3.3-38 illustrates the forecasted 2022 profile for the peak day for the South Bay-Moss Landing LCR sub-area with the Category P6 normal and emergengy load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. The energy storage amount is incremental to the existing system and doesn't include approved energy storage. Figure 3.3-39 illustrates the forecast 2022 hourly profile for South Bay-Moss Landing LCR sub-area with the Category P6 emergency load serving capability without local resources. Figure 3.3-38 South Bay-Moss Landing LCR Sub-area 2022 Peak Day Forecast Profiles Figure 3.3-39 South Bay-Moss Landing LCR Sub-area 2022 Forecast Hourly Profiles ## South Bay-Moss Landing LCR Sub- Requirement Table 3.3-35 identifies the sub-area LCR requirements. The LCR Requirement for the worst contingency is 2333 MW. | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW) | |------|-------------|----------|---------------------------------|---|----------| | 2022 | First Limit | P6 | Moss Landing-Las Aguilas 230 kV | Tesla-Metcalf 500 kV and
Moss Landing-Los Banos 500 kV | 2333 | Table 3.3-35 South Bay-Moss Landing LCR Sub-area Requirements ### **Effectiveness factors:** Effective factors for generators in the South Bay-Moss Landing LCR sub-area are in Attachment B table titled <u>South Bay-Moss Landing</u>. For other helpful procurement information please read procedure 2210Z Effectiveness Factors under 7320 posted at: http://www.caiso.com/Documents/2210Z.pdf #### 3.3.5.5 Oakland Sub-area Oakland is a sub-area of the Greater Bay LCR area. # Oakland LCR Sub-area Diagram Oakland D Oakland D Oakland C Figure 3.3-40 Oakland LCR Sub-area ### Oakland LCR Sub-area Load and Resources Table 3.3-36 provides the forecast load and resources in Oakland LCR sub-area in 2022. The list of generators within the LCR sub-area are provided in Attachment A. | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-----|------------------------------------|---------|---------| | Gross Load | 184 | Market | 110 | 110 | | AAEE | -1 | MUNI | 49 | 49 | | Behind the meter DG | -2 | QF | 0 | 0 | | Net Load | 181 | LTPP Preferred Resources | 0 | 0 | | Transmission Losses | 0 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 181 | Total | 159 | 159 | Table 3.3-36 Oakland LCR Sub-area 2022 Forecast Load and Resources ### Oakland LCR Sub-area Hourly Profiles Figure 3.3-41 illustrates the forecast 2022 profile for the peak day for the Oakland LCR sub-area with the Category P2 normal and emergengy load
serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-42 illustrates the forecast 2022 hourly profile for Oakland LCR sub-area with the Category P2 emergency load serving capability without local resources. Figure 3.3-41 Oakland LCR Sub-area 2022 Peak Day Forecast Profiles Figure 3.3-42 Oakland LCR Sub-area 2022 Forecast Hourly Profiles ## Oakland LCR Sub-area Requirement Table 3.3-37 identifies the sub-area requirements. The LCR Requirement for the worst contingency is 101 MW. Table 3.3-37 Oakland LCR Sub-area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW) | |------|-------------|----------|--|--------------------------------|----------| | 2022 | First limit | P2 | Moraga-Oakland X #3 or #4
115 kV line | Moraga 115kV - Section 1D & 2D | 101 | ### **Effectiveness factors:** All units within the Oakland sub-area have the same effectiveness factor. For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7320 posted at: http://www.caiso.com/Documents/2210Z.pdf ## 3.3.5.6 Ames-Pittsburg-Oakland Sub-areas Combined Ames-Pittsburg-Oakland is a sub-area of the Greater Bay LCR area. ### Ames-Pittsburg-Oakland LCR Sub-area Diagram Figure 3.3-43 Ames-Pittsburg-Oakland LCR Sub-area ### Ames-Pittsburg-Oakland LCR Sub-area Load and Resources Table 3.3-38 provides the forecast load and resources in Ames-Pittsburg-Oakland LCR sub-area in 2022. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-38 Ames-Pittsburg-Oakland LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | Generation (MW) | Aug NQC | At Peak | |--|------------------------------------|---------|---------| | | Market, Net Seller | 2379 | 2379 | | | MUNI | 49 | 49 | | The Ames-Pittsburg-Oakland Sub-area | QF | 236 | 236 | | does not has a defined load pocket with the limits based upon power flow through the | Solar | 5 | 5 | | area. | Existing 20-minute Demand Response | 0 | 0 | | | Mothballed | 0 | 0 | | | Total | 2669 | 2669 | ### Ames-Pittsburg-Oakland LCR Sub-area Hourly Profiles The Ames-Pittsburg-Oakland sub-area does not has a defined load pocket with the limits based upon power flow through the area. As such, no load profile is provided for this sub-area. ### Ames-Pittsburg-Oakland LCR Sub-area Requirement Table 3.3-39 identifies the sub-area LCR requirements. The LCR Requirement for the worst contingency is 1791 MW. Table 3.3-39 Ames-Pittsburg-Oakland LCR Sub-area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW) | |------|-------------|---------------------------------|--------------------------------|--|----------| | 2020 | First limit | P6 | Ames-Ravenswood #1 115 kV line | Newark-Ravenswood 230 kV & Tesla-Ravenswood 230 kV | 1791 | | | P2 | Moraga-Claremont #2 115 kV line | Moraga 115kV - Section 2D & 2E | | | #### Effectiveness factors: Effective factors for generators in the Ames-Pittsburg-Oakland LCR sub-area are in Attachment B table titled Ames/Pittsburg/Oakland. For other helpful procurement information please read procedure 2210Z Effectiveness Factors under 7320 posted at: http://www.caiso.com/Documents/2210Z.pdf 1674 127 0 244 0 0 2045 1674 127 0 244 0 0 2045 ### 3.3.5.7 Contra Costa Sub-area Contra Costa is a sub-area of the Greater Bay LCR area. ### Contra Costa LCR Sub-area Diagram Contra Costa subarea To Birds Landing 230 kV Contingency Overload Contra Costa Sub Contra Costa PP Marsh Landing Gateway Lone Tree Cayetano North Dublin Brentwood Figure 3.3-44 Contra Costa LCR Sub-area #### Contra Costa LCR Sub-area Load and Resources Table 3.3-40 provides the forecast load and resources in Contra Costa LCR sub-area. The list of generators within the LCR sub-area are provided in Attachment A. Load (MW) Aug NQC At Peak MUNI QF Wind Total Mothballed Newark Table 3.3-40 Contra Costa LCR Sub-area 2022 Forecast Load and Resources Market, Net Seller, Wind # Contra Costa LCR Sub-area Hourly Profiles The Contra Costa Sub-area does not has a defined load pocket with the limits based upon power flow through the area. The Contra Costa sub-area does not has a defined load pocket with the limits based upon power flow through the area. As such, no load profile is provided for this sub-area. Existing 20-minute Demand Response ## Contra Costa LCR Sub-area Requirement Table 3.3-41 identifies the sub-area LCR requirements. The LCR requirement for the worst contingency is 1208 MW. Table 3.3-41 Contra Costa LCR Sub-area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW) | |------|-------------|----------|-----------------------------------|--|----------| | 2022 | First limit | P3 | Delta Switching Yard-Tesla 230 kV | Kelso-Tesla 230 kV line and Gateway unit | 1208 | #### **Effectiveness factors:** For other helpful procurement information please read procedure 2210Z Effectiveness Factors under 7230 posted at: http://www.caiso.com/Documents/2210Z.pdf ### 3.3.5.8 Bay Area overall ### **Bay Area LCR Area Hourly Profiles** Figure 3.3-45 illustrates the forecast 2022 profile for the peak day for the Bay Area LCR area with the Category P6 normal and emergency load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-46 illustrates the forecast 2022 hourly profile for Bay Area LCR area with the Category P6 emergency load serving capability without local resources. Figure 3.3-45 Bay Area LCR Area 2022 Peak Day Forecast Profiles Figure 3.3-46 Bay Area LCR Area 2022 Forecast Hourly Profiles ## **Greater Bay LCR Area Overall Requirement** Table 3.3-42 identifies the area LCR requirements. The LCR requirement for the worst contingency is 7231 MW. | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW) | |------|-------------|----------|------------------------------------|---|----------| | 2022 | First limit | P6 | Metcalf 500/230 kV #13 transformer | Metcalf 500/230 kV #11 & #12 transformers | 7231 | Table 3.3-42 Bay Area LCR Overall area Requirements #### **Effectiveness factors:** Effective factors for generators in the Greater Bay Area LCR sub-area are in Attachment B table titled <u>Greater Bay Area</u>. For other helpful procurement information please read procedure 2210Z Effectiveness Factors under 7320 posted at: http://www.caiso.com/Documents/2210Z.pdf ### Changes compared to 2020 requirements Compared to 2021 load forecast went down by 34 MW and total LCR need went up by 878 MW mainly due to load growth seen in the San Jose area (SVP) and it being very effective on the Metcalf 500/230 kV transformer banks. With all San Jose resources previously being used, the increased need had to be picked up by bigger amounts of less effective resources in other parts of the Bay Area. #### 3.3.6 Greater Fresno Area ### 3.3.6.1 Area Definition: The transmission facilities coming into the Greater Fresno area are: Gates-Mustang #1 230 kV Gates-Mustang #2 230 kV Gates #5 230/70 kV Transformer Bank Mercy Spring 230 /70 Bank # 1 Los Banos #3 230/70 Transformer Bank Los Banos #4 230/70 Transformer Bank Warnerville-Wilson 230kV Melones-North Merced 230 kV line Panoche-Tranquility #1 230 kV Panoche-Tranquility #2 230 kV Panoche #1 230/115 kV Transformer Bank Panoche #2 230/115 kV Transformer Bank Corcoran-Smyrna 115kV Coalinga #1-San Miguel 70 kV The substations that delineate the Greater Fresno area are: Gates is out Mustang is in Gates is out Mustang is in Gates 230 is out Gates 70 is in Mercy Springs 230 is out Mercy Springs 70 is in Los Banos 230 is out Los Banos 70 is in Los Banos 230 is out Los Banos 70 is in Warnerville is out Wilson is in Melones is out North Merced is in Panoche is out Tranquility #1 is in Panoche is out Tranquility #2 is in Panoche 230 is out Panoche 115 is in Panoche 230 is out Panoche 115 is in Corcoran is in Smyrna is out Coalinga is in San Miguel is out # Fresno LCR Area Diagram Figure 3.3-47 Fresno LCR Area ### Fresno LCR Area Load and Resources Table 3.3-43 provides the forecast load and resources in Fresno LCR Area in 2022. The list of generators within the LCR sub-area are provided in Attachment A. In year 2022 the estimated time of local area peak is 18:40 PM. At the local area peak time the estimated, ISO metered, solar output is 12.00%. If required, all non-solar technology type resources are dispatched at NQC. Table 3.3-43 Fresno LCR Area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|------|------------------------------------|---------|---------| | Gross Load | 3339 | Market, Net Seller, Battery | 2819 | 2819 | | AAEE | -24 | MUNI | 190 | 190 | | Behind the meter DG | 0 | QF | 4 | 4 | | Net Load | 3315 | Solar | 357 | 159 | | Transmission Losses | 120 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 3435 | Total | 3370 | 3172 | # Approved transmission projects modeled Wilson-Le Grand 115 kV Line Reconductoring (Apr 2020) Oro Loma 70 kV Area Reinforcement (May 2020) Herndon-Bullard 230kV Reconductoring Project (Jan 2021) Gregg-Herndon #2 230 kV Line Circuit Breaker Upgrade (Jan 2021) Northern Fresno 115 kV Reinforcement (Revised scope – Mar 2021)
Panoche – Oro Loma 115 kV Line Reconductoring (Apr 2021) ### 3.3.6.2 Hanford Sub-area Hanford is a sub-area of the Fresno LCR area. ### Hanford LCR Sub-area Diagram Figure 3.3-48 Hanford LCR Sub-area ### Hanford LCR Sub-area Load and Resources Table 3.3-44 provides the forecast load and resources in Hanford LCR sub-area in 2022. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-44 Hanford LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-----|------------------------------------|---------|---------| | Gross Load | 203 | Market, Net Seller | 125 | 125 | | AAEE | -1 | MUNI | 0 | 0 | | Behind the meter DG | 0 | QF | 0 | 0 | | Net Load | 202 | Solar | 58 | 26 | | Transmission Losses | 7 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 209 | Total | 183 | 151 | ### **Hanford LCR Sub-area Hourly Profiles** Figure 3.3-49 illustrates the forecast 2022 profile for the peak day for the Hanford sub-area with the Category P6 normal and emergency load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-50 illustrates the forecast 2022 hourly profile for Hanford sub-area with the Category P6 emergency load serving capability without local resources. Figure 3.3-49 Hanford LCR Sub-area 2022 Peak Day Forecast Profiles Figure 3.3-50 Hanford LCR Sub-area 2022 Forecast Hourly Profiles # Hanford LCR Sub-area Requirement Table 3.3-45 identifies the sub-area requirements. The LCR Requirement for a Category P6 contingency is 70 MW. | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|----------------------------|--|--------------------------| | 2022 | First Limit | P6 | McCall-Kingsburg #2 115 kV | McCall-Kingsburg #1 115 kV line
and Henrietta 230/115 kV TB#3 | 70 | Table 3.3-45 Hanford LCR Sub-area Requirements #### **Effectiveness factors:** All units within the Hanford sub-area have the same effectiveness factor. For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7430 posted at: http://www.caiso.com/Documents/2210Z.pdf # 3.3.6.3 Coalinga Sub-area Coalinga is a sub-area of the Fresno LCR area. # Coalinga LCR Sub-area Diagram Gates Q633 SS Huron Q532 To Paso Jacalito Schindler D Robles Coalinga 1 Calfax Tornado J Coalinga Penzir Jc Schindler Cogen Coalinga Plesant Valley Q526 Τо **Panoche** Figure 3.3-51 Coalinga LCR Sub-area ## Coalinga LCR Sub-area Load and Resources Table 3.3-46 provides the forecast load and resources in Coalinga LCR sub-area. The list of generators within the LCR sub-area are provided in Attachment A. | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-----|------------------------------------|---------|---------| | Gross Load | 117 | Market, Net Seller | 0 | 0 | | AAEE | -1 | MUNI | 0 | 0 | | Behind the meter DG | 0 | QF | 3 | 3 | | Net Load | 116 | Solar | 17 | 8 | | Transmission Losses | 2 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 118 | Total | 20 | 11 | Table 3.3-46 Coalinga LCR Sub-area 2022 Forecast Load and Resources ### **Coalinga LCR Sub-area Hourly Profiles** Figure 3.3-52 illustrates the forecast 2022 profile for the peak day for the Coalinga sub-area with the Category P6 normal and emergency load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-53 illustrates the forecast 2022 hourly profile for Coalinga sub-area with the Category P6 emergency load serving capability without local resources. Figure 3.3-52 Coalinga LCR Sub-area 2022 Peak Day Forecast Profiles # Coalinga LCR Sub-area Requirement Table 3.3-47 identifies the sub-area requirements. The LCR Requirement for a Category P6 contingency is 96 MW including a 85 MW at peak deficiency and 76 MW NQC deficiency. Table 3.3-47 Coalinga LCR Sub-area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|----------------|----------|---|---|--------------------------| | 2022 | First
Limit | P6 | San-Miguel-Coalinga 70 kV
Line and Voltage Instability | T-1/T-1: Gates 230/70 kV TB #5 and Schindler 115/70 kV TB#1 | 95
(85 Peak, 76 NQC) | ### **Effectiveness factors:** All units within the Coalinga sub-area have the same effectiveness factor. For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7430 posted at: http://www.caiso.com/Documents/2210Z.pdf ### 3.3.6.4 Borden Sub-area Borden is a sub-area of the Fresno LCR area. ### **Borden LCR Sub-area Diagram** Figure 3.3-54 Borden LCR Sub-area ### **Borden LCR Sub-area Load and Resources** Table 3.3-48 provides the forecast load and resources in Borden LCR sub-area. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-48 Borden LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-----|------------------------------------|---------|---------| | Gross Load | 146 | Market, Net Seller | 38 | 38 | | AAEE | -1 | MUNI | 0 | 0 | | Behind the meter DG | 0 | QF | 0 | 0 | | Net Load | 145 | Solar | 14 | 6 | | Transmission Losses | 4 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 149 | Total | 52 | 44 | ## **Borden LCR Sub-area Hourly Profiles** Figure 3.3-55 illustrates the forecast 2022 profile for the peak day for the Borden sub-area with the Category P6 normal and emergency load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-56 illustrates the forecast 2022 hourly profile for Borden sub-area with the Category P6 emergency load serving capability without local resources. Figure 3.3-55 Borden LCR Sub-area 2022 Peak Day Forecast Profiles Figure 3.3-56 Borden LCR Sub-area 2022 Forecast Hourly Profiles # **Borden LCR Sub-area Requirement** Table 3.3-49 identifies the sub-area requirements. The LCR Requirement for a Category P6 contingency is 35 MW. Year Limit Category Limiting Facility Contingency LCR (MW) (Deficiency) 2022 First Limit P6 Borden 230/70 kV TB # 1 Friant - Coppermine 70 kV Line and Borden 230/70 kV TB # 4 35 Table 3.3-49 Borden LCR Sub-area Requirements #### Effectiveness factors: All units within the Borden sub-area have the same effectiveness factor. For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7430 posted at: http://www.caiso.com/Documents/2210Z.pdf ## 3.3.6.5 Reedley Sub-area Reedley is a sub-area of the Fresno LCR area. # Reedley LCR Sub-area Diagram Figure 3.3-57 Reedley LCR Sub-area ## Reedley LCR Sub-area Load and Resources Table 3.3-50 provides the forecast load and resources in Reedley LCR sub-area. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-50 Reedley LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-----|------------------------------------|---------|---------| | Gross Load | 228 | Market, Net Seller | 51 | 51 | | AAEE | -2 | MUNI | 0 | 0 | | Behind the meter DG | 0 | QF | 0 | 0 | | Net Load | 226 | LTPP Preferred Resources | 0 | 0 | | Transmission Losses | 7 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 233 | Total | 51 | 51 | # Reedley LCR Sub-area Hourly Profiles Figure 3.3-58 illustrates the forecast 2022 profile for the peak day for the Reedley sub-area with the Category P6 normal and emergency load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-59 illustrates the forecast 2022 hourly profile for Reedley sub-area with the Category P6 emergency load serving capability without local resources. Figure 3.3-58 Reedley LCR Sub-area 2022 Peak Day Forecast Profiles Figure 3.3-59 Reedley LCR Sub-area 2022 Forecast Hourly Profiles # Reedley LCR Sub-area Requirement Table 3.3-51 identifies the sub-area requirements. The LCR Requirement for a Category P6 contingency is 144 MW with a 93 MW deficiency. Table 3.3-51 Reedley LCR Sub-area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|--|---|--------------------------| | 2021 | First Limit | P6 | Kings River-Sanger-Reedley 115 kV
line with Wahtoke load online | McCall-Reedley 115 kV & Sanger-Reedley 115 kV | 144 (93) | ### Effectiveness factors: All units within the Reedley sub-area have the same effectiveness factor. For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7430 posted at: http://www.caiso.com/Documents/2210Z.pdf # 3.3.6.6 Panoche Sub-area Panoche is a sub-area of the Fresno LCR area. ### Panoche LCR Sub-area Diagram Figure 3.3-60 Panoche LCR Sub-area ####
Panoche LCR Sub-area Load and Resources Table 3.3-52 provides the forecast load and resources in Panoche LCR sub-area. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-52 Panoche LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-----|------------------------------------|---------|---------| | Gross Load | 463 | Market, Net Seller | 282 | 282 | | AAEE | -3 | MUNI | 85 | 85 | | Behind the meter DG | -1 | QF | 3 | 3 | | Net Load | 459 | Solar | 95 | 42 | | Transmission Losses | 16 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 475 | Total | 465 | 412 | ## Panoche LCR Sub-area Hourly Profiles Figure 3.3-61 illustrates the forecast 2022 profile for the peak day for the Panoche sub-area with the Category P6 normal and emergency load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-62 illustrates the forecast 2022 hourly profile for Panoche sub-area with the Category P6 emergency load serving capability without local resources. Figure 3.3-61 Panoche LCR Sub-area 2022 Peak Day Forecast Profiles Figure 3.3-62 Panoche LCR Sub-area 2022 Forecast Hourly Profiles # Panoche LCR Sub-area Requirement Table 3.3-53 identifies the sub-area LCR requirements. The LCR Requirement for a Category P6 contingency is 320 MW. | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|------------------------------------|--|--------------------------| | 2021 | First limit | P6 | Five Points-Huron-Gates 70 kV line | Panoche 230/115 kV TB #2 and Panoche 230/115 kV TB # | 320 | Table 3.3-53 Panoche LCR Sub-area Requirements ### **Effectiveness factors:** Effective factors for generators in the Panoche LCR sub-area are in Attachment B table title Panoche. For other helpful procurement information please read procedure 2210Z Effectiveness Factors under 7430 posted at: http://www.caiso.com/Documents/2210Z.pdf ### 3.3.6.7 Wilson 115 kV Sub-area Wilson 115 kV is a sub-area of the Fresno LCR area. # Wilson LCR Sub-area Diagram Figure 3.3-63 Wilson LCR Sub-area ### Wilson LCR Sub-area Load and Resources The Wilson sub-area does not has a defined load pocket with the limits based upon power flow through the area. Table 3.3-54 provides the forecasted resources in the sub-area. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-54 Wilson LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | Generation (MW) | Aug NQC | At Peak | |---|------------------------------------|---------|---------| | | Market and Net Seller | 260 | 260 | | | MUNI | 85 | 85 | | TI ME | QF | 0 | 0 | | The Wilson sub-area does not have a defined load pocket with the limits based | Solar | 60 | 27 | | upon power flow through the area. | Existing 20-minute Demand Response | 0 | 0 | | | Mothballed | 0 | 0 | | | Total | 405 | 372 | ### Wilson LCR Sub-area Hourly Profiles The Wilson 115 kV sub-area is a flow-through sub-area therefore hourly profiles are not provided. ### Wilson LCR Sub-area Requirement Table 3.3-55 identifies the sub-area LCR requirements. The LCR Requirement for a Category P6 contingency is 620 MW with a 248 MW deficiency at Peak and 215 MW NQC deficiency. Table 3.3-55 Wilson LCR Sub-area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|-----------------------------------|--|----------------------------| | 2022 | First Limit | P6 | Panoche - Oro Loma
115 kV Line | Wilson 230/115kV TB #1 and
Wilson 230/115kV TB #2 | 620
(248 Peak, 215 NQC) | ### **Effectiveness factors:** Effective factors for generators in the Wilson 115 kV LCR sub-area are in Attachment B table titled Wilson 115 kV. For other helpful procurement information please read procedure 2210Z Effectiveness Factors under 7430 posted at: http://www.caiso.com/Documents/2210Z.pdf #### 3.3.6.8 Herndon Sub-area Herndon is a sub-area of the Fresno LCR area. # Herndon LCR Sub-area Diagram Figure 3.3-64 Herndon LCR Sub-area #### Herndon LCR Sub-area Load and Resources Table 3.3-56 provides the forecast load and resources in Herndon LCR sub-area. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-56 Herndon LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|------|------------------------------------|---------|---------| | Gross Load | 1576 | Market, Net Seller | 996 | 996 | | AAEE | -11 | MUNI | 98 | 98 | | Behind the meter DG | 0 | QF | 1 | 1 | | Net Load | 1565 | Solar | 63 | 28 | | Transmission Losses | 35 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 1600 | Total | 1158 | 1123 | ## **Herndon LCR Sub-area Hourly Profiles** Figure 3.3-65 illustrates the forecast 2022 profile for the peak day for the Herndon sub-area with the Category P6 normal and emergency load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-66 illustrates the forecast 2022 hourly profile for Herndon sub-area with the Category P6 emergency load serving capability without local resources. Figure 3.3-65 Herndon LCR Sub-area 2022 Peak Day Forecast Profiles GFA - Herndon LCR Subarea: 2022 projected pk day load profile & approx. LSC (trans + LCR Gen + ES) Approx storage size that can be added to this area from charging restriction perspective = 475 MW and 1114 MWh. Max 4-hr storage = 280 MW 1200 1000 3 10 11 12 13 14 15 16 17 18 19 21 Load serving capability E Load serving capability N --- LSC with ES Figure 3.3-66 Herndon LCR Sub-area 2021 Forecast Hourly Profiles ## **Herndon LCR Sub-area Requirement** Table 3.3-57 identifies the sub-area LCR requirements. The LCR Requirement for a Category P6 contingency is 522 MW. | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|---------------------------|---|--------------------------| | 2022 | First limit | P6 | Herndon-Manchester 115 kV | Herndon-Woodward 115 kV line & Herndon-Barton 115 kV line | 522 | Table 3.3-57 Herndon LCR Sub-area Requirements ### Effectiveness factors: Effective factors for generators in the Herndon LCR Sub-area are in Attachment B table titled Herndon. For other helpful procurement information please read procedure 2210Z Effectiveness Factors under 7430 posted at: http://www.caiso.com/Documents/2210Z.pdf ### 3.3.6.9 Fresno Overall area ### Fresno LCR area Diagram Figure 3.3-67 Fresno LCR area Melones Warnerville Wilson Gregg Borden Helms Los Banos Herndon McCall Panoche McMullin Helm Tranquility Haas, Balch. Henrietta Pine Flats Mustang Slide 26 ### Fresno Overall LCR area Load and Resources Table 3.3-43 provides the forecast load and resources in Fresno LCR area in 2022. The list of generators within the LCR area are provided in Attachment A. # Fresno Overall LCR area Hourly Profiles Gates Figure 3.3-68 illustrates the forecast 2022 profile for the peak day for the Fresno Overall subarea with the Category P6 normal and emergency load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-69 illustrates the forecast 2022 hourly profile for Fresno Overall sub-area with the Category P6 emergency load serving capability without local resources. Figure 3.3-68 Fresno LCR area 2022 Peak Day Forecast Profiles Figure 3.3-69 Fresno LCR area 2022 Forecast Hourly Profiles ## Fresno Overall LCR Area Requirement Table 3.3-58 identifies the area LCR requirements. The LCR Requirement for a Category P6 contingency is 1987 MW. Table 3.3-58 Fresno Overall LCR Area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|----------------------------|--|--------------------------| | 2022 | First limit | P6 | GWF-Contandida 115 kV Line | Panoche-Helm 230 kV Line and
Gates-McCall 230 kV Line | 1987 | #### Effectiveness factors: For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7430 posted at: http://www.caiso.com/Documents/2210Z.pdf # Changes compared to 2021 requirements Compared with 2021 the load forecast increased by 246 MW and the LCR need increased by 293 MW mostly due to load forcast increase. ### 3.3.7 Kern Area #### 3.3.7.1 **Area Definition:** The transmission facilities coming into the Kern PP sub-area are: Midway-Kern PP #1 230 kV Line Midway-Kern PP #3 230 kV Line Midway-Kern PP #4 230 kV Line Wheeler Ridge #4 230/70 kV Transformer Bank Wheeler Ridge #5 230/70 kV Transformer Bank Famoso-Lerdo 115 kV Line (Normal Open) Wasco-Famoso 70 kV Line (Normal Open) Copus-Old River 70 kV Line (Normal Open) Copus-Old River 70 kV Line (Normal Open) The substations that delineate the Kern-PP sub-area are: Midway 230 kV is out and Bakersfield 230 kV is in Midway 230 kV is out and Stockdale 230 kV is in Midway 230 kV is out Kern PP 230 kV is in
Wheeler Ridge 230 kV is out and Wheeler Ridge 70 kV is in Wheeler Ridge 230 kV is out and Wheeler Ridge 70 kV is in Famoso 115 kV is out Cawelo 115 kV is in Wasco 70 kV is out Mc Farland 70 kV is in Copus 70 kV is out, South Kern Solar 70 kV is in Lakeview 70 kV is out, San Emidio Junction 70 kV is in ## Kern LCR Area Diagram Figure 3.3-70 Kern LCR Area Camelo C (G)| Vedder Kern Oil Live Oak Poso Mountain HG Shafter PV Badger Creek Co-Gen Ġ Discovery Kern Front Co-Gen Kern Oil South Columbus Kern PP Westpark Kem PP Westpark Magunden Bulk Bolthouse Farms Lamont **I**G Regulus PV Solar Arvin Edison Kern PP-Tevis Bulk **Tevis** Stockdale 115kV ### Kern LCR Area Load and Resources Table 3.3-59 provides the forecast load and resources in Kern LCR Area in 2022. The list of generators within the LCR area are provided in Attachment A. In year 2022 the estimated time of local area peak is 19:20 PM. At the local area peak time the estimated, ISO metered, solar output is 0.00%. If required, all non-solar technology type resources are dispatched at NQC. Table 3.3-59 Kern LCR Area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|------|------------------------------------|---------|---------| | Gross Load | 1028 | Market, Net Seller | 333 | 333 | | AAEE | -8 | MUNI | 0 | 0 | | Behind the meter DG | 0 | QF | 4 | 4 | | Net Load | 1020 | Solar | 81 | 0 | | Transmission Losses | 9 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 1029 | Total | 418 | 337 | ### Approved transmission projects modeled None ### 3.3.7.2 Kern 70 kV Sub-area Kern 70 kV sub-area has been eliminated in 2022 due to Magunden – Magunden Jct 70 kV being modeled as open in the basecase. #### 3.3.7.3 Kern Power-Tevis Sub Area Kern Power-Tevis is a sub-area of the Kern LCR area. ### Kern Power-Tevis Sub-area Diagram Please see Figure 3.3-70 for Kern PWR-Tevis sub-area diagram ### Kern Power-Tevis Sub-area Load and Resources Table 3.3-60 provides the forecast load and resources in Kern Power-Tevis sub-area. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-60 Kern Power-Tevis LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-----|------------------------------------|---------|---------| | Gross Load | 159 | Market, Net Seller | 0 | 0 | | AAEE | 1 | MUNI | 0 | 0 | | Behind the meter DG | 0 | QF | 0 | 0 | | Net Load | 158 | Solar | 55 | 0 | | Transmission Losses | 1 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 159 | Total | 55 | 0 | # Kern Power-Tevis Sub-area Hourly Profiles Figure 3.3-71 illustrates the forecast 2022 profile for the peak day for the Kern Power-Tevis LCR sub-area with the Category P2 normal and emergengy load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-72 illustrates the forecast 2022 hourly profile for Kern Power-Tevis LCR sub-area with the Category P3 emergency load serving capability without local resources. Figure 3.3-71 Kern Power- Tevis LCR Sub-area 2022 Peak Day Forecast Profiles Figure 3.3-72 Kern Power- Tevis LCR Sub-area 2022 Forecast Hourly Profiles # Kern Power-Tevis LCR Sub-area Requirement Table 3.3-61 identifies the sub-area LCR requirements. The LCR requirement for Category P2 contingency is 22 MW including a 22 MW at peak deficiency. Year Category Limiting Facility Contingency LCR (MW) (Deficiency) 2022 P2 Kern-Lamont 115 kV Lines (Kern-Tevis Jct 2/Tevis J1) KERN PWR 115kV - Section 1E & 1D 22 (22 Peak) Table 3.3-61 Kern Power-Tevis LCR Sub-area Requirements #### Effectiveness factors: All units within the Kern PWR-Tevis sub-area have the same effectiveness factor. For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7450 posted at: http://www.caiso.com/Documents/2210Z.pdf ## 3.3.7.4 Westpark Sub-area Westpark is a sub-area of the Kern LCR area. ## Westpark LCR Sub-area Diagram Please see Figure 3.3-70 for Westpark sub-area diagram. ## Westpark LCR Sub-area Load and Resources Table 3.3-62 provides the forecast load and resources in Westpark LCR sub-area. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-62 Westpark LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |---------------------------|-----|------------------------------------|---------|---------| | Gross Load | 141 | Market, Net Seller | 44 | 44 | | AAEE | -1 | MUNI | 0 | 0 | | Behind the meter DG | 0 | QF | 0 | 0 | | Net Load | 140 | LTPP Preferred Resources | 0 | 0 | | Transmission Losses | 0 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps 140 | | Total | 44 | 44 | # Westpark LCR Sub-area Hourly Profiles Figure 3.3-73 illustrates the forecast 2022 profile for the peak day for the Westpark LCR sub-area with the Category P3 normal and emergengy load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-74 illustrates the forecast 2022 hourly profile for Westpark LCR sub-area with the Category P3 emergency load serving capability without local resources. Figure 3.3-73 Westpark LCR Sub-area 2022 Peak Day Forecast Profiles Figure 3.3-74 Westpark LCR Sub-area 2022 Forecast Hourly Profiles # Westpark LCR Sub-area Requirement Table 3.3-63 identifies the sub-area LCR requirements. The LCR requirement for Category P3 contingency is 53 MW including a 9 MW deficiency. Year Category Limiting Facility Contingency LCR (MW) (Deficiency) 2022 P3 Kern-West Park #2 115 kV Kern-West Park #1 115 kV and PSE-Bear Generation 53 (9) Table 3.3-63 Westpark LCR Sub-area Requirements ## **Effectiveness factors:** All units within the Westpark Sub-area have the same effectiveness factor. For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7450 posted at: http://www.caiso.com/Documents/2210Z.pdf ## 3.3.7.5 Kern Oil Sub-area Kern Oil is a sub-area of the Kern LCR area. # Kern Oil LCR Sub-area Diagram Figure 3.3-75 Kern Oil LCR Sub-area # Kern Oil LCR Sub-area Load and Resources Table 3.3-64 provides the forecast load and resources in Kern Oil LCR sub-area. The list of generators within the LCR sub-area are provided in Attachment A. | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-----|------------------------------------|---------|---------| | Gross Load | 278 | Market, Net Seller | 97 | 97 | | AAEE | -2 | MUNI | 0 | 0 | | Behind the meter DG | 0 | QF | 4 | 4 | | Net Load | 276 | Solar | 7 | 0 | | Transmission Losses | 2 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 278 | Total | 108 | 101 | Table 3.3-64 Kern Oil LCR Sub-area 2022 Forecast Load and Resources # Kern Oil LCR Sub-area Hourly Profiles Figure 3.3-76 illustrates the forecast 2022 profile for the peak day for the Kern Oil LCR sub-area with the Category P6 normal and emergengy load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-77 illustrates the forecast 2022 hourly profile for Kern Oil LCR sub-area with the Category P6 emergency load serving capability without local resources. Kern - Kern Oil LCR Subarea: 2022 projected pk day load profile & approx. LSC (trans + LCR Gen + ES) Approx storage size that can be added to this area from charging restriction perspective = 96 MW and 578 MWh. Max 4-hr storage = 63 MW 300 250 150 50 11 12 13 14 15 16 17 18 21 22 Load serving capability N --- LSC with ES Figure 3.3-76 Kern Oil LCR Sub-area 2022 Peak Day Forecast Profiles Load serving capability E # Kern Oil LCR Sub-area Requirement Table 3.3-65 identifies the sub-area LCR requirements. The LCR requirement for Category P6 contingency is 78 MW. Table 3.3-65 Kern Oil LCR Sub-area Requirements | Year | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|----------|-------------------------------------|--|--------------------------| | 2022 | P6 | Kern Oil Jct –Kernwater 115 kV Line | 7 th Standard – Kern 115 kV line &
Kern Oil – Live Oak – Poso Mt 115 kV Line | 78 | #### Effectiveness factors: All units within the Kern Oil sub-area have the same effectiveness factor. For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7450 posted at: http://www.caiso.com/Documents/2210Z.pdf ## 3.3.7.6 South Kern PP Sub-area South Kern PP is sub-area of the Kern LCR area. # South Kern PP LCR Sub-area Diagram Please see Figure 3.3-70 for South Kern PP area diagram. ## South Kern PP LCR Sub-area Load and Resources Refer to Table 3.3-59 Kern Area Load and Resources table. ## South Kern PP LCR Sub-area Hourly Profiles Figure 3.3-78 illustrates the forecast 2022 profile for the peak day for the South Kern PP LCR sub-area with the Category P6 normal and emergengy load serving capabilities without local resources. The chart also includes an estimated amount of energy storage that can be added to this local area from charging restriction perspective. Figure 3.3-79 illustrates the forecast 2022 hourly profile for South Kern PP LCR sub-area with the Category P6 emergency load serving capability without local resources. Figure 3.3-78 South Kern PP LCR Sub-area 2022 Peak Day Forecast Profiles Figure 3.3-79 South Kern PP
LCR Sub-area 2022 Forecast Hourly Profiles # South Kern PP LCR Sub-area Requirement Table 3.3-66 identifies the sub-area LCR requirements. The LCR requirement for Category P6 contingency is 356 MW including a 23 MW at peak deficiency. Table 3.3-66 South Kern PP LCR Sub-area Requirements | Year | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|----------|-------------------------|--|--------------------------| | 2022 | P6 | Kern 230/115 kV T/F # 5 | Kern 230/115 kV T/F # 3 & Kern
230/115 kV T/F # 4 | 356 (23 Peak) | #### **Effectiveness factors:** All units within the South Kern PP sub-area have the same effectiveness factor. For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7450 posted at: http://www.caiso.com/Documents/2210Z.pdf # 3.3.7.7 Kern Area Overall Requirements # **Kern LCR Area Overall Requirement** Table 3.3-67 identifies the limiting facility and contingency that establishes the Kern Area 2022 LCR requirements. The LCR requirement for Category P6 (Multiple Contingency) is 356 MW including a 23 MW at peak deficiency. Table 3.3-67 Kern Overall LCR Sub-area Requirements | Year | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|----------|-------------------------|-------------|--------------------------| | 2022 | P6 | Aggregate of Sub-areas. | | 356 (23 Peak) | ## Kern Overall LCR Area Hourly Profile Refer to South Kern PP LCR area profiles. ## Changes compared to 2021 requirements Compared with 2021 the load forecast decreased by 256 MW and the LCR requirement has decreased by 276 MW maily due to load forecast decrease. # 3.3.8 Big Creek/Ventura Area ## 3.3.8.1 Area Definition: The transmission tie lines into the Big Creek/Ventura Area are: Antelope #1 500/230 kV Transformer Antelope #2 500/230 kV Transformer Sylmar - Pardee 230 kV #1 and #2 Lines Vincent - Pardee 230 kV #2 Line Vincent - Santa Clara 230 kV Line The substations that delineate the Big Creek/Ventura Area are: Antelope 500 kV is out Antelope 230 kV is in Antelope 500 kV is out Antelope 230 kV is in Sylmar is out Pardee is in Vincent is out Pardee is in Vincent is out Santa Clara is in # Big Creek/Ventura LCR Area Diagram Figure 3.3-80 Big Creek/Ventura LCR Area # Big Creek/Ventura LCR Area Load and Resources Table 3.3-68 provides the forecast load and resources in the Big Creek/Ventura LCR Area in 2022. The list of generators within the LCR area are provided in Attachment A. In year 2022 the estimated time of local area peak is 4:00 PM (PST). At the local area peak time the estimated ISO-metered solar output is about 56%. If required, all non-solar technology type resources are dispatched at NQC. Table 3.3-68 Big Creek/Ventura LCR Area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|------|------------------------------------|---------|---------| | Gross Load | 4468 | Market, Net Seller | 4160 | 4160 | | AAEE | -23 | MUNI | 315 | 315 | | Behind the meter DG | -339 | QF | 109 | 109 | | Net Load | 4106 | Solar | 369 | 369 | | Transmission Losses | 78 | LTPP Preferred Resources (Battery) | 593 | 593 | | Pumps | 210 | Existing 20-minute Demand Response | 100 | 100 | | Load + Losses + Pumps | 4394 | Total | 5646 | 5646 | ## Approved transmission projects modeled: Pardee-Moorpark No. 4 230 kV Transmission Project (ISD-Q2 2022) ## 3.3.8.2 Rector Sub-area LCR need is satisfied by the need in the larger Vestal sub-area. ## 3.3.8.3 Vestal Sub-area Vestal is a sub-area of the Big Creek/Ventura LCR area. ## **Vestal LCR Sub-area Diagram** Figure 3.3-81 Vestal LCR Sub-area ## **Vestal LCR Sub-area Load and Resources** Table 3.3-69 provides the forecast load and resources in Vestal LCR sub-area in 2022. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-69 Vestal LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|------|------------------------------------|---------|---------| | Gross Load | N/A | Market, Net Seller | 1069 | 1069 | | AAEE | N/A | MUNI | 0 | 0 | | Behind the meter DG | N/A | QF | 23 | 23 | | Net Load | 1230 | Solar | 9 | 9 | | Transmission Losses | 26 | LTPP Preferred Resources (Battery) | 50 | 50 | | Pumps | 0 | Existing 20-minute Demand Response | 41 | 41 | | Load + Losses + Pumps | 1256 | Total | 1192 | 1192 | # **Vestal LCR Sub-area Hourly Profiles** Figure 3.3-82 illustrates the forecast 2022 annual load profile in the Vestal LCR sub-area with the Category P3 normal and emergengy load serving capabilities without local capacity resources. Figure 3.3-83 provides the load shape for the peak load day, estimated energy storage maximum capacity and energy based on area maximum charging capability under the most critical contingency as well as estimated 1 for 1 replacement with four-hour capacity battery. Figure 3.3-82 Vestal LCR Sub-area 2022 Annual Load Profile with Estimated Transmission Only Load Serving Capability Figure 3.3-83 Vestal LCR Sub-area 2022 Load Shape and Estimated Maximum Energy Storage Capacity and Energy Based on Charging Capability Under Critical Contingency # **Vestal LCR Sub-area Requirement** Table 3.3-70 identifies the sub-area LCR requirements. The LCR requirement for Category P3 contingency is 394 MW. LCR (MW) Year Limit Category **Limiting Facility** Contingency (Deficiency) Magunden-Springville #2 Magunden-Springville #1 230 kV with 2022 First Limit P3 394 230 kV Eastwood out of service Magunden-Vestal #1 230 kV Magunden-Vestal #2 230 kV line with 2022 Second limit⁷ P3 324 Eastwood out of service line Table 3.3-70 Vestal LCR Sub-area Requirements #### **Effectiveness factors:** For helpful procurement information please read procedure 2210Z Effectiveness Factors under 7500 posted at: http://www.caiso.com/Documents/2210Z.pdf ⁷ Due to the larger difference between normal and emergency ratings of the limiting facility associated with the second limit compared to that associated with the first limit, the second limit is the binding constraint for energy storage local capacity. Therefore, the energy storage local capacity analysis above is performed based on the second limit. ## 3.3.8.4 Goleta Sub-area LCR need is satisfied by the need in the larger Santa Clara sub-area. ## 3.3.8.5 Santa Clara Sub-area Santa Clara is a sub-area of the Big Creek/Ventura LCR area. # Santa Clara LCR Sub-area Diagram Figure 3.3-84 Santa Clara LCR Sub-area #### Santa Clara LCR Sub-area Load and Resources Table 3.3-71 provides the forecast load and resources in Santa Clara LCR sub-area in 2022. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-71 Santa Clara LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-----|------------------------------------|---------|---------| | Gross Load | N/A | Market, Net Seller, Solar | 153 | 153 | | AAEE | N/A | MUNI | 0 | 0 | | Behind the meter DG | N/A | QF | 81 | 81 | | Net Load | 800 | LTPP Preferred Resources (Battery) | 215 | 215 | | Transmission Losses | 3 | Existing Demand Response | 7 | 7 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 803 | Total | 456 | 456 | # Santa Clara LCR Sub-area Hourly Profiles Figure 3.3-85 illustrates the forecast 2022 annual load profile in the Santa Clara LCR sub-area with the Category P1/P7 voltage stability related load serving capabily without local capacity resources. Figure 3.3-86 provides the load shape for the peak load day, estimated energy storage maximum capacity and energy based on area maximum charging capability under the most critical contingency as well as estimated 1 for 1 replacement with four-hour capacity battery. Figure 3.3-85 Santa Clara LCR Sub-area 2022 Annual Load Profile with Estimated Transmission Only Load Serving Capability Figure 3.3-86 Santa Clara LCR Sub-area 2022 Load Shape and Estimated Maximum Energy Storage Capacity and Energy Based on Charging Capability Under Critical Contingency ## Santa Clara LCR Sub-area Requirement Table 3.3-72 identifies the sub-area requirements. The LCR requirement for Category P1 followed by P7 contingency is 193 MW. Table 3.3-72 Santa Clara LCR Sub-area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|-------------------|--|--------------------------| | 2022 | First Limit | P1 + P7 | Voltage collapse | Pardee - Santa Clara 230 kV followed by
Moorpark - Santa Clara #1 & #2 230 kV | 193 | #### **Effectiveness factors:** For helpful procurement information please read procedure 2210Z Effectiveness Factors under 7550 and 7680 posted at: http://www.caiso.com/Documents/2210Z.pdf # 3.3.8.6 Moorpark Sub-area Moorpark sub-area will be eliminated when the Pardee-Moorpark No. 4 230 kV Transmission Project is completed. # 3.3.8.7 Big Creek/Ventura Overall ## Big Creek/Ventura LCR Sub-area Hourly Profiles Figure 3.3-87 illustrates the forecast 2022 annual load profile in the Big Creek/Ventura LCR area with the Category P6 normal and emergency load serving capabilities without local capacity resources. The normal and emergency ratings for the limiting element are the same. Figure 3.3-88 provides the load shape for the peak load day, estimated energy storage maximum capacity and energy based on area maximum charging capability under the most critical contingency as well as estimated 1 for 1 replacement with four-hour capacity battery. Figure 3.3-87 Big Creek/Ventura LCR area 2022 Annual Load Profile with Estimated Transmission Only Load Serving Capability Figure 3.3-88 Big
Creek/Ventura LCR area 2022 Load Shape and Estimated Maximum Energy Storage Capacity and Energy Based on Charging Capability Under Critical Contingency # Big Creek/Ventura LCR area Requirement Table 3.3-73 identifies the area LCR requirements. The LCR requirement for Category P6 contingency is 2173 MW. Table 3.3-73 Big Creek/Ventura LCR area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|----------------------------------|---|--------------------------| | 2022 | First Limit | P6 | Remaining Sylmar - Pardee 230 kV | Lugo - Victorville 500 kV line followed by one of the Sylmar - Pardee #1 or #2 230 kV lines | 2173 | ## **Effectiveness factors:** For helpful procurement information please read procedure 2210Z Effectiveness Factors under 7500, 7510, 7550 and 7680 posted at: http://www.caiso.com/Documents/2210Z.pdf ## Changes compared to last year's LCT study Compared with the results for 2021, the load forecast is down by 57 MW and the LCR has decreased by 123 MW mainly due to the decrease in the load forecast. # 3.3.9 LA Basin Area ## 3.3.9.1 Area Definition: The transmission tie lines into the LA Basin Area are: San Onofre - San Luis Rey #1, #2, and #3 230 kV Lines San Onofre - Talega #1 & #2 230 kV Lines Lugo - Mira Loma #2 & #3 500 kV Lines Lugo - Rancho Vista #1 500 kV Line Vincent - Mira Loma 500 kV Line Sylmar - Eagle Rock 230 kV Line Sylmar - Gould 230 kV Line Vincent - Mesa #1 & #2 230 kV Lines Vincent - Rio Hondo #1 & #2 230 kV Lines Devers - Red Bluff 500 kV #1 and #2 Lines Mirage - Coachella Valley # 1 230 kV Line Mirage - Ramon # 1 230 kV Line Mirage - Julian Hinds 230 kV Line The substations that delineate the LA Basin Area are: San Onofre is in San Luis Rey is out San Onofre is in Talega is out Mira Loma is in Lugo is out Rancho Vista is in Lugo is out Eagle Rock is in Sylmar is out Gould is in Sylmar is out Mira Loma is in Vincent is out Mesa is in Vincent is out Rio Hondo is in Vincent is out Devers is in Red Bluff is out Mirage is in Coachella Valley is out Mirage is in Ramon is out Mirage is in Julian Hinds is out # LA Basin LCR Area Diagram Pardee Albertall Basin Bised and a series of series of substants and are substants and series of are substants and series of substants and series of substants and series of substants and series of substants and se Figure 3.3-89 LA Basin LCR Area ## LA Basin LCR Area Load and Resources Table 3.3-74 provides the forecast load and resources in the LA Basin LCR Area in 2022. The list of generators within the LCR area are provided in Attachment A and does not include new LTPP preferred resources or DR. In year 2022 the estimated time of local area peak is 5:00 PM (PDT) based on the CEC hourly forecast for the 2020-2030 California Energy Demand Forecast Update. At the local area peak time the estimated, ISO metered, solar output is 14%. If required, all non-solar technology type resources are dispatched at NQC. Table 3.3-74 LA Basin LCR Area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-------|---|---------|---------| | Gross Load | 20233 | Market, Net Seller, Wind, Battery | 7169 | 7169 | | AAEE | -158 | MUNI | 1039 | 1039 | | Behind the meter DG | -1450 | QF | 121 | 121 | | Net Load | 18625 | LTPP Preferred Resources (BTM BESS, EE, DR, PV) | 183 | 183 | | Transmission Losses | 284 | Existing Demand Response | 251 | 251 | | Pumps | 20 | Solar | 11 | 11 | | Load + Losses + Pumps | 18929 | Total | 8774 | 8774 | # Approved new transmission and resource projects modeled: Mesa Loop-In Project (500 kV and 230 kV) Delaney-Colorado River 500 kV Line West of Devers 230 kV Upgrades Local capacity area preferred resources in western LA Basin (BTM BESS, EE, DR, PV) ## 3.3.9.2 El Nido Sub-area El Nido is a Sub-area of the LA Basin LCR Area. ## El Nido LCR Sub-area Diagram Please refer to Figure 3.3-89 above. ## El Nido LCR Sub-area Load and Resources Table 3.3-75 provides the forecast load and resources in El Nido LCR sub-area in 2022. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-75 El Nido LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|------|--------------------------|---------|---------| | Gross Load | 1011 | Market, Net Seller | 531 | 531 | | AAEE | -13 | MUNI | 0 | 0 | | Behind the meter DG | -31 | QF | 0 | 0 | | Net Load | 967 | LTPP Preferred Resources | 23 | 23 | | Transmission Losses | 2 | Existing Demand Response | 9 | 9 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 969 | Total | 563 | 563 | ## El Nido LCR Sub-area Hourly Profiles Figure 3.3-90 illustrates the forecast 2022 annual load profile in the El Nido LCR sub-area with the Category P7 normal and emergengy load serving capabilities without local gas resources. Figure 3.3-91 provides load shape for peak load day, estimated energy storage maximum capacity and energy as well as estimated four-hour capacity amount based on its maximum charging capability under the most critical contingency. Figure 3.3-90 El Nido LCR Sub-area 2022 Annual Load Profile with Estimated Transmission Load Serving Capability Only Figure 3.3-91 El Nido LCR Sub-area 2022 Load Shape and Estimated Maximum Energy Storage Capacity and Energy Based on Charging Capability Under Critical Contingency ## El Nido LCR Sub-area Requirement Table 3.3-76 identifies the sub-area requirements. The LCR requirement for Category P7 contingency is 356 MW. The LCR need decreases compared to the 2021 requirements due to lower demand forecast for the sub-area. Table 3.3-76 El Nido LCR Sub-area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|------------------------------|--|--------------------------| | 2022 | First Limit | P7 | La Fresa - La Cienega 230 kV | La Fresa – El Nido #3 & 4 230 kV lines | 356 | #### Effectiveness factors: All units within the El Nido Sub-area have the same effectiveness factor. For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7630 posted at: http://www.caiso.com/Documents/2210Z.pdf ## 3.3.9.3 Western LA Basin Sub-area Western LA Basin is a sub-area of the LA Basin LCR area. ## Western LA Basin LCR Sub-area Diagram Please refer to Figure 3.3-89 above. #### Western LA Basin LCR Sub-area Load and Resources Table 3.3-77 provides the forecast load and resources in Western LA Basin LCR sub-area in 2021. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-77 Western LA Basin Sub-area 2021 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-------|------------------------------------|---------|---------| | Gross Load | 11600 | Market, Net Seller, Battery, Solar | 4791 | 4791 | | AAEE | -135 | MUNI | 541 | 541 | | Behind the meter DG | -464 | QF | 55 | 55 | | Net Load | 11001 | LTPP Preferred Resources | 183 | 183 | | Transmission Losses | 165 | Existing Demand Response | 132 | 132 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 11166 | Total | 5702 | 5702 | ## Western LA Basin LCR Sub-area Hourly Profiles Figure 3.3-92 illustrates the forecast 2022 annual load profile in the Western LA Basin LCR sub-area with the transmission load serving capability only. Figure 3.3-93 provides load shape for peak load day, estimated energy storage maximum capacity and energy as well as estimated four-hour capacity amount based on its maximum charging capability under the most critical contingency. Figure 3.3-92 Western LA Basin LCR Sub-area 2022 Annual Load Profile with Estimated Transmission Load Serving Capability Only Figure 3.3-93 Western LA Basin LCR Sub-area 2022 Load Shape and Estimated Maximum Energy Storage Capacity and Energy Based on Charging Capability Under Critical Contingency ## Western LA Basin LCR Sub-area Requirement Table 3.3-78 identifies the Western LA Basin 2022 LCR sub-area requirements. The 2022 LCR need is higher than the 2021 LCR need due to the following reasons: The 230kV bus tie breaker at Mesa Substation is operated in the open position to mitigate short-cicuit duty concern for the final completed 500kV loop-in portion of the Mesa Loopin Project; The CEC demand forecast is higher compared to the 2021 study. Table 3.3-78 Western LA Basin LCR Sub-area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|----------------------------------|---|--------------------------| | 2022 | First Limit | P6 | Mesa – Laguna Bell
230kV Line | Mesa – Redondo 230kV line, followed by Mesa – Lighthipe 230kV line, or vice versa | 4443 | #### Effectiveness factors: See Attachment B - Table titled LA Basin. For other helpful procurement information please read procedure 2210Z Effectiveness Factors under 7630 (G-219Z) posted at: http://www.caiso.com/Documents/2210Z.pdf There are other combinations of contingencies in the area that could overload a significant number of 230 kV lines in this sub-area have less LCR need. As such, anyone of them (combination of contingencies) could become binding for any given set of procured resources. As a result, these effectiveness factors may not be the best indicator towards informed procurement. #### 3.3.9.4 West of Devers Sub-area West of Devers is a sub-area of the LA Basin LCR area. The 2020 LCT
study identified that the West of Devers sub-area need is satisfied by the need in the larger Eastern LA Basin sub-area. ## 3.3.9.5 Valley-Devers Sub-area Valley-Devers is a sub-area of the LA Basin LCR area. The 2020 LCT study identified that the Valley-Devers sub-area need is satisfied by the need in the larger Eastern LA Basin sub-area. ## 3.3.9.6 Valley Sub-area Valley is a sub-area of the LA Basin LCR area. The 2020 LCT study identified that the Valley sub-area need is satisfied by the need in the larger Eastern LA Basin sub-area. ## 3.3.9.7 Eastern LA Basin Sub-area Eastern LA Basin is a sub-area of the LA Basin LCR area. ## Eastern LA Basin LCR Sub-area Diagram Please refer to Figure 3.3-89 above. #### Eastern LA Basin LCR Sub-area Load and Resources Table 3.3-79 provides the forecast load and resources in Eastern LA Basin LCR sub-area. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-79 Eastern LA Basin Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|------|-----------------------------------|---------|---------| | Gross Load | 8178 | Market, Net Seller, battery, Wind | 2381 | 2381 | | AAEE | -61 | MUNI | 497 | 497 | | Behind the meter DG | -493 | QF | 66 | 66 | | Net Load | 7624 | LTPP Preferred Resources | 0 | 0 | | Transmission Losses | 114 | Existing Demand Response | 119 | 119 | | Pumps | 20 | Solar | 9 | 9 | | Load + Losses + Pumps | 7758 | Total | 3072 | 3072 | # Eastern LA Basin LCR Sub-area Hourly Profiles Figure 3.3-94 illustrates the forecast 2022 annual load profile in the Eastern LA Basin LCR sub-area with the transmission load serving capability only. Figure 3.3-95 provides load shape for peak load day, estimated energy storage maximum capacity and energy as well as estimated four-hour capacity amount based on its maximum charging capability under the most critical contingency. Figure 3.3-94 Eastern LA Basin LCR Sub-area 2022 Annual Load Profile with Estimated Transmission Load Serving Capability Only Figure 3.3-95 Eastern LA Basin LCR Sub-area 2022 Load Shape and Estimated Maximum Energy Storage Capacity and Energy Based on Charging Capability Under Critical Contingency # Eastern LA Basin LCR Sub-area Requirement Table 3.3-80 identifies the sub-area LCR requirements. The LCR need for the Eastern LA Basin is lower than the 2021 LCR need due to implementation of the Mesa Loop-in Project that brings additional source of power into the Western LA Basin sub-area. This helps reduce power flows from eastern to western LA Basin, thus reducing the LCR need in the eastern LA Basin. Table 3.3-80 Eastern LA Basin LCR Sub-area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|----------------------------------|---|--------------------------| | 2022 | First Limit | P1+P7 | Post-transient voltage stability | Serrano - Valley 500 kV line, followed by
Devers – Red Bluff 500 kV #1 and 2 lines | 2203 | #### **Effectiveness factors:** All units within the Eastern LA Basin Sub-area have the same effectiveness factor. For most helpful procurement information please read procedure 2210Z Effectiveness Factors under 7580, 7590, 7630 and 7750 posted at: http://www.caiso.com/Documents/2210Z.pdf ## 3.3.9.8 LA Basin Overall ## **LA Basin LCR Hourly Profiles** Figure 3.3-96 illustrates the forecast 2022 annual load profile in the LA Basin LCR sub-area with the transmission load serving capability only. Figure 3.3-97 provides load shape for peak load day, estimated energy storage maximum capacity and energy as well as estimated four-hour capacity amount based on its maximum charging capability under the most critical contingency. Figure 3.3-96 LA Basin LCR Area 2022 Annual Load Profile with Estimated Transmission Load Serving Capability Only Figure 3.3-97 LA Basin LCR Area 2022 Load Shape and Estimated Maximum Energy Storage Capacity and Energy Based on Charging Capability Under Critical Contingency The following is a summary of estimated amount of storage for the sub-areas and the overall area based on maximum charging capability perspective. Due to non-linearity of power system and the various critical contingencies and load shapes for each sub-area and the overall area, it is noted that the estimated maximum amount of storage for the sub-areas many not add up to be sum of the overall area. The estimated maximum amount of storage for the LCR area is the amount listed in the last row in the table. Table 3.3-81 Estimated LA Basin Subareas and Overall Area Energy Storage Capacity and Energy Based on Maximum Charging Capability Perspective | Area/Sub-area | Estimated Energy
Storage Maximum
Capacity (MW) | Estimated Energy
Storage Maximum
Energy (MWh) | 1 for 1 Replacement
with 4-hour Energy
Storage Capacity
(MW) | |---------------------------|--|---|---| | El Nido sub-area | 238 | 1591 | 106 | | Western LA Basin sub-area | 1840 | 15148 | 580 | | Eastern LA Basin sub-area | 1834 | 13584 | 690 | | Overall LA Basin area | 3612 | 29332 | 1020 | # LA Basin LCR area Requirement Table 3.3-82 identifies the area requirements. The LCR requirement for the LA Basin is the sum of the Western and Eastern LA Basin local capacity requirements. Table 3.3-82 LA Basin LCR area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | | | |------|-----------------|------------|--|--|--------------------------|--|--| | 2022 | First
Limit | Sum of Wes | Sum of Western and Eastern LA Basin LCR needs | | | | | | 2022 | Second
Limit | P3 | Imperial Valley – El
Centro 230 kV Line
(S-Line) | G-1 of TDM generation, system readjustment, followed by Imperial Valley-North Gila 500 kV line (N-1) | 6198 | | | ## **Effectiveness factors:** See Attachment B - Table titled LA Basin. For other helpful procurement information please read procedure 2210Z Effectiveness Factors under 7550, 7570, 7580, 7590, 7630, and 7750 posted at: http://www.caiso.com/Documents/2210Z.pdf There are other combinations of contingencies in the area that could overload other 230 kV lines in this sub-area resulting in less LCR need. As such, anyone of them (combination of contingencies) could become binding for any given set of procured resources. As a result, these effectiveness factors may not be the best indicator towards informed procurement. ## Changes compared to last year's LCT study Compared with 2021, the demand modeled for the LA Basin is 1 MW lower and the LCR needs have increased by 476 MW. The increase in LCR need for the overall LA Basin is driven by the increased LCR need in the Western LA Basin caused by opening of the bus tie circuit breakers between the North and South bus sections at Mesa Substation to mitigate high short-circuit duty concern with the completion of the 500 kV loop-in project. # 3.3.10 San Diego-Imperial Valley Area ## 3.3.10.1 **Area Definition:** The transmission tie lines forming a boundary around the Greater San Diego-Imperial Valley area include: Imperial Valley – North Gila 500 kV Line Otay Mesa – Tijuana 230 kV Line San Onofre - San Luis Rey #1 230 kV Line San Onofre - San Luis Rey #2 230 kV Line San Onofre - San Luis Rey #3 230 kV Line San Onofre – Talega 230 kV #1 and #2 Lines Imperial Valley - El Centro 230 kV Line Imperial Valley - La Rosita 230 kV Line The substations that delineate the Greater San Diego-Imperial Valley area are: Imperial Valley is in North Gila is out Otay Mesa is in Tijuana is out San Onofre is out San Luis Rey is in San Onofre is out San Luis Rey is in San Onofre is out San Luis Rey is in San Onofre is out Talega is in San Onofre is out Capistrano is in Imperial Valley is in El Centro is out Imperial Valley is in La Rosita is out # San Diego-Imperial Valley LCR Area Diagram Vincent Pardee Sylmar Sylmar Sylmar Fagle Rock Goodrich Mesa Walnut Olinda Bernardino Bernardino Bernardino Sylbarea San Diego Subarea San Diego Subarea San Diego Subarea San Diego Subarea Figure 3.3-98 San Diego-Imperial Valley LCR Area ## San Diego-Imperial Valley LCR Area Load and Resources Table 3.3-83 provides the forecast load and resources in the San Diego-Imperial Valley LCR Area in 2022. The list of generators within the LCR area are provided in Attachment A. In the year 2022 the estimated time of local area peak is 8:00 PM (PDT). At the local area peak time the estimated, ISO metered, solar output is 0.00%. If required, all non-solar technology type resources are dispatched at NQC. Table 3.3-83 San Diego-Imperial Valley LCR Area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|------|--|---------|---------| | Gross Load | 4514 | Market, Net Seller, Battery, Wind | 3978 | 3978 | | AAEE | -28 | Solar (production is "0" at 20:00 hr.) | 369 | 0 | | Behind the meter DG | 0 | QF | 8 | 8 | | Net Load | 4486 | LTPP Preferred Resources | 0 | 0 | | Transmission Losses | 94 | Existing Demand Response | 7 | 7 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 4580 | Total | 4362 | 3993 | ## Approved transmission projects modeled: Ocean Ranch 69 kV substation Miramar - Mesa Rim 69 kV system reconfiguration Upgrade Bernardo - Rancho Carmel 69 kV line San Ysidro 69 kV reconductoring TL13834 Trabuco-Capistrano 138 kV line upgrade Second San Marcos - Escondido
69 kV line By-passing 500 kV series capacitor banks on Southwest Powerlink and Sunrise Powerlink # 3.3.10.2 El Cajon Sub-area El Cajon is sub-area of the San Diego-Imperial Valley LCR area. # El Cajon LCR Sub-area Diagram EC Gen 1 & 2 El Cajon Sub-area (Gas Fired) **Transmission Import** (Energy Cutplane Storage) El Cajon Garfield Spring Valley Murray Jamacha/ 138 kV Los Coche 69 kV Elliott Creelman Miguel Granite Tap 69 kV Loveland Alpine Figure 3.3-99 El Cajon LCR Sub-area El Cajon LCR Sub-area Load and Resources Table 3.3-84 provides the forecast load and resources in El Cajon LCR sub-area in 2022. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-84 El Cajon LCR Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-----|------------------------------------|---------|---------| | Gross Load | 154 | Market, Net Seller, Battery | 101 | 101 | | AAEE | -1 | MUNI | 0 | 0 | | Behind the meter DG | 0 | QF | 0 | 0 | | Net Load | 153 | LTPP Preferred Resources | 0 | 0 | | Transmission Losses | 1 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 154 | Total | 101 | 101 | # El Cajon LCR Sub-area Hourly Profiles Figure 3.3-100 illustrates the forecast 2022 annual load forecast profile in the El Cajon LCR subarea and the Category P1 (L-1 Contingency) transmission load serving capability without generation. Figure 3.3-101 provides the 2022 daily load forecast profile for the peak day, estimated amount of energy storage that can be added to this local area from charging restriction perspective, and estimated four-hour capacity amount under the most critical contingency. Figure 3.3-100 El Cajon LCR Sub-area 2022 Annual Load Forecast Profiles Figure 3.3-101 El Cajon LCR Sub-area 2022 Peak Day Forecast Profiles # El Cajon LCR Sub-area Requirement Table 3.3-85 identifies the sub-area 2022 LCR requirements. The Category P3 (Single Contingency) LCR requirement is 88 MW. Table 3.3-85 El Cajon LCR Sub-area Requirements | Year | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|----------|---|--|--------------------------| | 2022 | P3 | El Cajon – Los Coches
69 kV Line (TL631) | El Cajon unit out of service followed by TL632 Granite–Los Coches–Miguel 69 kV 3-Terminal Line | 88 | ## **Effectiveness factors:** All units within the El Cajon sub-area have the same effectiveness factor. ## 3.3.10.3 **Border Sub-area** Border is sub-area of the San Diego – Imperial Valley LCR area. # **Border LCR Sub-area Diagram** Figure 3.3-102 Border LCR Sub-area ## **Border LCR Sub-area Load and Resources** Table 3.3-86 provides the forecast load and resources in Border LCR sub-area. The list of generators within the LCR Sub-area are provided in Attachment A. Table 3.3-86 Border Sub-area Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|-----|------------------------------------|---------|---------| | Gross Load | 143 | Market, Net Seller, Battery | 143 | 143 | | AAEE | -1 | MUNI | 0 | 0 | | Behind the meter DG | 0 | QF | 0 | 0 | | Net Load | 142 | LTPP Preferred Resources | 0 | 0 | | Transmission Losses | 1 | Existing 20-minute Demand Response | 0 | 0 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 143 | Total | 143 | 143 | # **Border LCR Sub-area Hourly Profiles** Figure 3.3-103 illustrates the 2022 annual load forecast profile in the Border LCR sub-area and the Category P1 transmission load serving capability without gas generation. Figure 3.3-104 illustrates the 2022 daily load forecast profile for the peak day, estimated amount of energy storage that can be added to this local area from charging restriction perspective, and estimated four-hour capacity amount under the most critical contingency. Figure 3.3-103 Borden LCR Sub-area 2022 Annual Day Forecast Profiles Figure 3.3-104 Border LCR Sub-area 2022 Peak Day Forecast Profiles ## Border LCR sub-area requirement Table 3.3-87 identifies the sub-area requirements. The LCR requirement for Category P3 contingency is 68 MW. Table 3.3-87 Border LCR Sub-area Requirements | Year | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|----------|---------------------------------------|--|--------------------------| | 2022 | P3 | Otay – Otay Lake Tap
69 kV (TL649) | Border unit out of service followed by the outage of Miguel-Salt Creek 69 kV #1 (TL6910) | 68 | #### **Effectiveness factors:** All units within the Border sub-area have the same effectiveness factor. ### 3.3.10.4 San Diego Sub-area San Diego is a sub-area of the San Diego-Imperial Valley LCR area. ### San Diego LCR Sub-area Diagram Please refer to Figure 3.3-98 above. ### San Diego LCR Sub-area Load and Resources Table 3.3-88 provides the forecast load and resources in San Diego LCR sub-area. The list of generators within the LCR sub-area are provided in Attachment A. Table 3.3-88 San Diego Sub-area 2022 Forecast Load and Resources | Load (MW) | | Generation (MW) | Aug NQC | At Peak | |-----------------------|------|-----------------------------------|---------|---------| | Gross Load | 4514 | Market, Net Seller, Battery, Wind | 2940 | 2940 | | AAEE | -28 | Solar | 15 | 0 | | Behind the meter DG | 0 | QF | 8 | 8 | | Net Load | 4486 | LTPP Preferred Resources | 0 | 0 | | Transmission Losses | 94 | Existing Demand Response | 7 | 7 | | Pumps | 0 | Mothballed | 0 | 0 | | Load + Losses + Pumps | 4580 | Total | 2970 | 2955 | ### San Diego LCR Sub-area Hourly Profiles Figure 3.3-105 illustrates the forecast 2022 annual load profile in the San Diego LCR sub-area with the transmission load serving capability only. Figure 3.3-106 provides load shape for peak load day, estimated energy storage maximum capacity and energy as well as estimated four-hour capacity amount based on its maximum charging capability under the most critical contingency. Figure 3.3-105 San Diego LCR Sub-area 2022 Annual Load Profile with Estimated Transmission Load Serving Capability Only Figure 3.3-106 San Diego LCR Sub-area 2022 Load Shape and Estimated Maximum Energy Storage Capacity and Energy Based on Charging Capability Under Critical Contingency ### San Diego LCR Sub-area Requirement Table 3.3-89 identifies the sub-area LCR requirements. The Category P6 contingency LCR requirement is 2097 MW. The LCR need is lower due to lower demand forecast from the CEC for the San Diego area. Implementation of the Mesa Loop-in Project provides additional source of power into the western LA Basin sub-area. This also helps provide additional southbound flow into San Diego sub-area as well. Table 3.3-89 San Diego Sub-area LCR Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|-------------|----------|--|--|--------------------------| | 2022 | First Limit | P6 | Remaining Sycamore-
Suncrest 230 kV | ECO-Miguel 500 kV line, system readjustment, followed by one of the Sycamore-Suncrest 230 kV lines | 2097 | #### **Effectiveness factors:** See Attachment B - Table titled San Diego. For other helpful procurement information please read procedure 2210Z Effectiveness Factors under 7820 posted at: http://www.caiso.com/Documents/2210Z.pdf ### 3.3.10.5 San Diego-Imperial Valley Overall ### San Diego-Imperial Valley LCR area Hourly Profiles Since the San Diego sub-area has all the substation loads, the overall San Diego-Imperial Valley area has the same load profile as the San Diego bulk sub-area. The Imperial Valley area has generating resources. Figure 3.3-107 illustrates the forecast 2022 annual load profile in the San Diego-Imperial LCR area with the transmission load serving capability only. Figure 3.3-108 provides load shape for peak load day, estimated energy storage maximum capacity and energy as well as estimated four-hour capacity amount based on its maximum charging capability under the most critical contingency. Table 3.3-90 provides a summary of the estimated amount of energy storage that can be accommodated from the charging limitation perspective for the subareas and the overall LCR area. Figure 3.3-107 San Diego-Imperial Valley LCR Area 2022 Annual Load Profile with Estimated Transmission Load Serving Capability Only Figure 3.3-108 San Diego-Imperial Valley LCR Area 2022 Load Shape and Estimated Maximum Energy Storage Capacity and Energy Based on Charging Capability Under Critical Contingency The following is a summary of estimated amount of storage for the sub-areas and the overall area based on maximum charging capability perspective. Due to non-linearity of power system and the various critical contingencies and load shapes for each sub-area and the overall area, it is noted that the estimated maximum amount of storage for the sub-areas many not add up to be sum of the overall area. Since the San Diego sub-area has all the substation loads, the overall San Diego- Imperial Valley area has the same load profile as the San Diego bulk sub-area and therefore same amount of energy storage for the San Diego sub-area. The Imperial Valley area (of the overall San Deigo-Imperial Valley) has generating resources only. Table 3.3-90 Estimated San Diego Sub-areas and Overall Area Energy Storage Capacity and Energy Based on Maximum Charging Capability Perspective | Area/Sub-area | Estimated Energy
Storage Maximum
Capacity (MW) | Estimated Energy
Storage Maximum
Energy (MWh) | 1 for 1 Replacement with
4-hour Energy Storage
Capacity (MW) |
--|--|---|--| | El Cajon sub-area | 40 | 202 | 40 | | Border sub-area | 20 | 110 | 17 | | San Diego sub-area | 1165 | 6697 | 670 | | Overall San Diego-
Imperial Valley Area | 1165 | 6690 | 670 | ### San Diego-Imperial Valley LCR area Requirement Table 3.3-91 identifies the area LCR requirements. The LCR requirement for Category P3 contingency is 3993 MW. Table 3.3-91 San Diego-Imperial Valley LCR area Requirements | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW)
(Deficiency) | |------|----------------|----------|---|--|--------------------------| | 2022 | First
Limit | P3 | Imperial Valley – El Centro
230 kV Line (S-Line) | TDM generation, system readjustment, followed by Imperial Valley-North Gila 500 kV | 3993 | ### **Effectiveness factors:** See Attachment B - Table titled San Diego. For other helpful procurement information please read procedure 2210Z Effectiveness Factors under 7820 posted at: http://www.caiso.com/Documents/2210Z.pdf ### Changes compared to 2020 LCT Study Compared with the 2021 LCT Study results, the demand forecast is higher by 57 MW. The overall LCR needs for the San Diego-Imperial Valley increases by 105 MW due to higher demand forecast as well as higher Maximum Import Capability (MIC) modeled between IID and ISO.8 ⁸ http://www.caiso.com/Documents/AdvisoryestimatesoffutureResourceAdequacyImportCapabilityforyears2021-2030.pdf ### 3.3.11 Valley Electric Area Valley Electric Association LCR area has been eliminated on the basis of the following: No generation exists in this area No category B issues were observed in this area Category C and beyond - - No common-mode N-2 issues were observed - No issues were observed for category B outage followed by a common-mode N-2 outage - All the N-1-1 issues that were observed can either be mitigated by the existing UVLS or by an operating procedure # 3.4 Summary of Engineering Estimates for Intermediate Years by Local Area Engineering estimates, along with detailed explanations for contributing factors in each local area are given below per methodology explained in Chapter 2 above. The estimates represent an engineering approximation. They are not actual technical studies and they may be superseded by actual technical studies. ### 3.4.19.1 Humboldt Area The net peak load growth from 2022 to 2026 is estimated at 4.25 MW/year. There is no new transmission project that directly affects the LCR change from 2022 to 2026. There is no new resource that directly affects the LCR change from 2022 to 2026. There is no projected change in resource contractual status that directly affects the LCR change from 2022 to 2026. There is no resource projected to retire that directly affects the LCR change from 2022 to 2026. The total increase for each intermediate year depends only on the load forecast and the study results for year 2022 and it is estimated at about 4.25 MW/year for Category P6. | T - 1-1 - | 0 4 4 | 1001- | 4! 41 | I I amount of a Land | 4100 | and the second of | |-----------|-------|-------|-----------|----------------------|--------|-------------------| | i abie | 3.4-1 | 15U S | estimated | Humboid | II LUK | neea: | | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW) | |------|-------------|----------|----------------------------|---|----------| | 2023 | First Limit | P6 | Humboldt-Trinity 115
kV | Cottonwood-Bridgeville 115 kV &
Humboldt - Humboldt Bay 115 kV | 115 | | 2024 | First Limit | P6 | Humboldt-Trinity 115
kV | Cottonwood-Bridgeville 115 kV &
Humboldt - Humboldt Bay 115 kV | 120 | ### 3.4.19.2 North Coast/ North Bay Area The net peak load growth from 2022 to 2026 is estimated at about -5 MW/year. There is no new transmission project that directly affects the LCR change from 2022 to 2026. There is no new resource that directly affects the LCR change from 2022 to 2026. There is no projected change in resource contractual status that directly affects the LCR change from 2022 to 2026. There is no resource projected to retire that directly affects the LCR change from 2022 to 2026. The total increase for each intermediate year depends on load growth and the study results for both year 2022 and 2026 and it is estimated at about 31.75 MW/year for Category P3. However both years are already deficient and therefore 2023 and 2024 will also be deficient. Table 3.4-2 ISO's estimated North Coast/ North Bay LCR need: | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW) | |------|-------------|----------|----------------------------------|---|----------| | 2023 | First Limit | P3 | Tulucay - Vaca Dixon 230 kV Line | Vaca Dixon - Lakeville 230 kV with DEC out of service | 834 | | 2024 | First Limit | P3 | Tulucay - Vaca Dixon 230 kV Line | Vaca Dixon - Lakeville 230 kV with DEC out of service | 834 | ### 3.4.19.3 **Sierra Area** The net peak load growth from 2022 to 2026 is estimated at 65.5 MW/year. There are 5 new transmission projects that directly affects the LCR change from 2022 to 2026. Rio Oso 230/115 kV transformer upgrade (July 2022) Rio Oso Area 230 kV Voltage Support (Sept 2022) Both projects inpact years 2023 and 2024, however the impact only relates to the deficiency numbers for certain sub-areas and has no effect on the overall Sierra requirement. There is no new resource that directly affects the LCR change from 2022 to 2026. There is no projected change in resource contractual status that directly affects the LCR change from 2022 to 2026. There is no resource projected to retire that directly affects the LCR change from 2022 to 2026. The total requirement for both year 2023 and 2024 depend on the result for year 2022 only plus an estimated increase of 117.5 MW/year for Category P3. | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW) | |------|-------------|----------|---------------------------------|--|----------| | 2023 | First limit | P6 | Table Mountain –
Pease 60 kV | Table Mountain – Palermo 230 kV
Table Mountain – Rio Oso 230 kV | 1338 | | 2024 | First limit | P6 | Table Mountain –
Pease 60 kV | Table Mountain – Palermo 230 kV
Table Mountain – Rio Oso 230 kV | 1455 | Table 3.4-3 ISO's estimated Sierra LCR need: ### 3.4.19.4 **Stockton Area** The net peak load growth from 2022 to 2026 is estimated at 24.5 MW/year (1.5 MW/year in Lockeford and 23 MW/year in Tesla-Bellota). There are no new transmission project that directly affects the LCR change from 2022 to 2026. There is no projected change in resource contractual status that directly affects the LCR change from 2022 to 2026. There is no resource projected to retire that directly affects the LCR change from 2022 to 2026. The total increase for each intermediate year depends only on the available resources in the Tesla-Bellota sub-area, since this sub-area is deficient in both years. Base on the current load forecast the Lockeford sub-area will only see a need, including a deficiency, for years 2025 and beyond. | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW) | |------|-------------|----------|-------------------|-------------|----------| | 2023 | First Limit | N/A | Stockton Overall | | 562 | | 2024 | First Limit | N/A | Stockton Overall | | 562 | Table 3.4-4 ISO's estimated Stockton LCR need: ### 3.4.19.5 **Bay Area** The net peak load growth from 2022 to 2026 is estimated at 201.25 MW/year. There are 5 new transmission projects that directly affect the LCR change from 2022 to 2026. - Oakland Clean Energy Initiative Project (Aug. 2022) - Metcalf-Piercy & Swift and Newark-Dixon Landing 115 kV Upgrade (Aug. 2022) - Morgan Hill Area Reinforcement (revised scope) (Dec. 2022) All projects impact both years. For both years the TPP project impact is minimal to the Bay Area overall requirement. There are 3 new resources that directly affect the LCR change from 2022 to 2026. About 15 MW of preferred resources (Battery), will be available starting year 2023. These new resources do not change the LCR needs in the Bay Area overall in any significant way. There is no projected change in resource contractual status that directly affects the LCR change from 2022 to 2026. There are two resources projected to retire that directly affects the LCR change from 2022 to 2026. The retirement of the last two Oakland resources in 2023 only does not change the LCR needs in the Bay Area overall in any significant way. The total decrease for each intermediate year depends on the load increase and the study results between years 2022 and 2026 and it is estimated at about 187 MW/year for Category P6. | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW) | |------|-------------|----------|---------------------------------------|---|----------| | 2023 | First limit | P6 | Metcalf 500/230 kV #13
transformer | Metcalf 500/230 kV #11 & #12 transformers | 7418 | | 2024 | First limit | P6 | Metcalf 500/230 kV #13
transformer | Metcalf 500/230 kV #11 & #12 transformers | 7605 | Table 3.4-5 ISO's estimated Bay Area LCR need: #### 3.4.19.6 Fresno Area The net peak load growth from 2022 to 2026 is estimated at 34 MW/year. There are 4 new transmission projects that directly affect the LCR change from 2022 to 2026. - Reedley 70 kV Reinforcement Projects (Dec 2021) - Wilson-Oro Loma 115 kV Line Reconductoring (Dec 2025) - Wilson 115 kV Area Reinforcement (May 2023) Bellota-Warnerville 230 kV Line Reconductoring
(Mar 2024) The first two project impact the 2023 and 2024 LCR needs. The TPP project impact is minimal to both years because none of the projects directly impact the Fresno overall LCR need. There are no new resources that directly affect the LCR change from 2022 to 2026. There is no projected change in resource contractual status that directly affects the LCR change from 2022 to 2026. There is no resource projected to retire that directly affects the LCR change from 2022 to 2026. The total increase for each intermediate year depends on load growth and the study results between years 2022 and 2026 and it is estimated at about 81.75 MW/year for Category P6. | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW) | |------|-------------|----------|----------------------------|--|----------| | 2023 | First limit | P6 | GWF-Contandida 115 kV Line | Panoche-Helm 230 kV Line and
Gates-McCall 230 kV line | 2069 | | 2024 | First limit | P6 | GWF-Contandida 115 kV Line | Panoche-Helm 230 kV Line and Gates-McCall 230 kV line | 2151 | Table 3.4-6 ISO's estimated Fresno LCR need: ### 3.4.19.7 **Kern Area** The net peak load growth from 2022 to 2026 is estimated at 9.5 MW/year. There are no new transmission projects that directly affect the LCR change from 2022 to 2026. There are no new resources that directly affect the LCR change from 2022 to 2026. There is no projected change in resource contractual status that directly affects the LCR change from 2022 to 2026. There is no resource projected to retire that directly affects the LCR change from 2022 to 2026. The total decrease for each intermediate year depends on the load increase and the study results regarding South Kern PP sub-area between years 2022 and 2026 and it is estimated at about 19 MW/year for Category P6. | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW) | |------|-------|----------|-------------------------|-------------|----------| | 2023 | N/A | P6 | Aggregate of Sub-areas. | 375 | | | 2024 | N/A | P6 | Aggregate of Sub-areas. | | 394 | Table 3.4-7 ISO's estimated Kern LCR need: ### 3.4.19.8 Big Creek/Ventura Area The net peak load growth from 2022 to 2026 is estimated at 15.75 MW/year. There are one new transmission project that directly affect the LCR change from 2022 to 2026. The Sylmar-Pardee 230 kV Rating Increase Project influences both year 2023 and 2024 as a step down decrease of LCR needs. There are no new resources that directly affect the LCR change from 2022 to 2026. There is no projected change in resource contractual status that directly affects the LCR change from 2022 to 2026. There are 2 resources projected to retire that directly affects the LCR change from 2022 to 2026. This change will not significantly impact the overall LCR needs. The total LCR requirement for year 2023 and 2024 are only dependent on year 2026 and load growth between years. | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW) | |------|-------------|----------|-------------------------------------|---|----------| | 2023 | First Limit | P6 | Remaining Sylmar -
Pardee 230 kV | Lugo - Victorville 500 kV line followed by one of the Sylmar - Pardee #1 or #2 230 kV lines | 935 | | 2024 | First Limit | P6 | Remaining Sylmar -
Pardee 230 kV | Lugo - Victorville 500 kV line followed by one of the Sylmar - Pardee #1 or #2 230 kV lines | 951 | Table 3.4-8 ISO's estimated Big Creek/Ventura LCR need: ### 3.4.19.9 *LA Basin Area* The net peak load growth from 2022 to 2026 is estimated at 54.25 MW/year. There are no new transmission projects that directly affect the LCR change from 2022 to 2026. There are no new resources that directly affect the LCR change from 2022 to 2026. There is no projected change in resource contractual status that directly affects the LCR change from 2022 to 2026. There are 7 resources projected to retire that directly affect the LCR change from 2022 to 2026. These resources are all projected to retire after 2023 due to OTC compliance dates, however they do not influence in a meaningfull way the change in LCR results between 2023 and 2024. There will be a step function increase in 2023 due to new transmission projects as well as reduction in San Diego-Imperial Valley area needs due to the "S" line upgrade and installation of new more effective resources in San Diego-Imperial Valley, coupled with LA Basin and San Diego load growth. Table 3.4-9 ISO's estimated LA Basin LCR need: | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW) | |------|-----------------|----------|----------------------------|---|----------| | 2023 | First Limit | N/A | Sum of Western and Eastern | See Western and Eastern | 6196 | | 2023 | Second
Limit | P3 | El Centro 230/92 kV | TDM, system readjustment and Imperial Valley–North Gila 500 kV line | 6152 | | 2024 | First Limit | N/A | Sum of Western and Eastern | See Western and Eastern | 6251 | | 2024 | Second
Limit | P3 | El Centro 230/92 kV | TDM, system readjustment and Imperial Valley–North Gila 500 kV line | 6207 | ### 3.4.19.10 San Diego-Imperial Valley Area The net peak load growth from 2022 to 2026 is estimated at 31.75 MW/year. There are 7 new transmission projects that directly affect the LCR change from 2022 to 2026. - TL6906 Mesa Rim rearrangement - Rose Canyon-La Jolla 69 kV T/L upgrade - Imperial Valley-El Centro 230 kV ("S") line upgrade (Dec 2022) - Reconductor of Stuart Tap–Las Pulgas 69 kV line (TL690E) - TL695B Japanese Mesa-Talega Tap reconductor - Artesian 230 kV expansion with 69 kV upgrade - South Orange County Reliability Enhancement Other than the "S" line upgrade the rest of the projects do not meaningfully impact the overall LCR results. Starting 2023 there will be a step function decrease in LCR needs due to the "S" line upgrade. There are 16 new resources that directly affect the LCR change from 2022 to 2026. About 100 MW NQC or 86 MW at peak of new resources are available for both 2023 and 2024. An additional 613 MW NQC or 605 MW at peak of new resources are available in 2024 only. The majority of the new resources available at the time of the peak do change the LCR needs in the San Diego-Imperial Valley area since they are highly effective in mitigating the local need. There is no projected change in resource contractual status that directly affects the LCR change from 2022 to 2026. There is no resource projected to retire that directly affects the LCR change from 2022 to 2026. There will be a step function decrease in 2023 due to new highly effective resources and and new "S" line upgrade transmission project and there will be step function decrease in 2024 due to additional highly effective new resources coupled with LA Basin and San Diego load growth for Category P3. Table 3.4-10 ISO's estimated San Diego-Imperial Valley LCR need: | Year | Limit | Category | Limiting Facility | Contingency | LCR (MW) | |------|-------------|----------|---------------------|---|----------| | 2023 | First Limit | P3 | El Centro 230/92 kV | TDM power plant, system readjustment and Imperial Valley–North Gila 500 kV line | 3540 | | 2024 | First Limit | P3 | El Centro 230/92 kV | TDM power plant, system readjustment and Imperial Valley–North Gila 500 kV line | 3330 | | РТО | MKT/SCHED
RESOURCE ID | BUS# | BUS NAME | kV | NQC | UNIT
ID | LCR AREA
NAME | LCR SUB-AREA
NAME | |------|--------------------------|-------|-----------|------|--------|------------|------------------|-------------------------------------| | PG&E | ALMEGT_1_UNIT 1 | 38118 | ALMDACT1 | 13.8 | 23.40 | 1 | Bay Area | Oakland | | PG&E | ALMEGT_1_UNIT 2 | 38119 | ALMDACT2 | 13.8 | 23.50 | 1 | Bay Area | Oakland | | PG&E | BANKPP_2_NSPIN | 38820 | DELTA A | 13.2 | 11.55 | 1 | Bay Area | Contra Costa | | PG&E | BANKPP_2_NSPIN | 38820 | DELTA A | 13.2 | 11.55 | 2 | Bay Area | Contra Costa | | PG&E | BANKPP_2_NSPIN | 38820 | DELTA A | 13.2 | 11.55 | 3 | Bay Area | Contra Costa | | PG&E | BANKPP_2_NSPIN | 38815 | DELTA B | 13.2 | 11.55 | 4 | Bay Area | Contra Costa | | PG&E | BANKPP_2_NSPIN | 38815 | DELTA B | 13.2 | 11.55 | 5 | Bay Area | Contra Costa | | PG&E | BANKPP_2_NSPIN | 38770 | DELTA C | 13.2 | 11.55 | 6 | Bay Area | Contra Costa | | PG&E | BANKPP_2_NSPIN | 38770 | DELTA C | 13.2 | 11.55 | 7 | Bay Area | Contra Costa | | PG&E | BANKPP_2_NSPIN | 38765 | DELTA D | 13.2 | 11.55 | 8 | Bay Area | Contra Costa | | PG&E | BANKPP_2_NSPIN | 38765 | DELTA D | 13.2 | 11.55 | 9 | Bay Area | Contra Costa | | PG&E | BANKPP_2_NSPIN | 38760 | DELTA E | 13.2 | 11.55 | 10 | Bay Area | Contra Costa | | PG&E | BANKPP_2_NSPIN | 38760 | DELTA E | 13.2 | 11.55 | 11 | Bay Area | Contra Costa | | PG&E | BRDSLD_2_HIWIND | 32172 | HIGHWINDS | 34.5 | 34.02 | 1 | Bay Area | Contra Costa | | PG&E | BRDSLD_2_MTZUM2 | 32179 | MNTZUMA2 | 0.69 | 16.42 | 1 | Bay Area | Contra Costa | | PG&E | BRDSLD_2_MTZUMA | 32188 | HIGHWND3 | 0.69 | 7.73 | 1 | Bay Area | Contra Costa | | PG&E | BRDSLD_2_SHILO1 | 32176 | SHILOH | 34.5 | 31.50 | 1 | Bay Area | Contra Costa | | PG&E | BRDSLD_2_SHILO2 | 32177 | SHILOH 2 | 34.5 | 31.50 | 1 | Bay Area | Contra Costa | | PG&E | BRDSLD_2_SHLO3A | 32191 | SHILOH3 | 0.58 | 21.53 | 1 | Bay Area | Contra Costa | | PG&E | BRDSLD_2_SHLO3B | 32194 | SHILOH4 | 0.58 | 21.00 | 1 | Bay Area | Contra Costa | | PG&E | CALPIN_1_AGNEW | 35860 | OLS-AGNE | 9.11 | 28.56 | 1 | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | CAYTNO_2_VASCO | 30531 | 0162-WD | 230 | 4.30 | FW | Bay Area | Contra Costa | | PG&E | CLRMTK_1_QF | | | | 0.00 | | Bay Area | Oakland | | PG&E | COCOPP_2_CTG1 | 33188 | MARSHCT1 | 16.4 | 190.00 | 1 | Bay Area | Contra Costa | | PG&E | COCOPP_2_CTG2 | 33188 |
MARSHCT2 | 16.4 | 189.21 | 2 | Bay Area | Contra Costa | | PG&E | COCOPP_2_CTG3 | 33189 | MARSHCT3 | 16.4 | 188.50 | 3 | Bay Area | Contra Costa | | PG&E | COCOPP_2_CTG4 | 33189 | MARSHCT4 | 16.4 | 189.89 | 4 | Bay Area | Contra Costa | | 1 | I | İ | I | 1 | | | I | | |------|-----------------|-------|----------|------|--------|---|----------|--| | PG&E | COCOSB_6_SOLAR | | | | 0.00 | | Bay Area | Contra Costa | | PG&E | CROKET_7_UNIT | 32900 | CRCKTCOG | 18 | 211.49 | 1 | Bay Area | Pittsburg | | PG&E | CSCCOG_1_UNIT 1 | 36859 | Laf300 | 12 | 3.00 | 1 | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | CSCCOG_1_UNIT 1 | 36859 | Laf300 | 12 | 3.00 | 2 | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | CSCGNR_1_UNIT 1 | 36858 | Gia100 | 13.8 | 24.00 | 1 | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | CSCGNR_1_UNIT 2 | 36895 | Gia200 | 13.8 | 24.00 | 2 | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | CUMBIA_1_SOLAR | 33102 | COLUMBIA | 0.38 | 5.13 | 1 | Bay Area | Pittsburg | | PG&E | DELTA_2_PL1X4 | 33107 | DEC STG1 | 24 | 269.60 | 1 | Bay Area | Pittsburg | | PG&E | DELTA_2_PL1X4 | 33108 | DEC CTG1 | 18 | 181.13 | 1 | Bay Area | Pittsburg | | PG&E | DELTA_2_PL1X4 | 33109 | DEC CTG2 | 18 | 181.13 | 1 | Bay Area | Pittsburg | | PG&E | DELTA_2_PL1X4 | 33110 | DEC CTG3 | 18 | 181.13 | 1 | Bay Area | Pittsburg | | PG&E | DIXNLD_1_LNDFL | | | | 0.64 | | Bay Area | | | PG&E | DUANE_1_PL1X3 | 36863 | DVRaGT1 | 13.8 | 48.27 | 1 | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | DUANE_1_PL1X3 | 36864 | DVRbGT2 | 13.8 | 48.27 | 1 | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | DUANE_1_PL1X3 | 36865 | DVRaST3 | 13.8 | 46.96 | 1 | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | GATWAY_2_PL1X3 | 33118 | GATEWAY1 | 18 | 180.78 | 1 | Bay Area | Contra Costa | | PG&E | GATWAY_2_PL1X3 | 33119 | GATEWAY2 | 18 | 171.17 | 1 | Bay Area | Contra Costa | | PG&E | GATWAY_2_PL1X3 | 33120 | GATEWAY3 | 18 | 171.17 | 1 | Bay Area | Contra Costa | | PG&E | GILROY_1_UNIT | 35850 | GLRY COG | 13.8 | 69.00 | 1 | Bay Area | Llagas, San Jose,
South Bay-Moss
Landing | | PG&E | GILROY_1_UNIT | 35850 | GLRY COG | 13.8 | 36.00 | 2 | Bay Area | Llagas, San Jose,
South Bay-Moss
Landing | | PG&E | GILRPP_1_PL1X2 | 35851 | GROYPKR1 | 13.8 | 47.60 | 1 | Bay Area | Llagas, San Jose,
South Bay-Moss
Landing | | PG&E | GILRPP_1_PL1X2 | 35852 | GROYPKR2 | 13.8 | 47.60 | 1 | Bay Area | Llagas, San Jose,
South Bay-Moss
Landing | | PG&E | GILRPP_1_PL3X4 | 35853 | GROYPKR3 | 13.8 | 46.20 | 1 | Bay Area | Llagas, San Jose,
South Bay-Moss
Landing | |------|-----------------|-------|-------------|------|--------|---|----------|--| | PG&E | GRZZLY 1 BERKLY | 32741 | HILLSIDE 12 | 12.5 | 14.67 | 1 | Bay Area | | | PG&E | KELSO_2_UNITS | 33813 | MARIPCT1 | 13.8 | 48.09 | 1 | Bay Area | Contra Costa | | PG&E | KELSO_2_UNITS | 33815 | MARIPCT2 | 13.8 | 48.09 | 2 | Bay Area | Contra Costa | | PG&E | KELSO_2_UNITS | 33817 | MARIPCT3 | 13.8 | 48.09 | 3 | Bay Area | Contra Costa | | PG&E | KELSO_2_UNITS | 33819 | MARIPCT4 | 13.8 | 48.09 | 4 | Bay Area | Contra Costa | | PG&E | KIRKER_7_KELCYN | | | | 3.21 | | Bay Area | Pittsburg | | PG&E | LAWRNC_7_SUNYVL | | | | 0.17 | | Bay Area | | | PG&E | LECEF_1_UNITS | 35858 | LECEFST1 | 13.8 | 111.58 | 1 | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | LECEF_1_UNITS | 35854 | LECEFGT1 | 13.8 | 46.49 | 1 | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | LECEF_1_UNITS | 35855 | LECEFGT2 | 13.8 | 46.49 | 1 | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | LECEF_1_UNITS | 35856 | LECEFGT3 | 13.8 | 46.49 | 1 | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | LECEF_1_UNITS | 35857 | LECEFGT4 | 13.8 | 46.49 | 1 | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | LMBEPK_2_UNITA1 | 32173 | LAMBGT1 | 13.8 | 47.50 | 1 | Bay Area | Contra Costa | | PG&E | LMBEPK_2_UNITA2 | 32174 | GOOSEHGT | 13.8 | 47.60 | 2 | Bay Area | Contra Costa | | PG&E | LMBEPK_2_UNITA3 | 32175 | CREEDGT1 | 13.8 | 47.40 | 3 | Bay Area | Contra Costa | | PG&E | LMEC_1_PL1X3 | 33113 | LMECST1 | 18 | 243.71 | 1 | Bay Area | Pittsburg | | PG&E | LMEC_1_PL1X3 | 33111 | LMECCT2 | 18 | 165.41 | 1 | Bay Area | Pittsburg | | PG&E | LMEC_1_PL1X3 | 33112 | LMECCT1 | 18 | 165.41 | 1 | Bay Area | Pittsburg | | PG&E | MARTIN_1_SUNSET | | | | 1.22 | | Bay Area | | | PG&E | METEC_2_PL1X3 | 35883 | MEC STG1 | 18 | 213.13 | 1 | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | METEC_2_PL1X3 | 35881 | MEC CTG1 | 18 | 178.43 | 1 | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | METEC_2_PL1X3 | 35882 | MEC CTG2 | 18 | 178.43 | 1 | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | MISSIX_1_QF | | | | 0.01 | | Bay Area | | | PG&E | MLPTAS_7_QFUNTS | | | | 0.00 | | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | MOSSLD_1_QF | | | | 0.00 | | Bay Area | | |------|-----------------|-------|----------|------|--------|---|----------|---------------------------| | PG&E | MOSSLD_2_PSP1 | 36223 | DUKMOSS3 | 18 | 183.60 | 1 | Bay Area | South Bay-Moss
Landing | | PG&E | MOSSLD_2_PSP1 | 36221 | DUKMOSS1 | 18 | 163.20 | 1 | Bay Area | South Bay-Moss
Landing | | PG&E | MOSSLD_2_PSP1 | 36222 | DUKMOSS2 | 18 | 163.20 | 1 | Bay Area | South Bay-Moss
Landing | | PG&E | MOSSLD_2_PSP2 | 36226 | DUKMOSS6 | 18 | 183.60 | 1 | Bay Area | South Bay-Moss
Landing | | PG&E | MOSSLD_2_PSP2 | 36224 | DUKMOSS4 | 18 | 163.20 | 1 | Bay Area | South Bay-Moss
Landing | | PG&E | MOSSLD_2_PSP2 | 36225 | DUKMOSS5 | 18 | 163.20 | 1 | Bay Area | South Bay-Moss
Landing | | PG&E | NEWARK_1_QF | | | | 0.05 | | Bay Area | | | PG&E | OAK C_1_EBMUD | | | | 1.20 | | Bay Area | Oakland | | PG&E | OAK C_7_UNIT 1 | 32901 | OAKLND 1 | 13.8 | 55.00 | 1 | Bay Area | Oakland | | PG&E | OAK C_7_UNIT 2 | 32902 | OAKLND 2 | 13.8 | 55.00 | 1 | Bay Area | Oakland | | PG&E | OAK C_7_UNIT 3 | 32903 | OAKLND 3 | 13.8 | 0.00 | 1 | Bay Area | Oakland | | PG&E | OAK L_1_GTG1 | | | | 0.00 | | Bay Area | Oakland | | PG&E | OXMTN_6_LNDFIL | 33469 | OX_MTN | 4.16 | 1.47 | 1 | Bay Area | Ames | | PG&E | OXMTN_6_LNDFIL | 33469 | OX_MTN | 4.16 | 1.47 | 2 | Bay Area | Ames | | PG&E | OXMTN_6_LNDFIL | 33469 | OX_MTN | 4.16 | 1.47 | 3 | Bay Area | Ames | | PG&E | OXMTN_6_LNDFIL | 33469 | OX_MTN | 4.16 | 1.47 | 4 | Bay Area | Ames | | PG&E | OXMTN_6_LNDFIL | 33469 | OX_MTN | 4.16 | 1.47 | 5 | Bay Area | Ames | | PG&E | OXMTN_6_LNDFIL | 33469 | OX_MTN | 4.16 | 1.47 | 6 | Bay Area | Ames | | PG&E | OXMTN_6_LNDFIL | 33469 | OX_MTN | 4.16 | 1.47 | 7 | Bay Area | Ames | | PG&E | PALALT_7_COBUG | | | | 4.50 | | Bay Area | | | PG&E | RICHMN_1_CHVSR2 | | | | 2.30 | | Bay Area | | | PG&E | RICHMN_1_SOLAR | | | | 0.54 | | Bay Area | | | PG&E | RICHMN_7_BAYENV | | | | 2.00 | | Bay Area | | | PG&E | RUSCTY_2_UNITS | 35306 | RUSELST1 | 15 | 237.09 | 3 | Bay Area | Ames | |------|--------------------|--------|----------|------|--------|----|----------|-------------------------------------| | PG&E | RUSCTY_2_UNITS | 35304 | RUSELCT1 | 15 | 180.15 | 1 | Bay Area | Ames | | PG&E | RUSCTY_2_UNITS | 35305 | RUSELCT2 | 15 | 180.15 | 2 | Bay Area | Ames | | PG&E | RVRVEW_1_UNITA1 | 33178 | RVEC_GEN | 13.8 | 47.60 | 1 | Bay Area | Contra Costa | | PG&E | SHELRF_1_UNITS | 33142 | SHELL 2 | 12.5 | 10.91 | 1 | Bay Area | Pittsburg | | PG&E | SHELRF_1_UNITS | 33143 | SHELL 3 | 12.5 | 10.91 | 1 | Bay Area | Pittsburg | | PG&E | SHELRF_1_UNITS | 33141 | SHELL 1 | 12.5 | 5.88 | 1 | Bay Area | Pittsburg | | PG&E | SRINTL_6_UNIT | 33468 | SRI INTL | 9.11 | 0.78 | 1 | Bay Area | | | PG&E | STAUFF_1_UNIT | 33139 | STAUFER | 9.11 | 0.01 | 1 | Bay Area | | | PG&E | STOILS_1_UNITS | 32921 | CHEVGEN1 | 13.8 | 2.09 | 1 | Bay Area | Pittsburg | | PG&E | STOILS_1_UNITS | 32922 | CHEVGEN2 | 13.8 | 2.09 | 1 | Bay Area | Pittsburg | | PG&E | STOILS_1_UNITS | 32923 | CHEVGEN3 | 13.8 | 0.97 | 3 | Bay Area | Pittsburg | | PG&E | SWIFT_1_NAS | 35623 | SWIFT | 21 | 3.00 | ВТ | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | TIDWTR_2_UNITS | 33151 | FOSTER W | 12.5 | 4.05 | 1 | Bay Area | Pittsburg | | PG&E | TIDWTR_2_UNITS | 33151 | FOSTER W | 12.5 | 4.05 | 2 | Bay Area | Pittsburg | | PG&E | TIDWTR_2_UNITS | 33151 | FOSTER W | 12.5 | 3.08 | 3 | Bay Area | Pittsburg | | PG&E | UNCHEM_1_UNIT | 32920 | UNION CH | 9.11 | 13.10 | 1 | Bay Area | Pittsburg | | PG&E | UNOCAL_1_UNITS | 32910 | UNOCAL | 12 | 0.02 | 1 | Bay Area | Pittsburg | | PG&E | UNOCAL_1_UNITS | 32910 | UNOCAL | 12 | 0.02 | 2 | Bay Area | Pittsburg | | PG&E | UNOCAL_1_UNITS | 32910 | UNOCAL | 12 | 0.02 | 3 | Bay Area | Pittsburg | | PG&E | USWNDR_2_LABWD1 | | | | 1.89 | | Bay Area | Contra Costa | | PG&E | USWNDR_2_SMUD | 365574 | SOLANO2W | | 18.24 | 2 | Bay Area | Contra Costa | | PG&E | USWNDR_2_SMUD | 365566 | SOLANO1W | | 3.22 | 1 | Bay Area | Contra Costa | | PG&E | USWNDR_2_SMUD2 | 365600 | SOLANO3W | | 26.84 | 3 | Bay Area | Contra Costa | | PG&E | USWPJR_2_UNITS | 39233 | GRNRDG | 0.69 | 16.42 | 1 | Bay Area | Contra Costa | | PG&E | WNDMAS 2 UNIT 1 | 33170 | WINDMSTR | 9.11 | 7.98 | 1 | Bay Area | Contra Costa | | PG&E | ZOND_6_UNIT | 35316 | ZOND SYS | 9.11 | 3.59 | 1 | Bay Area | Contra Costa | | PG&E | ZZ_IBMCTL_1_UNIT 1 | 35637 | IBM-CTLE | 115 | 0.00 | 1 | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | ZZ_IMHOFF_1_UNIT 1 | 33136 | CCCSD | 12.5 | 0.00 | 1 | Bay Area | Pittsburg | | PG&E | ZZ_MARKHM_1_CATLST | 35863 | CATALYST | 9.11 | 0.00 | 1 | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | ZZ_NA | 35861 | SJ-SCL W | 4.3 | 0.00 | 1 | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | ZZ_NA | 36209 | SLD ENRG | 12.5 | 0.00 | 1 | Bay Area | South Bay-Moss
Landing | |------|----------------------------|--------|----------|------|--------|----|----------|-------------------------------------| | PG&E |
ZZ_SEAWST_6_LAPOS | 35312 | FOREBAYW | 22 | 0.00 | 1 | Bay Area | Contra Costa | | PG&E | ZZ_USWPFK_6_FRICK | 35320 | FRICKWND | 12 | 1.90 | 1 | Bay Area | Contra Costa | | PG&E | ZZ_USWPFK_6_FRICK | 35320 | FRICKWND | 12 | 0.00 | 2 | Bay Area | Contra Costa | | PG&E | ZZ_ZANKER_1_UNIT 1 | 35861 | SJ-SCL W | 4.3 | 0.00 | RN | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | ZZZ_New Unit | 30045 | MOSSLAND | 500 | 300.00 | ES | Bay Area | South Bay-Moss
Landing | | PG&E | ZZZ_New Unit | 30755 | MOSSLNSW | 230 | 182.50 | ES | Bay Area | South Bay-Moss
Landing | | PG&E | ZZZ_New Unit | 35646 | MRGN HIL | 115 | 75.00 | ES | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | ZZZ_New Unit | 30522 | 0354-WD | 21 | 1.83 | EW | Bay Area | Contra Costa | | PG&E | ZZZ_New Unit | 365540 | Q1016 | | 0.00 | 1 | Bay Area | | | PG&E | ZZZ_New Unit | 32741 | HILLSIDE | | 0.00 | RN | Bay Area | | | PG&E | ZZZ_New Unit | 365559 | STANFORD | | 0.00 | RN | Bay Area | | | PG&E | ZZZ_New Unit | 35302 | NUMMI-LV | 12.6 | 0.00 | RN | Bay Area | | | PG&E | ZZZ_New Unit | 35859 | HGST-LV | 12.4 | 0.00 | RN | Bay Area | | | PG&E | ZZZ_New Unit | 35307 | A100US-L | 12.6 | 0.00 | RN | Bay Area | | | PG&E | ZZZZZ_METCLF_1_QF | | | | 0.00 | | Bay Area | | | PG&E | ZZZZZ_USWNDR_2_UNITS | 32168 | EXNCO | 9.11 | 0.00 | 1 | Bay Area | Contra Costa | | PG&E | ZZZZZZ_COCOPP_7_UNIT 6 | 33116 | C.COS 6 | 18 | 0.00 | RT | Bay Area | Contra Costa | | PG&E | ZZZZZZ_COCOPP_7_UNIT 7 | 33117 | C.COS 7 | 18 | 0.00 | RT | Bay Area | Contra Costa | | PG&E | ZZZZZZ_CONTAN_1_UNIT | 36856 | CCA100 | 13.8 | 0.00 | 1 | Bay Area | San Jose, South
Bay-Moss Landing | | PG&E | ZZZZZZ_FLOWD1_6_ALTPP
1 | 35318 | FLOWDPTR | 9.11 | 0.00 | 1 | Bay Area | Contra Costa | | PG&E | ZZZZZZ_LFC 51_2_UNIT 1 | 35310 | PPASSWND | 21 | 0.00 | 1 | Bay Area | | | PG&E | ZZZZZZ_MOSSLD_7_UNIT 6 | 36405 | MOSSLND6 | 22 | 0.00 | 1 | Bay Area | South Bay-Moss
Landing | | PG&E | ZZZZZZ_MOSSLD_7_UNIT 7 | 36406 | MOSSLND7 | 22 | 0.00 | 1 | Bay Area | South Bay-Moss
Landing | | | | | | | | | l | l | |------|------------------------|-------|----------|------|-------|----|----------|--| | PG&E | ZZZZZZ_PITTSP_7_UNIT 5 | 33105 | PTSB 5 | 18 | 0.00 | RT | Bay Area | Pittsburg | | PG&E | ZZZZZZ_PITTSP_7_UNIT 6 | 33106 | PTSB 6 | 18 | 0.00 | RT | Bay Area | Pittsburg | | PG&E | ZZZZZZ_PITTSP_7_UNIT 7 | 30000 | PTSB 7 | 20 | 0.00 | RT | Bay Area | Pittsburg | | PG&E | ZZZZZZ_UNTDQF_7_UNITS | 33466 | UNTED CO | 9.11 | 0.00 | 1 | Bay Area | | | PG&E | ADERA_1_SOLAR1 | 34319 | CHWCHLAS | 0.48 | 0.00 | 1 | Fresno | Herndon, Panoche
115 kV, Wilson 115
kV | | PG&E | ADMEST_6_SOLAR | 34315 | ADAMS_E | 12.5 | 0.00 | 1 | Fresno | Herndon | | PG&E | AGRICO_6_PL3N5 | 34608 | AGRICO | 13.8 | 22.69 | 3 | Fresno | Herndon | | PG&E | AGRICO_7_UNIT | 34608 | AGRICO | 13.8 | 43.13 | 4 | Fresno | Herndon | | PG&E | AGRICO_7_UNIT | 34608 | AGRICO | 13.8 | 7.47 | 2 | Fresno | Herndon | | PG&E | AVENAL_6_AVPARK | 34265 | AVENAL P | 12 | 0.00 | 1 | Fresno | Coalinga | | PG&E | AVENAL_6_AVSLR1 | 34691 | AVENAL_1 | 21 | 0.00 | EW | Fresno | Coalinga | | PG&E | AVENAL_6_AVSLR2 | 34691 | AVENAL_1 | 21 | 0.00 | EW | Fresno | Coalinga | | PG&E | AVENAL_6_SANDDG | 34263 | SANDDRAG | 12 | 0.00 | 1 | Fresno | Coalinga | | PG&E | AVENAL_6_SUNCTY | 34257 | SUNCTY D | 12 | 0.00 | 1 | Fresno | Coalinga | | PG&E | BALCHS_7_UNIT 1 | 34624 | BALCH | 13.2 | 31.00 | 1 | Fresno | Herndon | | PG&E | BALCHS_7_UNIT 2 | 34612 | BLCH | 13.8 | 52.50 | 1 | Fresno | Herndon | | PG&E | BALCHS_7_UNIT 3 | 34614 | BLCH | 13.8 | 54.60 | 1 | Fresno | Herndon | | PG&E | CANTUA_1_SOLAR | 34349 | CANTUA_D | 12.5 | 2.70 | 1 | Fresno | Panoche 115 kV | | PG&E | CANTUA_1_SOLAR | 34349 | CANTUA_D | 12.5 | 2.70 | 2 | Fresno | Panoche 115 kV | | PG&E | CHEVCO_6_UNIT 1 | 34652 | CHV.COAL | 9.11 | 2.09 | 1 | Fresno | Coalinga, Panoche
115 kV | | PG&E | CHEVCO_6_UNIT 2 | 34652 | CHV.COAL | 9.11 | 0.85 | 2 | Fresno | Coalinga, Panoche
115 kV | | PG&E | CHWCHL_1_BIOMAS | 34305 | CHWCHLA2 | 13.8 | 9.30 | 1 | Fresno | Herndon, Panoche
115 kV, Wilson 115
kV | | PG&E | CHWCHL_1_UNIT | 34301 | CHOWCOGN | 13.8 | 48.00 | 1 | Fresno | Herndon, Panoche
115 kV, Wilson 115
kV | | PG&E | CORCAN_1_SOLAR1 | 34690 | CORCORAN | 12.5 | 5.40 | FW | Fresno | Herndon, Hanford | | PG&E | CORCAN_1_SOLAR2 | 34692 | CORCORAN | 12.5 | 2.97 | FW | Fresno | Herndon, Hanford | | PG&E | CRESSY_1_PARKER | 34140 | CRESSEY | 115 | 1.29 | | Fresno | | | PG&E | CRNEVL 6 CRNVA | 34634 | CRANEVLY | 12 | 0.00 | 1 | Fresno | Borden | |------|-----------------|-------|-------------|------|--------|---|--------|----------------------------------| | PG&E | CRNEVL 6 SJQN 2 | 34631 | SJ2GEN | 9.11 | 0.01 | 1 | Fresno | Borden | | PG&E | CRNEVL 6 SJQN 3 | 34633 | SJ3GEN | 9.11 | 0.00 | 1 | Fresno | Borden | | PG&E | CURTIS_1_CANLCK | | | | 0.00 | | Fresno | | | PG&E | CURTIS_1_FARFLD | | | | 0.47 | | Fresno | | | PG&E | DAIRLD_1_MD1SL1 | ' | | / | 0.00 | | Fresno | | | PG&E | DAIRLD_1_MD2BM1 | ' | | / | 0.00 | | Fresno | | | PG&E | DINUBA_6_UNIT | 34648 | DINUBA E | 13.8 | 0.00 | 1 | Fresno | Herndon, Reedley | | PG&E | EEKTMN_6_SOLAR1 | 34629 | KETTLEMN | 0.8 | 0.00 | 1 | Fresno | | | PG&E | ELCAP_1_SOLAR |
 | | | 0.00 | | Fresno | | | PG&E | ELNIDP_6_BIOMAS | 34330 | ELNIDO | 13.8 | 9.59 | 1 | Fresno | Panoche 115 kV,
Wilson 115 kV | | PG&E | EXCHEC_7_UNIT 1 | 34306 | EXCHQUER | 13.8 | 90.72 | 1 | Fresno | Panoche 115 kV,
Wilson 115 kV | | PG&E | EXCLSG_1_SOLAR | 34623 | Q678 | 0.5 | 16.20 | 1 | Fresno | Panoche 115 kV | | PG&E | FRESHW_1_SOLAR1 | 34699 | Q529 | 0.39 | 0.00 | 1 | Fresno | Herndon | | PG&E | FRIANT_6_UNITS | 34636 | FRIANTDM | 6.6 | 8.56 | 2 | Fresno | Borden | | PG&E | FRIANT_6_UNITS | 34636 | FRIANTDM | 6.6 | 4.57 | 3 | Fresno | Borden | | PG&E | FRIANT_6_UNITS | 34636 | FRIANTDM | 6.6 | 1.21 | 4 | Fresno | Borden | | PG&E | GIFENS_6_BUGSL1 | 34644 | Q679 | 0.55 | 5.40 | 1 | Fresno | | | PG&E | GIFFEN_6_SOLAR | 34467 | GIFFEN_DIST | 12.5 | 2.70 | 1 | Fresno | Herndon | | PG&E | GIFFEN_6_SOLAR1 | ' | | | 0.00 | 1 | Fresno | Herndon | | PG&E | GUERNS_6_SOLAR | 34463 | GUERNSEY_D2 | | 2.70 | 5 | Fresno | | | PG&E | GUERNS_6_SOLAR | 34461 | GUERNSEY_D1 | 12.5 | 2.70 | 8 | Fresno | | | PG&E | GWFPWR_1_UNITS | 34431 | GWF_HEP1 | 13.8 | 45.30 | 1 | Fresno | Herndon, Hanford | | PG&E | GWFPWR_1_UNITS | 34433 | GWF_HEP2 | 13.8 | 45.30 | 1 | Fresno | Herndon, Hanford | | PG&E | HAASPH_7_PL1X2 | 34610 | HAAS | 13.8 | 72.00 | 1 | Fresno | Herndon | | PG&E | HAASPH_7_PL1X2 | 34610 | HAAS | 13.8 | 72.00 | 2 | Fresno | Herndon | | PG&E | HELMPG_7_UNIT 1 | 34600 | HELMS | 18 | 407.00 | 1 | Fresno | | | PG&E | HELMPG_7_UNIT 2 | 34602 | HELMS | 18 | 407.00 | 2 | Fresno | | | PG&E | HELMPG_7_UNIT 3 | 34604 | HELMS | 18 | 404.00 | 3 | Fresno | | | PG&E | HENRTA_6_SOLAR1 | | | | 0.00 | | Fresno | | | PG&E | HENRTA_6_SOLAR2 | | | | 0.00 | | Fresno | | | PG&E | HENRTA_6_UNITA1 | 34539 | GWF_GT1 | 13.8 | 44.99 | 1 | Fresno | | | PG&E | HENRTA 6 UNITA2 | 34541 | GWF GT2 | 13.8 | 44.89 | 1 | Fresno | | |------|-----------------|-------|-----------|------|--------|----|--------|--| | PG&E | HENRTS_1_SOLAR | 34617 | Q581 | 0.38 | 27.00 | 1 | Fresno | Herndon | | PG&E | HURON_6_SOLAR | 34557 | HURON_DI | 12.5 | 2.70 | 1 | Fresno | Coalinga, Panoche
115 kV | | PG&E | HURON_6_SOLAR | 34557 | HURON_DI | 12.5 | 2.70 | 2 | Fresno | Coalinga, Panoche
115 kV | | PG&E | JAYNE_6_WLSLR | 34639 | WESTLNDS | 0.48 | 0.00 | 1 | Fresno | Coalinga | | PG&E | KANSAS_6_SOLAR | 34666 | KANSASS_S | 12.5 | 0.00 | F | Fresno | | | PG&E | KERKH1_7_UNIT 1 | 34344 | KERCK1-1 | 6.6 | 13.00 | 1 | Fresno | Herndon, Wilson
115 kV | | PG&E | KERKH1_7_UNIT 3 | 34345 | KERCK1-3 | 6.6 | 12.80 | 3 | Fresno | Herndon, Wilson
115 kV | | PG&E | KERKH2_7_UNIT 1 | 34308 | KERCKHOF | 13.8 | 153.90 | 1 | Fresno | Herndon, Wilson
115 kV | | PG&E | KERMAN_6_SOLAR1 | | | | 0.00 | | Fresno | | | PG&E | KERMAN_6_SOLAR2 | | | | 0.00 | | Fresno | | | PG&E | KINGCO_1_KINGBR | 34642 | KINGSBUR | 9.11 | 34.50 | 1 | Fresno | Herndon, Hanford | | PG&E | KINGRV_7_UNIT 1 | 34616 | KINGSRIV | 13.8 | 51.20 | 1 | Fresno | Herndon, Reedley | | PG&E | KNGBRG_1_KBSLR1 | | | | 0.00 | | Fresno | | | PG&E | KNGBRG_1_KBSLR2 | | | | 0.00 | | Fresno | | | PG&E | KNTSTH_6_SOLAR | 34694 | KENT_S | 8.0 | 0.00 | 1 | Fresno | | | PG&E | LEPRFD_1_KANSAS | 34680 | KANSAS | 12.5 | 5.40 | 1 | Fresno | Herndon, Hanford | | PG&E | MALAGA_1_PL1X2 | 34671 | KRCDPCT1 | 13.8 | 48.00 | 1 | Fresno | Herndon | | PG&E | MALAGA_1_PL1X2 | 34672 | KRCDPCT2 | 13.8 | 48.00 | 1 | Fresno | Herndon | | PG&E | MCCALL_1_QF | 34219 | MCCALL 4 | 12.5 | 0.65 | QF | Fresno | Herndon | | PG&E | MCSWAN_6_UNITS | 34320 | MCSWAIN | 9.11 | 9.60 | 1 | Fresno | Panoche 115 kV,
Wilson 115 kV | | PG&E | MENBIO_6_RENEW1 | 34339 | CALRENEW | 12.5 | 1.35 | 1 | Fresno | Herndon, Panoche
115 kV, Wilson 115
kV | | PG&E | MERCED_1_SOLAR1 | | | | 0.00 | | Fresno | | | PG&E | MERCED_1_SOLAR2 | | | | 0.00 | | Fresno | | | PG&E | MERCFL_6_UNIT | 34322 | MERCEDFL | 9.11 | 3.36 | 1 | Fresno | Panoche 115 kV,
Wilson 115 kV | |------|-----------------|-------|-------------|------|-------|----|--------|----------------------------------| | PG&E | MNDOTA_1_SOLAR1 | 34313 | NORTHSTA | 0.2 | 16.20 | 1 | Fresno | Panoche 115 kV,
Wilson 115 kV | | PG&E | MNDOTA_1_SOLAR2 | | | | 0.00 | | Fresno | | | PG&E | MSTANG_2_SOLAR | 34683 | Q643W | 8.0 | 8.10 | 1 | Fresno | | | PG&E | MSTANG_2_SOLAR3 | 34683 | Q643W | 8.0 | 10.80 | 1 | Fresno | | | PG&E | MSTANG_2_SOLAR4 | 34683 | Q643W | 8.0 | 8.10 | 1 | Fresno | | | PG&E | ONLLPP_6_UNITS | 34316 | ONEILPMP | 9.11 | 12.12 | 1 | Fresno | | | PG&E | OROLOM_1_SOLAR1 | 34689 | ORO LOMA_3 | 12.5 | 0.00 | EW | Fresno | Panoche 115 kV | | PG&E | OROLOM_1_SOLAR2 | 34689 | ORO LOMA_3 | 12.5 | 0.00 | EW | Fresno | Panoche 115 kV |
| PG&E | ORTGA_6_ME1SL1 | | | | 0.00 | | Fresno | | | PG&E | PAIGES_6_SOLAR | 34653 | Q526 | 0.55 | 0.00 | 1 | Fresno | Coalinga, Panoche
115 kV | | PG&E | PINFLT_7_UNITS | 38720 | PINEFLAT | 13.8 | 32.63 | 1 | Fresno | Herndon | | PG&E | PINFLT_7_UNITS | 38720 | PINEFLAT | 13.8 | 32.63 | 2 | Fresno | Herndon | | PG&E | PINFLT_7_UNITS | 38720 | PINEFLAT | 13.8 | 32.63 | 3 | Fresno | Herndon | | PG&E | PNCHPP_1_PL1X2 | 34328 | STARGT1 | 13.8 | 54.18 | 1 | Fresno | Panoche 115 kV | | PG&E | PNCHPP_1_PL1X2 | 34329 | STARGT2 | 13.8 | 54.18 | 2 | Fresno | Panoche 115 kV | | PG&E | PNOCHE_1_PL1X2 | 34142 | WHD_PAN2 | 13.8 | 49.97 | 1 | Fresno | Herndon, Panoche
115 kV | | PG&E | PNOCHE_1_UNITA1 | 34186 | DG_PAN1 | 13.8 | 52.01 | 1 | Fresno | Panoche 115 kV | | PG&E | REEDLY_6_SOLAR | | | | 0.00 | | Fresno | Herndon, Reedley | | PG&E | S_RITA_6_SOLAR1 | | | | 0.00 | | Fresno | | | PG&E | SCHNDR_1_FIVPTS | 34353 | SCHINDLER_D | 12.5 | 2.70 | 1 | Fresno | Coalinga, Panoche
115 kV | | PG&E | SCHNDR_1_FIVPTS | 34353 | SCHINDLER_D | 12.5 | 1.35 | 2 | Fresno | Coalinga, Panoche
115 kV | | PG&E | SCHNDR_1_OS2BM2 | | | | 0.00 | | Fresno | Coalinga | | PG&E | SCHNDR_1_WSTSDE | 34353 | SCHINDLER_D | 12.5 | 2.70 | 3 | Fresno | Coalinga, Panoche
115 kV | | PG&E | SCHNDR_1_WSTSDE | 34353 | SCHINDLER_D | 12.5 | 1.35 | 4 | Fresno | Coalinga, Panoche
115 kV | | PG&E | SGREGY_6_SANGER | 34646 | SANGERCO | 13.8 | 38.77 | 1 | Fresno | Herndon | | PG&E | SGREGY_6_SANGER | 34646 | SANGERCO | 13.8 | 9.31 | 2 | Fresno | Herndon | | PG&E | STOREY 2 MDRCH2 | 34253 | BORDEN D | 12.5 | 0.28 | | Fresno | | |------|--------------------|--------|------------------|------|-------|----|--------|-----------------------------| | | | 0.200 | | | 0.20 | | | | | PG&E | STOREY_2_MDRCH3 | 34253 | BORDEN D | 12.5 | 0.19 | | Fresno | | | PG&E | STOREY_2_MDRCH4 | 34253 | BORDEN D | 12.5 | 0.20 | | Fresno | | | PG&E | STOREY_7_MDRCHW | 34209 | STOREY D | 12.5 | 0.82 | 1 | Fresno | | | PG&E | STROUD_6_SOLAR | 34563 | STROUD_D | 12.5 | 2.70 | 1 | Fresno | Herndon | | PG&E | STROUD_6_SOLAR | 34563 | STROUD_D | 12.5 | 2.70 | 2 | Fresno | Herndon | | PG&E | STROUD_6_WWHSR1 | | | | 0.00 | | Fresno | Herndon | | PG&E | SUMWHT_6_SWSSR1 | | | | 5.00 | | Fresno | | | PG&E | TRNQL8_2_AMASR1 | 365514 | Q1032G1 | 0.55 | 5.40 | 1 | Fresno | | | PG&E | TRNQL8 2 AZUSR1 | 365517 | Q1032G2 | 0.55 | 5.40 | 2 | Fresno | | | PG&E | TRNQL8_2_ROJSR1 | 365520 | Q1032G3 | 0.55 | 8.10 | 3 | Fresno | | | PG&E | TRNQL8_2_VERSR1 | 365520 | Q1032G3 | 0.55 | 0.00 | 3 | Fresno | | | PG&E | TRNQLT_2_SOLAR | 34340 | Q643X | 0.8 | 54.00 | 1 | Fresno | | | PG&E | ULTPFR 1 UNIT 1 | 34640 | ULTR.PWR | 9.11 | 24.07 | 1 | Fresno | Herndon | | PG&E | VEGA_6_SOLAR1 | 34314 | VEGA | 34.5 | 0.00 | 1 | Fresno | | | PG&E | WAUKNA_1_SOLAR | 34696 | CORCORANPV
_S | 21 | 5.40 | 1 | Fresno | Herndon, Hanford | | PG&E | WAUKNA_1_SOLAR2 | 34677 | Q558 | 21 | 5.33 | 1 | Fresno | Herndon, Hanford | | PG&E | WFRESN_1_SOLAR | | | | 0.00 | | Fresno | | | PG&E | WHITNY_6_SOLAR | 34673 | Q532 | 0.55 | 0.00 | 1 | Fresno | Coalinga, Panoche
115 kV | | PG&E | WISHON_6_UNITS | 34658 | WISHON | 2.3 | 4.51 | 1 | Fresno | Borden | | PG&E | WISHON_6_UNITS | 34658 | WISHON | 2.3 | 4.51 | 2 | Fresno | Borden | | PG&E | WISHON_6_UNITS | 34658 | WISHON | 2.3 | 4.51 | 3 | Fresno | Borden | | PG&E | WISHON_6_UNITS | 34658 | WISHON | 2.3 | 4.51 | 4 | Fresno | Borden | | PG&E | WISHON_6_UNITS | 34658 | WISHON | 2.3 | 0.36 | SJ | Fresno | Borden | | PG&E | WOODWR_1_HYDRO | | | | 0.00 | | Fresno | | | PG&E | WRGHTP_7_AMENGY | 34207 | WRIGHT D | 12.5 | 0.53 | QF | Fresno | | | PG&E | ZZ_BORDEN_2_QF | 34253 | BORDEN D | 12.5 | 1.30 | QF | Fresno | | | PG&E | ZZ_BULLRD_7_SAGNES | 34213 | BULLD 12 | 12.5 | 0.06 | 1 | Fresno | Herndon | | PG&E | ZZ_JRWOOD_1_UNIT 1 | 34332 | JRWCOGEN | 9.11 | 0.00 | 1 | Fresno | | | PG&E | ZZ_KERKH1_7_UNIT 2 | 34343 | KERCK1-2 | 6.6 | 8.50 | 2 | Fresno | Herndon, Wilson
115 kV | |------|---------------------------|--------|-------------|------|--------|----|--------|----------------------------------| | PG&E | ZZ_NA | 34485 | FRESNOWW | 12.5 | 0.10 | 2 | Fresno | | | PG&E | ZZ_NA | 34485 | FRESNOWW | 12.5 | 0.00 | 1 | Fresno | | | PG&E | ZZ_NA | 34485 | FRESNOWW | 12.5 | 0.00 | 3 | Fresno | | | PG&E | ZZ_New Unit | 34651 | JACALITO-LV | 0.55 | 1.22 | RN | Fresno | | | PG&E | ZZZ_New Unit | 365697 | Q1158B | 0.36 | 300.00 | 1 | Fresno | | | PG&E | ZZZ_New Unit | 365524 | Q1036SPV | 0.36 | 41.42 | 1 | Fresno | | | PG&E | ZZZ_New Unit | 34688 | Q272 | 0.36 | 33.21 | 1 | Fresno | | | PG&E | ZZZ_New Unit | 365675 | Q1128-5S | 0.36 | 13.50 | 1 | Fresno | Panoche 115 kV,
Wilson 115 kV | | PG&E | ZZZ_New Unit | 365673 | Q1128-4S | 0.36 | 13.50 | 1 | Fresno | Panoche 115 kV,
Wilson 115 kV | | PG&E | ZZZ_New Unit | 34335 | Q723 | 0.32 | 13.50 | 1 | Fresno | Borden | | PG&E | ZZZ_New Unit | 365604 | Q1028Q10 | 0.36 | 5.40 | 1 | Fresno | Panoche 115 kV,
Wilson 115 kV | | PG&E | ZZZ_New Unit | 365663 | Q1127SPV | 0.36 | 5.40 | 1 | Fresno | Panoche 115 kV,
Wilson 115 kV | | PG&E | ZZZ_New Unit | 365504 | Q632BSPV | 0.55 | 5.00 | 1 | Fresno | | | PG&E | ZZZ_New Unit | 34649 | Q965SPV | 0.36 | 3.65 | 1 | Fresno | Herndon | | PG&E | ZZZ_New Unit | 365694 | Q1158S | 0.36 | 0.00 | 1 | Fresno | | | PG&E | ZZZ_New Unit | 34603 | JGBSWLT | 12.5 | 0.00 | ST | Fresno | Herndon | | PG&E | ZZZZZ_CAPMAD_1_UNIT 1 | 34179 | MADERA_G | 13.8 | 0.00 | RT | Fresno | | | PG&E | ZZZZZ_COLGA1_6_SHELL
W | 34654 | COLNGAGN | 9.11 | 0.00 | 1 | Fresno | Coalinga | | PG&E | ZZZZZ_GATES_6_PL1X2 | 34553 | WHD_GAT2 | 13.8 | 0.00 | RT | Fresno | Coalinga | | PG&E | ZZZZZ_INTTRB_6_UNIT | 34342 | INT.TURB | 9.11 | 0.00 | 1 | Fresno | | | PG&E | ZZZZZ_MENBIO_6_UNIT | 34334 | BIO PWR | 9.11 | 0.00 | 1 | Fresno | Panoche 115 kV,
Wilson 115 kV | |------|-----------------------|-------|-----------|------|-------|----|----------|----------------------------------| | PG&E | BRDGVL_7_BAKER | | | | 0.00 | | Humboldt | | | PG&E | FAIRHV_6_UNIT | 31150 | FAIRHAVN | 13.8 | 12.65 | 1 | Humboldt | | | PG&E | FTSWRD_6_TRFORK | | | | 0.15 | | Humboldt | | | PG&E | FTSWRD_7_QFUNTS | | | | 0.00 | | Humboldt | | | PG&E | GRSCRK_6_BGCKWW | | | | 0.00 | | Humboldt | | | PG&E | HUMBPP_1_UNITS3 | 31180 | HUMB_G1 | 13.8 | 16.69 | 3 | Humboldt | | | PG&E | HUMBPP_1_UNITS3 | 31180 | HUMB_G1 | 13.8 | 16.32 | 1 | Humboldt | | | PG&E | HUMBPP_1_UNITS3 | 31180 | HUMB_G1 | 13.8 | 16.22 | 4 | Humboldt | | | PG&E | HUMBPP_1_UNITS3 | 31180 | HUMB_G1 | 13.8 | 15.85 | 2 | Humboldt | | | PG&E | HUMBPP_6_UNITS | 31182 | HUMB_G3 | 13.8 | 16.62 | 8 | Humboldt | | | PG&E | HUMBPP_6_UNITS | 31181 | HUMB_G2 | 13.8 | 16.33 | 6 | Humboldt | | | PG&E | HUMBPP_6_UNITS | 31182 | HUMB_G3 | 13.8 | 16.33 | 9 | Humboldt | | | PG&E | HUMBPP_6_UNITS | 31181 | HUMB_G2 | 13.8 | 16.24 | 7 | Humboldt | | | PG&E | HUMBPP_6_UNITS | 31181 | HUMB_G2 | 13.8 | 16.14 | 5 | Humboldt | | | PG&E | HUMBPP_6_UNITS | 31182 | HUMB_G3 | 13.8 | 15.95 | 10 | Humboldt | | | PG&E | HUMBSB_1_QF | | | | 0.00 | | Humboldt | | | PG&E | KEKAWK_6_UNIT | 31166 | KEKAWAK | 9.1 | 0.00 | 1 | Humboldt | | | PG&E | LAPAC_6_UNIT | 31158 | LP SAMOA | 12.5 | 0.00 | 1 | Humboldt | | | PG&E | LOWGAP_1_SUPHR | | | | 0.00 | | Humboldt | | | PG&E | PACLUM_6_UNIT | 31152 | PAC.LUMB | 13.8 | 5.82 | 1 | Humboldt | | | PG&E | PACLUM_6_UNIT | 31152 | PAC.LUMB | 13.8 | 5.82 | 2 | Humboldt | | | PG&E | PACLUM_6_UNIT | 31153 | PAC.LUMB | 2.4 | 3.49 | 3 | Humboldt | | | PG&E | ZZZZZ_BLULKE_6_BLUELK | 31156 | BLUELKPP | 12.5 | 0.00 | 1 | Humboldt | | | PG&E | 7STDRD_1_SOLAR1 | 35065 | 7STNDRD_1 | 21 | 5.40 | FW | Kern | South Kern PP,
Kern Oil | | PG&E | ADOBEE_1_SOLAR | 35021 | Q622B | 34.5 | 5.40 | 1 | Kern | South Kern PP | | PG&E | BDGRCK_1_UNITS | 35029 | BADGERCK | 13.8 | 40.20 | 1 | Kern | South Kern PP | | PG&E | BEARMT_1_UNIT | 35066 | PSE-BEAR | 13.8 | 44.00 | 1 | Kern | South Kern PP,
Westpark | | | | | 1 | | | | 1 | l I | |------|-----------------|--------|----------|------|-------|---|------|----------------------------------| | PG&E | BKRFLD_2_SOLAR1 | | | | 0.37 | | Kern | South Kern PP | | PG&E | DEXZEL_1_UNIT | 35024 | DEXEL + | 13.8 | 17.78 | 1 | Kern | South Kern PP,
Kern Oil | | PG&E | DISCOV_1_CHEVRN | 35062 | DISCOVRY | 13.8 | 2.58 | 1 | Kern | South Kern PP,
Kern Oil | | PG&E | DOUBLC_1_UNITS | 35023 | DOUBLE C | 13.8 | 49.50 | 1 | Kern | South Kern PP | | PG&E | KERNFT_1_UNITS | 35026 | KERNFRNT | 9.11 | 48.60 | 1 | Kern | South Kern PP | | PG&E | LAMONT_1_SOLAR1 | 35019 | REGULUS | 0.4 | 16.20 | 1 | Kern | South Kern PP,
Kern PWR-Tevis | | PG&E | LAMONT_1_SOLAR2 | 35092 | Q744G4 | 0.38 | 5.40 | 1 | Kern | South Kern PP,
Kern PWR-Tevis | | PG&E | LAMONT_1_SOLAR3 | 35087 | Q744G3 | 0.4 | 4.05 | 3 | Kern | South Kern PP,
Kern PWR-Tevis | | PG&E | LAMONT_1_SOLAR4 | 35059 | Q744G2 | 0.4 | 21.38 | 2 | Kern | South Kern PP,
Kern PWR-Tevis | | PG&E | LAMONT_1_SOLAR5 | 35054 | Q744G1 | 0.4 | 4.50 | 1 | Kern | South Kern PP,
Kern PWR-Tevis | | PG&E | LIVOAK_1_UNIT 1 | 35058 | PSE-LVOK | 9.1 | 42.50 | 1 | Kern | South Kern PP,
Kern Oil | | PG&E | MAGUND_1_BKISR1 | | | | 0.27 | | Kern | South Kern PP,
Kern Oil | | PG&E | MAGUND_1_BKSSR2 | | | | 1.42 | | Kern | South Kern PP,
Kern Oil | | PG&E | MTNPOS_1_UNIT | 35036 | MT POSO | 13.8 | 34.35 | 1 | Kern | South Kern PP,
Kern Oil | | PG&E | OLDRIV_6_BIOGAS | | | | 1.69 | | Kern | South Kern PP,
Kern 70 kV | | PG&E | OLDRIV_6_CESDBM | | | | 0.90 | | Kern | South Kern PP,
Kern 70 kV | | PG&E | OLDRIV_6_LKVBM1 | | | | 0.91 | | Kern | South Kern PP,
Kern 70 kV | | PG&E | OLDRV1_6_SOLAR | 35091 | OLD_RVR1 | 12.5 | 5.40 | 1 | Kern | South Kern PP,
Kern 70 kV | | PG&E | SIERRA_1_UNITS | 35027 | HISIERRA | 9.11 | 49.57 | 1 | Kern | South Kern PP | | PG&E | SKERN_6_SOLAR1 | 35089 | S_KERN | 0.48 | 5.40 | 1 | Kern | South Kern PP,
Kern 70 kV | | PG&E | SKERN_6_SOLAR2 | 365563 | Q885 | 0.36 | 2.70 | 1 | Kern |
South Kern PP,
Kern 70 kV | | PG&E | VEDDER_1_SEKERN | 35046 | SEKR | 9.11 | 2.19 | 1 | Kern | South Kern PP,
Kern Oil | |------|-----------------------|-------|----------|------|-------|----|------|------------------------------| | PG&E | ZZZZZ_KRNCNY_6_UNIT | 35018 | KERNCNYN | 11 | 0.00 | 1 | Kern | South Kern PP,
Kern 70 kV | | PG&E | ZZZZZ_OILDAL_1_UNIT 1 | 35028 | OILDALE | 9.11 | 0.00 | RT | Kern | South Kern PP,
Kern Oil | | PG&E | ZZZZZ_RIOBRV_6_UNIT 1 | 35020 | RIOBRAVO | 9.1 | 0.00 | 1 | Kern | South Kern PP,
Kern 70 kV | | PG&E | ZZZZZ_ULTOGL_1_POSO | 35035 | ULTR PWR | 9.11 | 0.00 | 1 | Kern | South Kern PP,
Kern Oil | | PG&E | ADLIN_1_UNITS | 31435 | GEO.ENGY | 9.1 | 8.00 | 1 | NCNB | Eagle Rock, Fulton | | PG&E | ADLIN_1_UNITS | 31435 | GEO.ENGY | 9.1 | 8.00 | 2 | NCNB | Eagle Rock, Fulton | | PG&E | CLOVDL_1_SOLAR | | | | 0.41 | | NCNB | Eagle Rock, Fulton | | PG&E | CSTOGA_6_LNDFIL | | | | 0.00 | | NCNB | Fulton | | PG&E | FULTON_1_QF | | | | 0.06 | | NCNB | Fulton | | PG&E | GEYS11_7_UNIT11 | 31412 | GEYSER11 | 13.8 | 68.00 | 1 | NCNB | Eagle Rock, Fulton | | PG&E | GEYS12_7_UNIT12 | 31414 | GEYSER12 | 13.8 | 50.00 | 1 | NCNB | Fulton | | PG&E | GEYS13_7_UNIT13 | 31416 | GEYSER13 | 13.8 | 56.00 | 1 | NCNB | | | PG&E | GEYS14_7_UNIT14 | 31418 | GEYSER14 | 13.8 | 50.00 | 1 | NCNB | Fulton | | PG&E | GEYS16_7_UNIT16 | 31420 | GEYSER16 | 13.8 | 49.00 | 1 | NCNB | Fulton | | PG&E | GEYS17_2_BOTRCK | | | | 8.23 | 1 | NCNB | Fulton | | PG&E | GEYS17_7_UNIT17 | 31422 | GEYSER17 | 13.8 | 56.00 | 1 | NCNB | Fulton | | PG&E | GEYS18_7_UNIT18 | 31424 | GEYSER18 | 13.8 | 45.00 | 1 | NCNB | | | PG&E | GEYS20_7_UNIT20 | 31426 | GEYSER20 | 13.8 | 40.00 | 1 | NCNB | | | PG&E | GYS5X6_7_UNITS | 31406 | GEYSR5-6 | 13.8 | 42.50 | 1 | NCNB | Eagle Rock, Fulton | | PG&E | GYS5X6_7_UNITS | 31406 | GEYSR5-6 | 13.8 | 42.50 | 2 | NCNB | Eagle Rock, Fulton | | PG&E | GYS7X8_7_UNITS | 31408 | GEYSER78 | 13.8 | 38.00 | 1 | NCNB | Eagle Rock, Fulton | | PG&E | GYS7X8_7_UNITS | 31408 | GEYSER78 | 13.8 | 38.00 | 2 | NCNB | Eagle Rock, Fulton | | PG&E | GYSRVL_7_WSPRNG | | | | 1.48 | | NCNB | Fulton | | PG&E | HILAND_7_YOLOWD | | | | 0.00 | | NCNB | Eagle Rock, Fulton | | PG&E | IGNACO_1_QF | | | | 0.01 | | NCNB | | | PG&E | INDVLY_1_UNITS | 31436 | INDIAN V | 9.1 | 0.79 | 1 | NCNB | Eagle Rock, Fulton | | PG&E | MONTPH_7_UNITS | 32700 | MONTICLO | 9.1 | 3.11 | 1 | NCNB | Fulton | | PG&E | MONTPH 7 UNITS | 32700 | MONTICLO | 9.1 | 3.11 | 2 | NCNB | Fulton | |------|----------------------------|-------|----------|------|--------|------|--------|---------------------------------------| | PG&E | MONTPH_7_UNITS | 32700 | MONTICLO | 9.1 | 0.93 | 3 | NCNB | Fulton | | PG&E | NCPA_7_GP1UN1 | 38106 | NCPA1GY1 | 13.8 | 31.00 | 1 | NCNB | | | PG&E | NCPA_7_GP1UN2 | 38108 | NCPA1GY2 | 13.8 | 28.00 | 1 | NCNB | | | PG&E | NCPA_7_GP2UN3 | 38110 | NCPA2GY1 | 13.8 | 0.00 | 1 | NCNB | Fulton | | PG&E | NCPA_7_GP2UN4 | 38112 | NCPA2GY2 | 13.8 | 52.73 | 1 | NCNB | Fulton | | PG&E | NOVATO_6_LNDFL | | | | 3.56 | | NCNB | | | PG&E | POTTER_6_UNITS | 31433 | POTTRVLY | 2.4 | 1.32 | 1 | NCNB | Eagle Rock, Fulton | | PG&E | POTTER_6_UNITS | 31433 | POTTRVLY | 2.4 | 0.60 | 3 | NCNB | Eagle Rock, Fulton | | PG&E | POTTER_6_UNITS | 31433 | POTTRVLY | 2.4 | 0.60 | 4 | NCNB | Eagle Rock, Fulton | | PG&E | POTTER_7_VECINO | | | | 0.01 | | NCNB | Eagle Rock, Fulton | | PG&E | SANTFG_7_UNITS | 31400 | SANTA FE | 13.8 | 31.50 | 1 | NCNB | | | PG&E | SANTFG_7_UNITS | 31400 | SANTA FE | 13.8 | 31.50 | 2 | NCNB | | | PG&E | SMUDGO_7_UNIT 1 | 31430 | SMUDGEO1 | 13.8 | 47.00 | 1 | NCNB | | | PG&E | SNMALF_6_UNITS | 31446 | SONMA LF | 9.1 | 3.12 | 1 | NCNB | Fulton | | PG&E | UKIAH_7_LAKEMN | 38020 | CITY UKH | 115 | 1.21 | 2 | NCNB | Eagle Rock, Fulton | | PG&E | UKIAH_7_LAKEMN | 38020 | CITY UKH | 115 | 0.49 | 1 | NCNB | Eagle Rock, Fulton | | PG&E | ZZZZZ_BEARCN_2_UNITS | 31402 | BEAR CAN | 13.8 | 0.00 | 1 | NCNB | Fulton | | PG&E | ZZZZZ_BEARCN_2_UNITS | 31402 | BEAR CAN | 13.8 | 0.00 | 2 | NCNB | Fulton | | PG&E | ZZZZZ_WDFRDF_2_UNITS | 31404 | WEST FOR | 13.8 | 0.00 | 1 | NCNB | Fulton | | PG&E | ZZZZZ_WDFRDF_2_UNITS | 31404 | WEST FOR | 13.8 | 0.00 | 2 | NCNB | Fulton | | PG&E | ZZZZZZ_GEYS17_2_BOTRC
K | 31421 | BOTTLERK | 13.8 | 0.00 | 1 | NCNB | Fulton | | PG&E | ALLGNY_6_HYDRO1 | | | | 0.03 |
 | Sierra | | | PG&E | APLHIL_1_SLABCK | | | | 0.00 | 1 | Sierra | South of Rio Oso,
South of Palermo | | PG&E | BANGOR_6_HYDRO | | | | 1.00 |
 | Sierra | | | PG&E | BELDEN_7_UNIT 1 | 31784 | BELDEN | 13.8 | 119.00 | 1 | Sierra | South of Palermo | | PG&E | BIOMAS_1_UNIT 1 | 32156 | WOODLAND | 9.11 | 24.31 | 1 | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | BNNIEN_7_ALTAPH | 32376 | BONNIE N | 60 | 0.68 | | Sierra | Placer, Gold Hill-
Drum, Drum-Rio
Oso, South of Rio
Oso, South of
Palermo | |------|-----------------|-------|----------|------|--------|---|--------|---| | PG&E | BOGUE_1_UNITA1 | 32451 | FREC | 13.8 | 47.60 | 1 | Sierra | Bogue, Drum-Rio
Oso | | PG&E | BOWMN_6_HYDRO | 32480 | BOWMAN | 9.11 | 2.54 | 1 | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | BUCKCK_2_HYDRO | | | | 0.04 | | Sierra | South of Palermo | | PG&E | BUCKCK_7_OAKFLT | | | | 1.30 | | Sierra | South of Palermo | | PG&E | BUCKCK_7_PL1X2 | 31820 | BCKS CRK | 11 | 30.63 | 1 | Sierra | South of Palermo | | PG&E | BUCKCK_7_PL1X2 | 31820 | BCKS CRK | 11 | 26.62 | 2 | Sierra | South of Palermo | | PG&E | CAMPFW_7_FARWST | 32470 | CMP.FARW | 9.11 | 2.90 | 1 | Sierra | | | PG&E | CHICPK_7_UNIT 1 | 32462 | CHI.PARK | 11.5 | 42.00 | 1 | Sierra | Placer, Gold Hill-
Drum, Drum-Rio
Oso, South of Rio
Oso, South of
Palermo | | PG&E | COLGAT_7_UNIT 1 | 32450 | COLGATE1 | 13.8 | 161.65 | 1 | Sierra | | | PG&E | COLGAT_7_UNIT 2 | 32452 | COLGATE2 | 13.8 | 161.68 | 1 | Sierra | | | PG&E | CRESTA_7_PL1X2 | 31812 | CRESTA | 11.5 | 35.54 | 2 | Sierra | South of Palermo | | PG&E | CRESTA_7_PL1X2 | 31812 | CRESTA | 11.5 | 34.86 | 1 | Sierra | South of Palermo | | PG&E | DAVIS_1_SOLAR1 | | | | 0.00 | | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | DAVIS_1_SOLAR2 | | | | 0.00 | | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | DAVIS_7_MNMETH | | | | 1.76 | | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | DEADCK_1_UNIT | 31862 | DEADWOOD | 9.11 | 0.00 | 1 | Sierra | Drum-Rio Oso | | PG&E | DEERCR_6_UNIT 1 | 32474 | DEER CRK | 9.11 | 2.98 | 1 | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | DRUM_7_PL1X2 | 32504 | DRUM 1-2 | 6.6 | 13.00 | 1 | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | DRUM_7_PL1X2 | 32504 | DRUM 1-2 | 6.6 | 13.00 | 2 | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | DRUM_7_PL3X4 | 32506 | DRUM 3-4 | 6.6 | 15.64 | 2 | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | DRUM_7_PL3X4 | 32506 | DRUM 3-4 | 6.6 | 13.26 | 1 | Sierra | Drum-Rio Oso,
South of Palermo | |------|-----------------|-------|----------|------|-------|---|--------|---| | PG&E | DRUM_7_UNIT 5 | 32454 | DRUM 5 | 13.8 | 50.00 | 1 | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | DUTCH1_7_UNIT 1 | 32464 | DTCHFLT1 | 11 | 22.00 | 1 | Sierra | Placer, Gold Hill-
Drum, Drum-Rio
Oso, South of Rio
Oso, South of
Palermo | | PG&E | DUTCH2_7_UNIT 1 | 32502 | DTCHFLT2 | 6.9 | 26.00 | 1 | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | ELDORO_7_UNIT 1 | 32513 | ELDRADO1 | 21.6 | 11.00 | 1 | Sierra | Gold Hill-Drum,
South of Rio Oso,
South of Palermo | | PG&E | ELDORO_7_UNIT 2 | 32514 | ELDRADO2 | 21.6 | 11.00 | 1 | Sierra | Gold Hill-Drum,
South of Rio Oso,
South of Palermo | | PG&E | FMEADO_6_HELLHL | 32486 | HELLHOLE | 9.11 | 0.43 | 1 | Sierra | South of Rio Oso,
South of Palermo | | PG&E | FMEADO_7_UNIT | 32508 | FRNCH MD | 4.2 | 16.00 | 1 | Sierra | South of Rio Oso,
South of Palermo | | PG&E | FORBST_7_UNIT 1 | 31814 | FORBSTWN | 11.5 | 37.50 | 1 | Sierra | Drum-Rio Oso | | PG&E | GRIDLY_6_SOLAR | 38054 | GRIDLEY | 60 | 0.00 | 1 | Sierra | Pease | | PG&E | GRNLF2_1_UNIT | 32492 | GRNLEAF2 | 13.8 | 38.99 | 1 | Sierra | Pease, Drum-Rio
Oso | | PG&E | HALSEY_6_UNIT | 32478 | HALSEY F | 9.11 | 13.50 | 1 | Sierra | Placer, Gold Hill-
Drum, Drum-Rio
Oso, South of Rio
Oso, South of
Palermo | | PG&E | HAYPRS_6_QFUNTS | 32488 | HAYPRES+ | 9.11 | 0.05 | 2 | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | HAYPRS_6_QFUNTS | 32488 | HAYPRES+ | 9.11 | 0.04 | 1 | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | HIGGNS_1_COMBIE | | | | 0.22 | | Sierra | Drum-Rio Oso,
South of Rio Oso,
South of Palermo | | PG&E | HIGGNS_7_QFUNTS | | | | 0.24 | | Sierra | Drum-Rio Oso,
South of Rio Oso,
South of Palermo | | PG&E | KELYRG 6 UNIT | 31834 | KELLYRDG | 9.11 | 11.00 | 1 | Sierra | Drum-Rio Oso | |------|-----------------|-------|----------|------|--------|---|--------|---| | PG&E | LIVEOK_6_SOLAR | | | | 0.14 | | Sierra | Pease | | PG&E | LODIEC_2_PL1X2 | 38123 | LODI CT1 | 18 | 199.03 | 1 | Sierra | South of Rio Oso,
South of Palermo | | PG&E | LODIEC_2_PL1X2 | 38124 | LODI ST1 | 18 | 103.55 | 1 | Sierra | South of Rio Oso,
South of Palermo | | PG&E | MDFKRL_2_PROJCT | 32458 | RALSTON | 13.8 | 82.13 | 1 | Sierra | South of Rio Oso,
South of Palermo | | PG&E | MDFKRL_2_PROJCT | 32456 | MIDLFORK | 13.8 | 63.94 | 1 | Sierra | South of Rio Oso,
South of Palermo | | PG&E | MDFKRL_2_PROJCT | 32456 | MIDLFORK | 13.8 | 63.94 | 2 | Sierra | South of Rio Oso,
South of Palermo | | PG&E | NAROW1_2_UNIT | 32466 | NARROWS1 | 9.1 | 12.00 | 1 | Sierra | | | PG&E | NAROW2_2_UNIT | 32468 | NARROWS2 | 9.1 | 28.51 | 1 | Sierra | | | PG&E | NWCSTL_7_UNIT 1 | 32460 | NEWCSTLE | 13.2 | 0.51 | 1 | Sierra | Placer, Gold
Hill-
Drum, Drum-Rio
Oso, South of Rio
Oso, South of
Palermo | | PG&E | OROVIL_6_UNIT | 31888 | OROVLLE | 9.11 | 7.50 | 1 | Sierra | Drum-Rio Oso | | PG&E | OXBOW_6_DRUM | 32484 | OXBOW F | 9.11 | 3.62 | 1 | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | PLACVL_1_CHILIB | 32510 | CHILIBAR | 4.2 | 8.40 | 1 | Sierra | Gold Hill-Drum,
South of Rio Oso,
South of Palermo | | PG&E | PLACVL_1_RCKCRE | | | | 1.20 | | Sierra | South of Rio Oso,
South of Palermo | | PG&E | PLSNTG_7_LNCLND | 32408 | PLSNT GR | 60 | 3.09 | | Sierra | Drum-Rio Oso,
South of Rio Oso,
South of Palermo | | PG&E | POEPH_7_UNIT 1 | 31790 | POE 1 | 13.8 | 60.00 | 1 | Sierra | South of Palermo | | PG&E | POEPH_7_UNIT 2 | 31792 | POE 2 | 13.8 | 60.00 | 1 | Sierra | South of Palermo | | PG&E | RCKCRK_7_UNIT 1 | 31786 | ROCK CK1 | 13.8 | 57.00 | 1 | Sierra | South of Palermo | | PG&E | RCKCRK_7_UNIT 2 | 31788 | ROCK CK2 | 13.8 | 56.90 | 1 | Sierra | South of Palermo | | PG&E | RIOOSO_1_QF | | | | 1.15 | | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | ROLLIN_6_UNIT | 32476 | ROLLINSF | 9.11 | 13.50 | 1 | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | SLYCRK_1_UNIT 1 | 31832 | SLY.CR. | 9.11 | 13.00 | 1 | Sierra | Drum-Rio Oso | | PG&E | SPAULD_6_UNIT 3 | 32472 | SPAULDG | 9.11 | 1.59 | 3 | Sierra | Drum-Rio Oso,
South of Palermo | |------|------------------|--------|----------|------|-------|----|--------|---| | PG&E | SPAULD_6_UNIT12 | 32472 | SPAULDG | 9.11 | 7.00 | 1 | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | SPAULD_6_UNIT12 | 32472 | SPAULDG | 9.11 | 4.40 | 2 | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | SPI LI_2_UNIT 1 | 32498 | SPILINCF | 12.5 | 9.93 | 1 | Sierra | Drum-Rio Oso,
South of Rio Oso,
South of Palermo | | PG&E | STIGCT_2_LODI | 38114 | Stig CC | 13.8 | 49.50 | 1 | Sierra | South of Rio Oso,
South of Palermo | | PG&E | ULTRCK_2_UNIT | 32500 | ULTR RCK | 9.11 | 22.83 | 1 | Sierra | Drum-Rio Oso,
South of Rio Oso,
South of Palermo | | PG&E | WDLEAF_7_UNIT 1 | 31794 | WOODLEAF | 13.8 | 60.00 | 1 | Sierra | Drum-Rio Oso | | PG&E | WHEATL_6_LNDFIL | 32350 | WHEATLND | 60 | 3.55 | | Sierra | | | PG&E | WISE_1_UNIT 1 | 32512 | WISE | 12 | 14.50 | 1 | Sierra | Placer, Gold Hill-
Drum, Drum-Rio
Oso, South of Rio
Oso, South of
Palermo | | PG&E | WISE_1_UNIT 2 | 32512 | WISE | 12 | 3.20 | 1 | Sierra | Placer, Gold Hill-
Drum, Drum-Rio
Oso, South of Rio
Oso, South of
Palermo | | PG&E | YUBACT_1_SUNSWT | 32494 | YUBA CTY | 9.11 | 49.97 | 1 | Sierra | Pease, Drum-Rio
Oso | | PG&E | YUBACT_6_UNITA1 | 32496 | YCEC | 13.8 | 47.60 | 1 | Sierra | Pease, Drum-Rio
Oso | | PG&E | ZZ_NA | 32162 | RIV.DLTA | 9.11 | 0.00 | 1 | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | ZZ_UCDAVS_1_UNIT | 32166 | UC DAVIS | 9.11 | 0.00 | RN | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | ZZZ_New Unit | 365936 | Q653FSPV | 0.48 | 2.46 | 1 | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | ZZZ_New Unit | 365940 | Q653FSPV | 0.48 | 2.46 | 2 | Sierra | Drum-Rio Oso,
South of Palermo | | PG&E | ZZZ_New Unit | 365938 | Q653FC6B | 0.48 | 0.00 | 2 | Sierra | Drum-Rio Oso,
South of Palermo | |------|----------------------|--------|----------|------|--------|---|----------|---------------------------------------| | PG&E | ZZZZZ_GOLDHL_1_QF | | | | 0.00 | | Sierra | South of Rio Oso,
South of Palermo | | PG&E | ZZZZZ_GRNLF1_1_UNITS | 32490 | GRNLEAF1 | 13.8 | 0.00 | 1 | Sierra | Bogue, Drum-Rio
Oso | | PG&E | ZZZZZ_GRNLF1_1_UNITS | 32491 | GRNLEAF1 | 13.8 | 0.00 | 2 | Sierra | Bogue, Drum-Rio
Oso | | PG&E | ZZZZZ_KANAKA_1_UNIT | | | | 0.00 | | Sierra | Drum-Rio Oso | | PG&E | ZZZZZ_PACORO_6_UNIT | 31890 | PO POWER | 9.11 | 0.00 | 1 | Sierra | Drum-Rio Oso | | PG&E | ZZZZZ_PACORO_6_UNIT | 31890 | PO POWER | 9.11 | 0.00 | 2 | Sierra | Drum-Rio Oso | | PG&E | BEARDS_7_UNIT 1 | 34074 | BEARDSLY | 6.9 | 8.36 | 1 | Stockton | Tesla-Bellota,
Stanislaus | | PG&E | CAMCHE_1_PL1X3 | 33850 | CAMANCHE | 4.2 | 0.92 | 1 | Stockton | Tesla-Bellota | | PG&E | CAMCHE_1_PL1X3 | 33850 | CAMANCHE | 4.2 | 0.92 | 2 | Stockton | Tesla-Bellota | | PG&E | CAMCHE_1_PL1X3 | 33850 | CAMANCHE | 4.2 | 0.92 | 3 | Stockton | Tesla-Bellota | | PG&E | CRWCKS_1_SOLAR1 | 34051 | Q539 | 34.5 | 0.00 | 1 | Stockton | Tesla-Bellota | | PG&E | DONNLS_7_UNIT | 34058 | DONNELLS | 13.8 | 72.00 | 1 | Stockton | Tesla-Bellota,
Stanislaus | | PG&E | FROGTN_1_UTICAA | | | | 1.40 | | Stockton | Tesla-Bellota,
Stanislaus | | PG&E | FROGTN_1_UTICAM | | | | 2.37 | | Stockton | Tesla-Bellota,
Stanislaus | | PG&E | LOCKFD_1_BEARCK | | | | 0.41 | | Stockton | Tesla-Bellota | | PG&E | LOCKFD_1_KSOLAR | | | | 0.27 | | Stockton | Tesla-Bellota | | PG&E | LODI25_2_UNIT 1 | 38120 | LODI25CT | 9.11 | 23.80 | 1 | Stockton | Lockeford | | PG&E | MANTEC_1_ML1SR1 | | | | 0.00 | | Stockton | Tesla-Bellota | | PG&E | PEORIA_1_SOLAR | | | | 0.41 | | Stockton | Tesla-Bellota,
Stanislaus | | PG&E | PHOENX_1_UNIT | | | | 0.84 | | Stockton | Tesla-Bellota,
Stanislaus | | PG&E | SCHLTE_1_PL1X3 | 33811 | GWFTRCY3 | 13.8 | 138.11 | 1 | Stockton | Tesla-Bellota | | PG&E | SCHLTE_1_PL1X3 | 33805 | GWFTRCY1 | 13.8 | 85.70 | 1 | Stockton | Tesla-Bellota | | PG&E | SCHLTE_1_PL1X3 | 33807 | GWFTRCY2 | 13.8 | 85.70 | 1 | Stockton | Tesla-Bellota | | PG&E | SNDBAR_7_UNIT 1 | 34060 | SANDBAR | 13.8 | 12.88 | 1 | Stockton | Tesla-Bellota,
Stanislaus | |------|-----------------------|--------|------------|------|-------|----|------------|------------------------------| | PG&E | SPIFBD_1_PL1X2 | 34055 | SPISONORA | 13.8 | 5.67 | 1 | Stockton | Tesla-Bellota,
Stanislaus | | PG&E | SPRGAP_1_UNIT 1 | 34078 | SPRNG GP | 6 | 0.01 | 1 | Stockton | Tesla-Bellota,
Stanislaus | | PG&E | STANIS_7_UNIT 1 | 34062 | STANISLS | 13.8 | 91.00 | 1 | Stockton | Tesla-Bellota,
Stanislaus | | PG&E | STNRES_1_UNIT | 34056 | STNSLSRP | 13.8 | 18.26 | 1 | Stockton | Tesla-Bellota | | PG&E | TULLCK_7_UNITS | 34076 | TULLOCH | 6.9 | 7.41 | 2 | Stockton | Tesla-Bellota | | PG&E | TULLCK_7_UNITS | 34076 | TULLOCH | 6.9 | 6.58 | 1 | Stockton | Tesla-Bellota | | PG&E | TULLCK_7_UNITS | 34076 | TULLOCH | 6.9 | 4.86 | 3 | Stockton | Tesla-Bellota | | PG&E | ULTPCH_1_UNIT 1 | 34050 | CH.STN. | 13.8 | 16.19 | 1 | Stockton | Tesla-Bellota,
Stanislaus | | PG&E | VLYHOM_7_SSJID | | | | 0.65 | | Stockton | Tesla-Bellota,
Stanislaus | | PG&E | ZZZ_New Unit | 365684 | Q1103 | | 10.80 | 1 | Stockton | Tesla-Bellota | | PG&E | ZZZ_New Unit | 34053 | Q539 | | 0.00 | 1 | Stockton | Tesla-Bellota | | PG&E | ZZZ_New Unit | 365556 | SAFEWAYB | | 0.00 | RN | Stockton | Tesla-Bellota | | PG&E | ZZZZZ_FROGTN_7_UTICA | | | | 0.00 | | Stockton | Tesla-Bellota,
Stanislaus | | PG&E | ZZZZZ_STOKCG_1_UNIT 1 | 33814 | INGREDION | 12.5 | 0.00 | RN | Stockton | Tesla-Bellota | | PG&E | ZZZZZZ_NA | 33830 | GEN.MILL | 9.11 | 0.00 | 1 | Stockton | Lockeford | | SCE | ACACIA_6_SOLAR | 29878 | ACACIA_G | 0.48 | 5.40 | EQ | BC/Ventura | | | SCE | ALAMO_6_UNIT | 25653 | ALAMO SC | 13.8 | 11.36 | 1 | BC/Ventura | | | SCE | BGSKYN_2_AS2SR1 | 29774 | ANTLOP2_G1 | 0.42 | 28.35 | EQ | BC/Ventura | | | SCE | BGSKYN_2_ASPSR2 | | | | 27.00 | | BC/Ventura | | | SCE | BGSKYN_2_BS3SR3 | | | | 5.40 | | BC/Ventura | | | SCE | BIGCRK_2_EXESWD | 24317 | MAMOTH1G | 13.8 | 92.02 | 1 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_2_EXESWD | 24318 | MAMOTH2G | 13.8 | 92.02 | 2 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_2_EXESWD | 24308 | B CRK2-1 | 13.8 | 51.18 | 2 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_2_EXESWD | 24308 | B CRK2-1 | 13.8 | 49.99 | 1 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_2_EXESWD | 24314 | B CRK 4 | 11.5 | 49.80 | 42 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_2_EXESWD | 24314 | B CRK 4 | 11.5 | 49.60 | 41 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_2_EXESWD | 24315 | B CRK 8 | 13.8 | 43.30 | 82 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_2_EXESWD | 24313 | B CRK3-3 | 13.8 | 35.92 | 5 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_2_EXESWD | 24312 | B CRK3-2 | 13.8 | 35.43 | 4 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK 2 EXESWD | 24311 | B CRK3-1 | 13.8 | 34.44 | 1 | BC/Ventura | Rector, Vestal | |-----|-----------------|-------|-------------|------|-------|----|------------|----------------| | SCE | BIGCRK_2_EXESWD | 24312 | B CRK3-2 | 13.8 | 34.44 | 3 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_2_EXESWD | 24311 | B CRK3-1 | 13.8 | 33.46 | 2 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_2_EXESWD | 24307 | B CRK1-2 | 13.8 | 30.71 | 4 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_2_EXESWD | 24315 | B CRK 8 | 13.8 | 24.01 | 81 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_2_EXESWD | 24306 | B CRK1-1 | 7.2 | 21.26 | 2 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_2_EXESWD | 24307 | B CRK1-2 | 13.8 | 21.26 | 3 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_2_EXESWD | 24306 | B CRK1-1 | 7.2 | 19.58 | 1 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_2_EXESWD | 24309 | B CRK2-2 | 7.2 | 19.39 | 4 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_2_EXESWD | 24309 | B CRK2-2 | 7.2 | 18.40 | 3 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_2_EXESWD | 24310 | B CRK2-3 | 7.2 | 18.21 | 6 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_2_EXESWD | 24310 | B CRK2-3 | 7.2 | 16.73 | 5 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_2_EXESWD | 24323 | PORTAL | 4.8 | 9.45 | 1 | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_7_DAM7 | | | | 0.00 | | BC/Ventura | Rector, Vestal | | SCE | BIGCRK_7_MAMRES | | | | 0.00 | | BC/Ventura | Rector, Vestal | | SCE | BIGSKY_2_BSKSR6 | 29734 | BSKY G BC | 0.42 | 5.40 | 1 | BC/Ventura | | | SCE | BIGSKY_2_BSKSR7 | 29737 | BSKY G WABS | 0.42 | 5.40 | 1 | BC/Ventura | | | SCE | BIGSKY_2_BSKSR8 | 29740 | BSKY G ABSR | 0.38 | 5.40 | 1 | BC/Ventura | | | SCE | BIGSKY_2_SOLAR1 | 29704 | BSKY G SMR | 0.42 | 5.40 | 1 |
BC/Ventura | | | SCE | BIGSKY_2_SOLAR2 | 29744 | BSKY_G_ESC | 0.42 | 34.41 | 1 | BC/Ventura | | | SCE | BIGSKY_2_SOLAR3 | 29725 | BSKY_G_BD | 0.42 | 5.40 | 1 | BC/Ventura | | | SCE | BIGSKY_2_SOLAR4 | 29701 | BSKY_G_BA | 0.42 | 17.26 | 1 | BC/Ventura | | | SCE | BIGSKY_2_SOLAR5 | 29731 | BSKY_G_BB | 0.42 | 1.35 | 1 | BC/Ventura | | | SCE | BIGSKY_2_SOLAR6 | 29728 | BSKY_G_SOLV | 0.42 | 22.95 | 1 | BC/Ventura | | | SCE | BIGSKY_2_SOLAR7 | 29731 | BSKY_G_ADSR | 0.42 | 13.50 | 1 | BC/Ventura | | | SCE | CEDUCR_2_SOLAR1 | 25049 | DUCOR1 | 0.39 | 0.00 | EQ | BC/Ventura | Vestal | | SCE | CEDUCR_2_SOLAR2 | 25052 | DUCOR2 | 0.39 | 0.00 | EQ | BC/Ventura | Vestal | | SCE | CEDUCR_2_SOLAR3 | 25055 | DUCOR3 | 0.39 | 0.00 | EQ | BC/Ventura | Vestal | | SCE | CEDUCR_2_SOLAR4 | 25058 | DUCOR4 | 0.39 | 0.00 | EQ | BC/Ventura | Vestal | | SCE | DELSUR_6_BSOLAR | 24411 | DELSUR_DIST | 66 | 0.81 | 1 | BC/Ventura | | | SCE | DELSUR_6_CREST | 24411 | DELSUR_DIST | 66 | 0.00 | | BC/Ventura | | | SCE | DELSUR_6_DRYFRB | 24411 | DELSUR_DIST | 66 | 1.35 | 1 | BC/Ventura | | | SCE | DELSUR_6_SOLAR1 | 24411 | DELSUR_DIST | 66 | 1.76 | 2 | BC/Ventura | | | SCE | DELSUR_6_SOLAR4 | 24411 | DELSUR_DIST | 66 | 0.00 | | BC/Ventura | | | I | I | I | l | l 1 | | | 1 | 1 | |-----|-----------------|-------|-------------|------|--------|----|------------|------------------------------| | SCE | DELSUR_6_SOLAR5 | 24411 | DELSUR_DIST | 66 | 0.00 | | BC/Ventura | | | SCE | EASTWD_7_UNIT | 24319 | EASTWOOD | 13.8 | 199.00 | 1 | BC/Ventura | Rector, Vestal | | SCE | EDMONS_2_NSPIN | 25605 | EDMON1AP | 14.4 | 16.86 | 1 | BC/Ventura | | | SCE | EDMONS_2_NSPIN | 25606 | EDMON2AP | 14.4 | 16.86 | 2 | BC/Ventura | | | SCE | EDMONS_2_NSPIN | 25607 | EDMON3AP | 14.4 | 16.86 | 3 | BC/Ventura | | | SCE | EDMONS_2_NSPIN | 25607 | EDMON3AP | 14.4 | 16.86 | 4 | BC/Ventura | | | SCE | EDMONS_2_NSPIN | 25608 | EDMON4AP | 14.4 | 16.86 | 5 | BC/Ventura | | | SCE | EDMONS_2_NSPIN | 25608 | EDMON4AP | 14.4 | 16.86 | 6 | BC/Ventura | | | SCE | EDMONS_2_NSPIN | 25609 | EDMON5AP | 14.4 | 16.86 | 7 | BC/Ventura | | | SCE | EDMONS_2_NSPIN | 25609 | EDMON5AP | 14.4 | 16.86 | 8 | BC/Ventura | | | SCE | EDMONS_2_NSPIN | 25610 | EDMON6AP | 14.4 | 16.86 | 9 | BC/Ventura | | | SCE | EDMONS_2_NSPIN | 25610 | EDMON6AP | 14.4 | 16.86 | 10 | BC/Ventura | | | SCE | EDMONS_2_NSPIN | 25611 | EDMON7AP | 14.4 | 16.85 | 11 | BC/Ventura | | | SCE | EDMONS_2_NSPIN | 25611 | EDMON7AP | 14.4 | 16.85 | 12 | BC/Ventura | | | SCE | EDMONS_2_NSPIN | 25612 | EDMON8AP | 14.4 | 16.85 | 13 | BC/Ventura | | | SCE | EDMONS_2_NSPIN | 25612 | EDMON8AP | 14.4 | 16.85 | 14 | BC/Ventura | | | SCE | GLDFGR_6_SOLAR1 | 25079 | PRIDE B G | 0.64 | 5.40 | 1 | BC/Ventura | | | SCE | GLDFGR_6_SOLAR2 | 25169 | PRIDE C G | 0.64 | 3.08 | 1 | BC/Ventura | | | SCE | GLOW_6_SOLAR | 29896 | APPINV | 0.42 | 0.00 | EQ | BC/Ventura | | | SCE | GOLETA_2_QF | 25335 | GOLETA_DIST | 66 | 0.04 | S1 | BC/Ventura | S.Clara, Moorpark,
Goleta | | SCE | GOLETA_6_ELLWOD | 29004 | ELLWOOD | 13.8 | 54.00 | 1 | BC/Ventura | S.Clara, Moorpark,
Goleta | | SCE | GOLETA_6_EXGEN | 24362 | EXGEN2 | 13.8 | 0.00 | G1 | BC/Ventura | S.Clara, Moorpark,
Goleta | | SCE | GOLETA_6_EXGEN | 24326 | EXGEN1 | 13.8 | 0.00 | S1 | BC/Ventura | S.Clara, Moorpark,
Goleta | | SCE | GOLETA_6_GAVOTA | 25335 | GOLETA_DIST | 66 | 0.00 | S1 | BC/Ventura | S.Clara, Moorpark,
Goleta | | SCE | GOLETA_6_TAJIGS | 25335 | GOLETA_DIST | 66 | 2.84 | S1 | BC/Ventura | S.Clara, Moorpark,
Goleta | | SCE | LEBECS_2_UNITS | 29053 | PSTRIAS1 | 18 | 173.86 | S1 | BC/Ventura | | | SCE | LEBECS_2_UNITS | 29051 | PSTRIAG1 | 18 | 168.90 | G1 | BC/Ventura | | | SCE | LEBECS_2_UNITS | 29052 | PSTRIAG2 | 18 | 168.90 | G2 | BC/Ventura | | | SCE | LEBECS_2_UNITS | 29054 | PSTRIAG3 | 18 | 168.90 | G3 | BC/Ventura | | | SCE | LEBECS_2_UNITS | 29055 | PSTRIAS2 | 18 | 84.45 | S2 | BC/Ventura | | | SCE | LITLRK 6 GBCSR1 | 24419 | LTLRCK DIST | 66 | 0.81 | AS | BC/Ventura | | |-----|-----------------|-------|------------------|------|--------|----------|------------|-------------------| | SCE | LITLRK_6_SEPV01 | 24419 | LTLRCK_DIST | 66 | 0.00 | AS | BC/Ventura | | | SCE | LITLRK_6_SOLAR1 | 24419 | LTLRCK_DIST | 66 | 1.35 | AS | BC/Ventura | | | SCE | LITLRK_6_SOLAR2 | 24419 | LTLRCK_DIST | 66 | 0.54 | AS | BC/Ventura | | | SCE | LITLRK_6_SOLAR3 | 24419 | LTLRCK_DIST | 66 | 0.54 | AS | BC/Ventura | | | SCE | LITLRK_6_SOLAR4 | 24419 | LTLRCK_DIST | 66 | 0.81 | AS | BC/Ventura | | | SCE | LNCSTR_6_CREST | | | | 0.00 | <u> </u> | BC/Ventura | | | SCE | MNDALY_6_MCGRTH | 29306 | MCGPKGEN | 13.8 | 47.20 | 1 | BC/Ventura | S.Clara, Moorpark | | SCE | MOORPK_2_CALABS | 25081 | WDT251 | 13.8 | 4.57 | EQ | BC/Ventura | Moorpark | | SCE | MOORPK_6_QF | | | | 0.80 | | BC/Ventura | Moorpark | | SCE | NEENCH_6_SOLAR | 29900 | ALPINE_G | 0.48 | 17.82 | EQ | BC/Ventura | | | SCE | OASIS_6_CREST | | | | 0.00 | | BC/Ventura | | | SCE | OASIS_6_GBDSR4 | 24421 | OASIS_DIST | 66 | 0.81 | 1 | BC/Ventura | | | SCE | OASIS_6_SOLAR1 | 25095 | SOLARISG2 | 0.2 | 0.00 | EQ | BC/Ventura | | | SCE | OASIS_6_SOLAR2 | 25075 | SOLARISG | 0.2 | 5.40 | EQ | BC/Ventura | | | SCE | OASIS_6_SOLAR3 | | | | 0.00 | | BC/Ventura | | | SCE | OMAR_2_UNIT 1 | 24102 | OMAR 1G | 13.8 | 70.30 | 1 | BC/Ventura | | | SCE | OMAR_2_UNIT 2 | 24103 | OMAR 2G | 13.8 | 71.24 | 2 | BC/Ventura | | | SCE | OMAR_2_UNIT 3 | 24104 | OMAR 3G | 13.8 | 74.03 | 3 | BC/Ventura | | | SCE | OMAR_2_UNIT 4 | 24105 | OMAR 4G | 13.8 | 81.44 | 4 | BC/Ventura | | | SCE | ORMOND_7_UNIT 1 | 24107 | ORMOND1G | 26 | 741.27 | 1 | BC/Ventura | Moorpark | | SCE | ORMOND_7_UNIT 2 | 24108 | ORMOND2G | 26 | 750.00 | 2 | BC/Ventura | Moorpark | | SCE | OSO_6_NSPIN | 25614 | OSO A P | 13.2 | 2.25 | 1 | BC/Ventura | | | SCE | OSO_6_NSPIN | 25614 | OSO A P | 13.2 | 2.25 | 2 | BC/Ventura | | | SCE | OSO_6_NSPIN | 25614 | OSO A P | 13.2 | 2.25 | 3 | BC/Ventura | | | SCE | OSO_6_NSPIN | 25614 | OSO A P | 13.2 | 2.25 | 4 | BC/Ventura | | | SCE | OSO_6_NSPIN | 25615 | OSO B P | 13.2 | 2.25 | 5 | BC/Ventura | | | SCE | OSO_6_NSPIN | 25615 | OSO B P | 13.2 | 2.25 | 6 | BC/Ventura | | | SCE | OSO_6_NSPIN | 25615 | OSO B P | 13.2 | 2.25 | 7 | BC/Ventura | | | SCE | OSO_6_NSPIN | 25615 | OSO B P | 13.2 | 2.25 | 8 | BC/Ventura | | | SCE | PLAINV_6_BSOLAR | 29917 | SSOLAR)GRWK
S | 0.8 | 0.00 | 1 | BC/Ventura | | | SCE | PLAINV_6_DSOLAR | 29914 | WADR_PV | 0.42 | 2.70 | 1 | BC/Ventura | | | SCE | PLAINV 6 NLRSR1 | 29921 | NLR INVTR | 0.42 | 0.00 | 1 | BC/Ventura | | |-----|-----------------|-------|------------------|------|-------|----|------------|-------------------| | SCE | PLAINV 6 SOLAR3 | 25089 | CNTRL ANT G | 0.42 | 0.00 | 1 | BC/Ventura | | | SCE | PLAINV_6_SOLARC | 25086 | SIRA SOLAR G | 0.8 | 0.00 | 1 | BC/Ventura | | | SCE | PMDLET_6_SOLAR1 | | | | 2.70 | | BC/Ventura | | | SCE | RECTOR_2_CREST | 25333 | RECTOR_DIST | 66 | 0.00 | S1 | BC/Ventura | Rector, Vestal | | SCE | RECTOR_2_KAWEAH | 25333 | RECTOR_DIST | 66 | 1.74 | S2 | BC/Ventura | Rector, Vestal | | SCE | RECTOR_2_KAWH 1 | 24370 | KAWGEN | 13.8 | 0.52 | 1 | BC/Ventura | Rector, Vestal | | SCE | RECTOR_2_QF | 25333 | RECTOR_DIST | 66 | 3.94 | S1 | BC/Ventura | Rector, Vestal | | SCE | RECTOR_2_TFDBM1 | | | | 0.00 | | BC/Ventura | Rector, Vestal | | SCE | RECTOR_7_TULARE | 25333 | RECTOR_DIST | 66 | 0.00 | S1 | BC/Ventura | Rector, Vestal | | SCE | REDMAN_2_SOLAR | 24425 | REDMAN_DIST | 66 | 1.01 | AS | BC/Ventura | | | SCE | REDMAN_6_AVSSR1 | | _ | | 0.81 | | BC/Ventura | | | SCE | ROSMND_6_SOLAR | 24434 | ROSAMOND_DI
S | 66 | 0.81 | AS | BC/Ventura | | | SCE | RSMSLR_6_SOLAR1 | 29984 | DAWNGEN | 8.0 | 5.40 | EQ | BC/Ventura | | | SCE | RSMSLR_6_SOLAR2 | 29888 | TWILGHTG | 8.0 | 5.40 | EQ | BC/Ventura | | | SCE | SAUGUS_6_CREST | | | | 0.00 | | BC/Ventura | | | SCE | SAUGUS_6_MWDFTH | 25336 | SAUGUS_MWD | 66 | 5.40 | S1 | BC/Ventura | | | SCE | SAUGUS_6_QF | 24135 | SAUGUS | 66 | 0.70 | | BC/Ventura | | | SCE | SAUGUS_7_CHIQCN | 24135 | SAUGUS | 66 | 5.63 | | BC/Ventura | | | SCE | SAUGUS_7_LOPEZ | 24135 | SAUGUS | 66 | 5.34 | | BC/Ventura | | | SCE | SHUTLE_6_CREST | 24426 | SHUTTLE_DIST | 66 | 0.00 | AS | BC/Ventura | | | SCE | SNCLRA_2_HOWLNG | 25080 | SANTACLR_DIS | 13.8 | 8.72 | EQ | BC/Ventura | S.Clara, Moorpark | | SCE | SNCLRA_2_SPRHYD | 25080 | SANTACLR_DIS | 13.8 | 0.18 | EQ | BC/Ventura | S.Clara, Moorpark | | SCE | SNCLRA_2_UNIT | 29952 | CAMGEN | 13.8 | 27.50 | D1 | BC/Ventura | S.Clara, Moorpark | | SCE | SNCLRA_2_UNIT1 | 24159 | WILLAMET | 3.8 | 15.63 | D1 | BC/Ventura | S.Clara, Moorpark | | SCE | SNCLRA_6_OXGEN | 24110 | OXGEN | 13.8 | 35.38 | D1 | BC/Ventura | S.Clara, Moorpark | | SCE | SNCLRA_6_PROCGN | 24119 | PROCGEN | 13.8 | 45.47 | D1 | BC/Ventura | S.Clara, Moorpark | | SCE | SNCLRA_6_QF | 25080 | SANTACLR_DIS | 13.8 | 0.00 | EQ | BC/Ventura | S.Clara, Moorpark | | SCE | SPRGVL_2_CREST | 25334 | SPRNGVL_DIS
T | 66 | 0.00 | S1 | BC/Ventura | Rector, Vestal | | SCE | SPRGVL_2_QF | 25334 | SPRNGVL_DIS
T | 66 | 0.18 | S1 | BC/Ventura | Rector, Vestal | | SCE | SPRGVL_2_TULE | 25334 | SPRNGVL_DIS
T | 66 | 0.00 | S2 | BC/Ventura | Rector, Vestal | | SCE | SPRGVL_2_TULESC | 25334 | SPRNGVL_DIS | 66 | 0.00 | S1 | BC/Ventura | Rector, Vestal | |-----|-----------------|--------|--------------|------|--------|----|------------|------------------------------| | SCE | SUNSHN_2_LNDFL | 29954 | WDT273 | 13.7 | 3.17 | 1 | BC/Ventura | | | SCE | SUNSHN_2_LNDFL | 29954 | WDT273 | 13.7 | 3.17 | 2 | BC/Ventura | | | SCE | SUNSHN_2_LNDFL | 29954 | WDT273 | 13.7 | 3.17 | 3 | BC/Ventura | | | SCE | SUNSHN_2_LNDFL | 29954 | WDT273 | 13.7 | 3.17 | 4 | BC/Ventura | | | SCE | SUNSHN_2_LNDFL | 29954 | WDT273 | 13.7 | 3.17 | 5 | BC/Ventura | | | SCE | SYCAMR_2_UNIT 1 | 24143 | SYCCYN1G | 13.8 | 77.41 | 1 | BC/Ventura | | | SCE | SYCAMR_2_UNIT 2 | 24144 | SYCCYN2G | 13.8 | 80.00 | 2 | BC/Ventura | | | SCE | SYCAMR_2_UNIT 3 | 24145 | SYCCYN3G | 13.8 | 80.00 | 3 | BC/Ventura | | | SCE |
SYCAMR_2_UNIT 4 | 24146 | SYCCYN4G | 13.8 | 80.00 | 4 | BC/Ventura | | | SCE | TENGEN_2_PL1X2 | 24148 | TENNGEN1 | 13.8 | 18.80 | D1 | BC/Ventura | | | SCE | TENGEN_2_PL1X2 | 24149 | TENNGEN2 | 13.8 | 18.80 | D2 | BC/Ventura | | | SCE | VESTAL_2_KERN | 24372 | KR 3-1 | 11 | 6.50 | 1 | BC/Ventura | Vestal | | SCE | VESTAL_2_KERN | 24373 | KR 3-2 | 11 | 6.13 | 2 | BC/Ventura | Vestal | | SCE | VESTAL_2_RTS042 | | | | 0.00 | | BC/Ventura | Vestal | | SCE | VESTAL_2_SOLAR1 | 25064 | TULRESLR_1 | 0.39 | 5.40 | 1 | BC/Ventura | Vestal | | SCE | VESTAL_2_SOLAR2 | 25065 | TULRESLR_2 | 0.39 | 3.78 | 1 | BC/Ventura | Vestal | | SCE | VESTAL_2_UNIT1 | | | | 4.03 | | BC/Ventura | Vestal | | SCE | VESTAL_2_WELLHD | 24116 | WELLGEN | 13.8 | 49.00 | 1 | BC/Ventura | Vestal | | SCE | VESTAL_6_QF | 29008 | LAKEGEN | 13.8 | 5.49 | 1 | BC/Ventura | Vestal | | SCE | WARNE_2_UNIT | 25651 | WARNE1 | 13.8 | 20.79 | 1 | BC/Ventura | | | SCE | WARNE_2_UNIT | 25652 | WARNE2 | 13.8 | 20.79 | 2 | BC/Ventura | | | SCE | ZZ_NA | 24340 | CHARMIN | 13.8 | 2.80 | 1 | BC/Ventura | S.Clara, Moorpark | | SCE | ZZZ_New Unit | 698508 | WDT1519 | 66 | 100.00 | EQ | BC/Ventura | S.Clara, Moorpark | | SCE | ZZZ_New Unit | 699101 | WDT1454 | 66 | 40.00 | EQ | BC/Ventura | S.Clara, Moorpark | | SCE | ZZZ_New Unit | 99739 | GOLETA-DIST | 66 | 30.00 | EQ | BC/Ventura | S.Clara, Moorpark,
Goleta | | SCE | ZZZ_New Unit | 99740 | S.CLARA-DIST | 66 | 11.00 | EQ | BC/Ventura | S.Clara, Moorpark | | SCE | ZZZ_New Unit | 24127 | S.CLARA | 66 | 9.27 | X8 | BC/Ventura | S.Clara, Moorpark | | SCE | ZZZ_New Unit | 24057 | GOLETA | 66 | 4.73 | X8 | BC/Ventura | S.Clara, Moorpark,
Goleta | | I | 1 | | 1 | 1 , | | ı | I | I I | |-----|---------------------------|-------|------------|------|--------|----|------------|----------------------------| | SCE | ZZZZZ_APPGEN_6_UNIT 1 | 24009 | APPGEN1G | 13.8 | 0.00 | 1 | BC/Ventura | | | SCE | ZZZZZ_APPGEN_6_UNIT 1 | 24010 | APPGEN2G | 13.8 | 0.00 | 2 | BC/Ventura | | | SCE | ZZZZZ_APPGEN_6_UNIT 1 | 24361 | APPGEN3G | 13.8 | 0.00 | 3 | BC/Ventura | | | SCE | ZZZZZ_MNDALY_7_UNIT 1 | 24089 | MANDLY1G | 13.8 | 0.00 | 1 | BC/Ventura | S.Clara, Moorpark | | SCE | ZZZZZ_MNDALY_7_UNIT 2 | 24090 | MANDLY2G | 13.8 | 0.00 | 2 | BC/Ventura | S.Clara, Moorpark | | SCE | ZZZZZ_MNDALY_7_UNIT 3 | 24222 | MANDLY3G | 16 | 0.00 | 3 | BC/Ventura | S.Clara, Moorpark | | SCE | ZZZZZ_MOORPK_7_UNITA1 | 24098 | MOORPARK | 66 | 0.00 | | BC/Ventura | Moorpark | | SCE | ZZZZZ_PANDOL_6_UNIT | 24113 | PANDOL | 13.8 | 0.00 | 1 | BC/Ventura | Vestal | | SCE | ZZZZZ_PANDOL_6_UNIT | 24113 | PANDOL | 13.8 | 0.00 | 2 | BC/Ventura | Vestal | | SCE | ZZZZZ_SAUGUS_2_TOLAN D | 24135 | SAUGUS | 66 | 0.00 | | BC/Ventura | | | SCE | ZZZZZ_SAUGUS_6_PTCHG
N | 24118 | PITCHGEN | 13.8 | 0.00 | D1 | BC/Ventura | | | SCE | ZZZZZ_VESTAL_6_ULTRGN | 24150 | ULTRAGEN | 13.8 | 0.00 | 1 | BC/Ventura | Vestal | | SCE | ALAMIT_2_PL1X3 | 24577 | ALMT STG | 18 | 251.66 | S1 | LA Basin | Western | | SCE | ALAMIT_2_PL1X3 | 24575 | ALMT CTG1 | 18 | 211.52 | G1 | LA Basin | Western | | SCE | ALAMIT_2_PL1X3 | 24576 | ALMT CTG2 | 18 | 211.52 | G2 | LA Basin | Western | | SCE | ALAMIT_7_UNIT 3 | 24003 | ALAMT3 G | 18 | 332.18 | 3 | LA Basin | Western | | SCE | ALAMIT_7_UNIT 4 | 24004 | ALAMT4 G | 18 | 335.67 | 4 | LA Basin | Western | | SCE | ALAMIT_7_UNIT 5 | 24005 | ALAMT5 G | 20 | 497.97 | 5 | LA Basin | Western | | SCE | ALTWD_1_QF | 25635 | ALTWIND | 115 | 3.82 | Q1 | LA Basin | Eastern, Valley-
Devers | | SCE | ALTWD_1_QF | 25635 | ALTWIND | 115 | 3.82 | Q2 | LA Basin | Eastern, Valley-
Devers | | SCE | ANAHM_2_CANYN1 | 25211 | CanyonGT 1 | 13.8 | 49.40 | 1 | LA Basin | Western | | SCE | ANAHM_2_CANYN2 | 25212 | CanyonGT 2 | 13.8 | 48.00 | 2 | LA Basin | Western | | SCE | ANAHM_2_CANYN3 | 25213 | CanyonGT 3 | 13.8 | 48.00 | 3 | LA Basin | Western | | SCE | ANAHM_2_CANYN4 | 25214 | CanyonGT 4 | 13.8 | 49.40 | 4 | LA Basin | Western | | SCE | ANAHM 7 CT | 25208 | DowlingCTG | 13.8 | 40.64 | 1 | LA Basin | Western | |-----|-----------------|----------|-------------|------|-------|----------|----------|----------------------------| | SCE | ARCOGN 2 UNITS | 24011 | ARCO 1G | 13.8 | 51.98 | 1 | LA Basin | Western | | SCE | ARCOGN_2_UNITS | 24012 | ARCO 2G | 13.8 | 51.98 | 2 | LA Basin | Western | | SCE | ARCOGN_2_UNITS | 24013 | ARCO 3G | 13.8 | 51.98 | 3 | LA Basin | Western | | SCE | ARCOGN_2_UNITS | 24014 | ARCO 4G | 13.8 | 51.98 | 4 | LA Basin | Western | | SCE | ARCOGN_2_UNITS | 24163 | ARCO 5G | 13.8 | 25.99 | 5 | LA Basin | Western | | SCE | ARCOGN_2_UNITS | 24164 | ARCO 6G | 13.8 | 25.99 | 6 | LA Basin | Western | | SCE | BARRE_2_QF | 24016 | BARRE | 230 | 0.00 | | LA Basin | Western | | SCE | BARRE_6_PEAKER | 29309 | BARPKGEN | 13.8 | 47.00 | 1 | LA Basin | Western | | SCE | BLAST_1_WIND | 24839 | BLAST | 115 | 10.29 | 1 | LA Basin | Eastern, Valley-
Devers | | SCE | BUCKWD_1_NPALM1 | 25634 | BUCKWIND | 115 | 0.65 | | LA Basin | Eastern, Valley-
Devers | | SCE | BUCKWD_1_QF | 25634 | BUCKWIND | 115 | 3.47 | QF | LA Basin | Eastern, Valley-
Devers | | SCE | BUCKWD_7_WINTCV | 25634 | BUCKWIND | 115 | 0.28 | W5 | LA Basin | Eastern, Valley-
Devers | | SCE | CABZON_1_WINDA1 | 29290 | CABAZON | 33 | 8.61 | 1 | LA Basin | Eastern, Valley-
Devers | | SCE | CAPWD_1_QF | 25633 | CAPWIND | 115 | 4.11 | QF | LA Basin | Eastern, Valley-
Devers | | SCE | CENTER_2_RHONDO | 24203 | CENTER S | 66 | 1.91 | | LA Basin | Western | | SCE | CENTER_2_SOLAR1 | | | | 0.00 | | LA Basin | Western | | SCE | CENTER_2_TECNG1 | | | | 0.00 | | LA Basin | Western | | SCE | CENTER_6_PEAKER | 29308 | CTRPKGEN | 13.8 | 47.11 | 1 | LA Basin | Western | | SCE | CENTRY_6_PL1X4 | 25302 | CLTNCTRY | 13.8 | 36.00 | 1 | LA Basin | Eastern | | SCE | CHEVMN_2_UNITS | 24022 | CHEVGEN1 | 13.8 | 3.77 | 1 | LA Basin | Western, El Nido | | SCE | CHEVMN_2_UNITS | 24023 | CHEVGEN2 | 13.8 | 3.77 | 2 | LA Basin | Western, El Nido | | SCE | CHINO_2_APEBT1 | 25180 | WDT1250BESS | 0.48 | 20.00 | 1 | LA Basin | Eastern | | SCE | CHINO_2_JURUPA | | | | 0.00 | <u> </u> | LA Basin | Eastern | | SCE | CHINO_2_QF | | | | 0.00 | l | LA Basin | Eastern | | SCE | CHINO_2_SASOLR | | | | 0.00 | | LA Basin | Eastern | | SCE | CHINO_2_SOLAR | <u> </u> | | / | 0.27 | | LA Basin | Eastern | | İ | 1 | I | | 1 , | | 4 | 1 | | |-----|-----------------|-------|----------|------|-------|-----|----------|----------------------------| | SCE | CHINO_2_SOLAR2 |
 | | ! | 0.00 | | LA Basin | Eastern | | SCE | CHINO_6_CIMGEN | 24026 | CIMGEN | 13.8 | 26.00 | D1 | LA Basin | Eastern | | SCE | CHINO_7_MILIKN | 24024 | CHINO | 66 | 1.19 | l _ | LA Basin | Eastern | | SCE | COLTON_6_AGUAM1 | 25303 | CLTNAGUA | 13.8 | 43.00 | 1 | LA Basin | Eastern | | SCE | CORONS_2_SOLAR | | | _! | 0.00 | l _ | LA Basin | Eastern | | SCE | CORONS_6_CLRWTR | 29338 | CLRWTRCT | 13.8 | 20.72 | G1 | LA Basin | Eastern | | SCE | CORONS_6_CLRWTR | 29340 | CLRWTRST | 13.8 | 7.28 | S1 | LA Basin | Eastern | | SCE | DELAMO_2_SOLAR1 | | | | 0.41 | | LA Basin | Western | | SCE | DELAMO_2_SOLAR2 | | | | 0.47 | | LA Basin | Western | | SCE | DELAMO_2_SOLAR3 | | | | 0.34 | | LA Basin | Western | | SCE | DELAMO_2_SOLAR4 | | | | 0.35 | | LA Basin | Western | | SCE | DELAMO_2_SOLAR5 | | | | 0.27 | | LA Basin | Western | | SCE | DELAMO_2_SOLAR6 | | | | 0.54 | | LA Basin | Western | | SCE | DELAMO_2_SOLRC1 | | | | 0.00 | | LA Basin | Western | | SCE | DELAMO_2_SOLRD | | | | 0.00 | | LA Basin | Western | | SCE | DEVERS_1_QF | 25639 | SEAWIND | 115 | 0.92 | QF | LA Basin | Eastern, Valley-
Devers | | SCE | DEVERS_1_QF | 25632 | TERAWND | 115 | 0.76 | QF | LA Basin | Eastern, Valley-
Devers | | SCE | DEVERS_1_SEPV05 | | | | 0.00 | | LA Basin | Eastern, Valley-
Devers | | SCE | DEVERS_1_SOLAR | | | | 0.00 | | LA Basin | Eastern, Valley-
Devers | | SCE | DEVERS_1_SOLAR1 | | | | 0.00 | | LA Basin | Eastern, Valley-
Devers | | SCE | DEVERS_1_SOLAR2 | | | | 0.00 | | LA Basin | Eastern, Valley-
Devers | | SCE | DEVERS_2_CS2SR4 | | | | 0.00 | | LA Basin | Eastern, Valley-
Devers | | SCE | DEVERS_2_DHSPG2 | | | | 0.00 | | LA Basin | Eastern, Valley-
Devers | |-----|-----------------|-------|----------|------|--------|------|----------|----------------------------| | SCE | DMDVLY_1_UNITS | 25425 | ESRP P2 | 6.9 | 3.00 | 8 | LA Basin | Eastern | | SCE | DREWS_6_PL1X4 | 25301 | CLTNDREW | 13.8 | 36.00 | 1 | LA Basin | Eastern | | SCE | DVLCYN_1_UNITS | 25603 | DVLCYN3G | 13.8 | 36.95 | 3 | LA Basin | Eastern | | SCE | DVLCYN_1_UNITS | 25604 | DVLCYN4G | 13.8 | 36.95 | 4 | LA Basin | Eastern | | SCE | DVLCYN_1_UNITS | 25648 | DVLCYN1G | 13.8 | 27.72 | 1 | LA Basin | Eastern | | SCE | DVLCYN_1_UNITS | 25649 | DVLCYN2G | 13.8 | 27.72 | 2 | LA Basin | Eastern | | SCE | ELLIS_2_QF | 24325 | ORCOGEN | 13.8 | 0.06 | 1 | LA Basin | Western | | SCE | ELSEGN_2_UN1011 | 29904 | ELSEG5GT | 16.5 | 131.50 | 5 | LA Basin | Western, El Nido | | SCE | ELSEGN_2_UN1011 | 29903 | ELSEG6ST | 13.8 | 131.50 | 6 | LA Basin | Western, El Nido | | SCE | ELSEGN_2_UN2021 | 29902 | ELSEG7GT | 16.5 | 131.84 | 7 | LA Basin | Western, El Nido | | SCE | ELSEGN_2_UN2021 | 29901 | ELSEG8ST | 13.8 | 131.84 | 8 | LA Basin | Western, El Nido | | SCE | ETIWND_2_CHMPNE | | | | 0.00 |
 | LA Basin | Eastern | | SCE | ETIWND_2_FONTNA | 24055 | ETIWANDA | 66 | 0.21 |
 | LA Basin | Eastern | | SCE | ETIWND_2_RTS010 | 24055 | ETIWANDA | 66 | 0.41 |
 | LA Basin | Eastern | | SCE | ETIWND_2_RTS015 | 24055 | ETIWANDA | 66 | 0.81 | | LA Basin | Eastern | | SCE | ETIWND_2_RTS017 | 24055 | ETIWANDA | 66 | 0.95 |
 | LA Basin | Eastern | | SCE | ETIWND_2_RTS018 | 24055 | ETIWANDA | 66 | 0.41 | | LA Basin | Eastern | | SCE | ETIWND_2_RTS023 | 24055 | ETIWANDA | 66 | 0.68 | | LA Basin | Eastern | | SCE | ETIWND_2_RTS026 | 24055 | ETIWANDA | 66 | 1.62 | | LA Basin | Eastern | | SCE | ETIWND_2_RTS027 | 24055 | ETIWANDA | 66 | 0.54 | | LA Basin | Eastern | | SCE | ETIWND_2_SOLAR1 | | | | 0.00 |
| LA Basin | Eastern | | SCE | ETIWND_2_SOLAR2 | | | | 0.00 | | LA Basin | Eastern | | SCE | ETIWND_2_SOLAR5 | | | | 0.00 | | LA Basin | Eastern | | SCE | ETIWND_2_UNIT1 | 24071 | INLAND | 13.8 | 10.34 | 1 | LA Basin | Eastern | | SCE | ETIWND_6_GRPLND | 29305 | ETWPKGEN | 13.8 | 47.39 | 1 | LA Basin | Eastern | | SCE | ETIWND_6_MWDETI | 25422 | ETI MWDG | 13.8 | 16.70 | 1 | LA Basin | Eastern | |-----|-----------------|-------|-------------|------|-------|----|----------|----------------------------| | SCE | GARNET_1_SOLAR | 24815 | GARNET | 115 | 0.00 | | LA Basin | Eastern, Valley-
Devers | | SCE | GARNET_1_SOLAR2 | 24815 | GARNET | 115 | 1.08 | | LA Basin | Eastern, Valley-
Devers | | SCE | GARNET_1_UNITS | 24815 | GARNET | 115 | 1.63 | G1 | LA Basin | Eastern, Valley-
Devers | | SCE | GARNET_1_UNITS | 24815 | GARNET | 115 | 1.28 | G3 | LA Basin | Eastern, Valley-
Devers | | SCE | GARNET_1_UNITS | 24815 | GARNET | 115 | 0.56 | G2 | LA Basin | Eastern, Valley-
Devers | | SCE | GARNET_1_WIND | 24815 | GARNET | 115 | 1.37 | | LA Basin | Eastern, Valley-
Devers | | SCE | GARNET_1_WINDS | 24815 | GARNET | 115 | 4.73 | W2 | LA Basin | Eastern, Valley-
Devers | | SCE | GARNET_1_WT3WND | 24815 | GARNET | 115 | 0.00 | W3 | LA Basin | Eastern, Valley-
Devers | | SCE | GARNET_2_DIFWD1 | 24815 | GARNET | 115 | 1.65 | | LA Basin | Eastern, Valley-
Devers | | SCE | GARNET_2_HYDRO | 24815 | GARNET | 115 | 0.76 | QF | LA Basin | Eastern, Valley-
Devers | | SCE | GARNET_2_WIND1 | 24815 | GARNET | 115 | 2.35 | | LA Basin | Eastern, Valley-
Devers | | SCE | GARNET_2_WIND2 | 24815 | GARNET | 115 | 2.46 | | LA Basin | Eastern, Valley-
Devers | | SCE | GARNET_2_WIND3 | 24815 | GARNET | 115 | 2.65 | | LA Basin | Eastern, Valley-
Devers | | SCE | GARNET_2_WIND4 | 24815 | GARNET | 115 | 2.06 | | LA Basin | Eastern, Valley-
Devers | | SCE | GARNET_2_WIND5 | 24815 | GARNET | 115 | 0.63 | | LA Basin | Eastern, Valley-
Devers | | SCE | GARNET_2_WPMWD6 | 24815 | GARNET | 115 | 1.25 | | LA Basin | Eastern, Valley-
Devers | | SCE | GLNARM_2_UNIT 5 | 29013 | GLENARM5_CT | 13.8 | 50.00 | CT | LA Basin | Western | | SCE | GLNARM_2_UNIT 5 | 29014 | GLENARM5_ST | 13.8 | 15.00 | ST | LA Basin | Western | | SCE | GLNARM_7_UNIT 1 | 29005 | PASADNA1 | 13.8 | 22.07 | 1 | LA Basin | Western | | SCE | GLNARM_7_UNIT 2 | 29006 | PASADNA2 | 13.8 | 22.30 | 1 | LA Basin | Western | | SCE | GLNARM_7_UNIT 3 | 25042 | PASADNA3 | 13.8 | 44.83 | 1 | LA Basin | Western | | SCE | GLNARM_7_UNIT 4 | 25043 | PASADNA4 | 13.8 | 42.42 | 1 | LA Basin | Western | | SCE | HARBGN_7_UNITS | 24062 | HARBOR G | 13.8 | 76.27 | 1 | LA Basin | Western | | SCE | HARBGN 7 UNITS | 24062 | HARBOR G | 13.8 | 11.86 | HP | LA Basin | Western | |-----|-----------------|-------|-----------------|------|--------|----|----------|----------------------------| | SCE | HARBGN 7 UNITS | 25510 | HARBORG4 | 4.16 | 11.86 | LP | LA Basin | Western | | SCE | HINSON_6_CARBGN | 24020 | CARBGEN1 | 13.8 | 14.43 | 1 | LA Basin | Western | | SCE | HINSON_6_CARBGN | 24328 | CARBGEN2 | 13.8 | 14.43 | 1 | LA Basin | Western | | SCE | HINSON_6_LBECH1 | 24170 | LBEACH12 | 13.8 | 65.00 | 1 | LA Basin | Western | | SCE | HINSON_6_LBECH2 | 24170 | LBEACH12 | 13.8 | 65.00 | 2 | LA Basin | Western | | SCE | HINSON_6_LBECH3 | 24171 | LBEACH34 | 13.8 | 65.00 | 3 | LA Basin | Western | | SCE | HINSON_6_LBECH4 | 24171 | LBEACH34 | 13.8 | 65.00 | 4 | LA Basin | Western | | SCE | HINSON_6_SERRGN | 24139 | SERRFGEN | 13.8 | 34.00 | D1 | LA Basin | Western | | SCE | HNTGBH_2_PL1X3 | 24581 | HUNTBCH
CTG2 | 18 | 211,23 | G2 | LA Basin | Western | | SCE | HNTGBH_2_PL1X3 | 24582 | HUNTBCH STG | 18 | 251.34 | S1 | LA Basin | Western | | SCE | HNTGBH_2_PL1X3 | 24580 | HUNTBCH
CTG1 | 18 | 211.23 | G1 | LA Basin | Western | | SCE | HNTGBH_7_UNIT 2 | 24067 | HUNT2 G | 13.8 | 225.80 | 2 | LA Basin | Western | | SCE | INDIGO_1_UNIT 1 | 29190 | WINTECX2 | 13.8 | 42.00 | 1 | LA Basin | Eastern, Valley-
Devers | | SCE | INDIGO_1_UNIT 2 | 29191 | WINTECX1 | 13.8 | 42.00 | 1 | LA Basin | Eastern, Valley-
Devers | | SCE | INDIGO_1_UNIT 3 | 29180 | WINTEC8 | 13.8 | 42.00 | 1 | LA Basin | Eastern, Valley-
Devers | | SCE | LACIEN_2_VENICE | 24337 | VENICE | 13.8 | 3.00 | 1 | LA Basin | Western, El Nido | | SCE | LAGBEL_6_QF | 29951 | REFUSE | 13.8 | 0.35 | D1 | LA Basin | Western | | SCE | LGHTHP_6_ICEGEN | 24070 | ICEGEN | 13.8 | 48.00 | 1 | LA Basin | Western | | SCE | MESAS_2_QF | 24209 | MESA CAL | 66 | 0.00 | | LA Basin | Western | | SCE | MIRLOM_2_CORONA | | | | 0.00 | | LA Basin | Eastern | | SCE | MIRLOM_2_LNDFL | | | | 0.81 | | LA Basin | Eastern | | SCE | MIRLOM_2_MLBBTA | 25185 | WDT1425_G1 | 0.48 | 10.00 | 1 | LA Basin | Eastern | | SCE | MIRLOM_2_MLBBTB | 25186 | WDT1426_G2 | 0.48 | 10.00 | 1 | LA Basin | Eastern | | SCE | MIRLOM_2_ONTARO | | | | 1.49 | | LA Basin | Eastern | | SCE | MIRLOM_2_RTS032 | | | | 0.41 | | LA Basin | Eastern | | SCE | MIRLOM_2_RTS033 | | | | 0.27 | | LA Basin | Eastern | | ı | I | ı | 1 | 1 | | 1 | 1 | | |-----|-----------------|-------|----------|------|-------|----|----------|----------------------------| | SCE | MIRLOM_2_TEMESC | | ' | | 0.00 | | LA Basin | Eastern | | SCE | MIRLOM_6_PEAKER | 29307 | MRLPKGEN | 13.8 | 46.00 | 1 | LA Basin | Eastern | | SCE | MIRLOM_7_MWDLKM | 24210 | MIRALOMA | 66 | 1.80 | _ | LA Basin | Eastern | | SCE | MOJAVE_1_SIPHON | 25657 | MJVSPHN1 | 13.8 | 3.20 | 1 | LA Basin | Eastern | | SCE | MOJAVE_1_SIPHON | 25658 | MJVSPHN1 | 13.8 | 3.20 | 2 | LA Basin | Eastern | | SCE | MOJAVE_1_SIPHON | 25659 | MJVSPHN1 | 13.8 | 3.20 | 3 | LA Basin | Eastern | | SCE | MTWIND_1_UNIT 1 | 29060 | MOUNTWND | 115 | 9.32 | S1 | LA Basin | Eastern, Valley-
Devers | | SCE | MTWIND_1_UNIT 2 | 29060 | MOUNTWND | 115 | 4.66 | S2 | LA Basin | Eastern, Valley-
Devers | | SCE | MTWIND_1_UNIT 3 | 29060 | MOUNTWND | 115 | 4.71 | S3 | LA Basin | Eastern, Valley-
Devers | | SCE | OLINDA_2_COYCRK | 24211 | OLINDA | 66 | 3.13 | | LA Basin | Western | | SCE | OLINDA_2_LNDFL2 | 29011 | BREAPWR2 | 13.8 | 7.16 | S1 | LA Basin | Western | | SCE | OLINDA_2_LNDFL2 | 29011 | BREAPWR2 | 13.8 | 4.00 | C1 | LA Basin | Western | | SCE | OLINDA_2_LNDFL2 | 29011 | BREAPWR2 | 13.8 | 4.00 | C2 | LA Basin | Western | | SCE | OLINDA_2_LNDFL2 | 29011 | BREAPWR2 | 13.8 | 4.00 | C3 | LA Basin | Western | | SCE | OLINDA_2_LNDFL2 | 29011 | BREAPWR2 | 13.8 | 4.00 | C4 | LA Basin | Western | | SCE | OLINDA_2_QF | 24211 | OLINDA | 66 | 0.00 | | LA Basin | Western | | SCE | OLINDA_7_BLKSND | 24211 | OLINDA | 66 | 0.36 | | LA Basin | Western | | SCE | OLINDA_7_LNDFIL | 24211 | OLINDA | 66 | 0.00 | | LA Basin | Western | | SCE | PADUA_2_ONTARO | 24111 | PADUA | 66 | 0.35 | | LA Basin | Eastern | | SCE | PADUA_2_SOLAR1 | 24111 | PADUA | 66 | 0.00 | | LA Basin | Eastern | | SCE | PADUA_6_MWDSDM | 24111 | PADUA | 66 | 2.60 | | LA Basin | Eastern | | SCE | PADUA_6_QF | 24111 | PADUA | 66 | 0.39 | | LA Basin | Eastern | | SCE | PADUA_7_SDIMAS | 24111 | PADUA | 66 | 1.05 | | LA Basin | Eastern | | SCE | PANSEA_1_PANARO | 25640 | PANAERO | 115 | 6.30 | QF | LA Basin | Eastern, Valley-
Devers | | SCE | PWEST_1_UNIT | 24815 | GARNET | 115 | 0.44 | PC | LA Basin | Western | | ı | 1 | 1 | 1 | 1 1 | | | 1 | 1 | |-----|-----------------|-------|-----------|------|--------|----|----------|----------------------------| | SCE | REDOND_7_UNIT 5 | 24121 | REDON5 G | 18 | 178.87 | 5 | LA Basin | Western | | SCE | REDOND_7_UNIT 6 | 24122 | REDON6 G | 18 | 175.00 | 6 | LA Basin | Western | | SCE | REDOND_7_UNIT 8 | 24124 | REDON8 G | 20 | 495.90 | 8 | LA Basin | Western | | SCE | RENWD_1_QF | 25636 | RENWIND | 115 | 1.33 | Q1 | LA Basin | Eastern, Valley-
Devers | | SCE | RENWD_1_QF | 25636 | RENWIND | 115 | 1.32 | Q2 | LA Basin | Eastern, Valley-
Devers | | SCE | RVSIDE_2_RERCU3 | 24299 | RERC2G3 | 13.8 | 49.00 | 1 | LA Basin | Eastern | | SCE | RVSIDE_2_RERCU4 | 24300 | RERC2G4 | 13.8 | 49.00 | 1 | LA Basin | Eastern | | SCE | RVSIDE_6_RERCU1 | 24242 | RERC1G | 13.8 | 48.35 | 1 | LA Basin | Eastern | | SCE | RVSIDE 6 RERCU2 | 24243 | RERC2G | 13.8 | 48.50 | 1 | LA Basin | Eastern | | SCE | RVSIDE_6_SOLAR1 | 24244 | SPRINGEN | 13.8 | 2.03 | | LA Basin | Eastern | | SCE | RVSIDE_6_SPRING | 24244 | SPRINGEN | 13.8 | 36.00 | 1 | LA Basin | Eastern | | SCE | SANITR_6_UNITS | 24324 | SANIGEN | 13.8 | 0.84 | D1 | LA Basin | Eastern | | SCE | SANTGO_2_LNDFL1 | 24341 | COYGEN | 13.8 | 18.65 | 1 | LA Basin | Western | | SCE | SANTGO_2_MABBT1 | 25192 | WDT1406_G | 0.48 | 2.00 | 1 | LA Basin | Western | | SCE | SANWD_1_QF | 25646 | SANWIND | 115 | 3.26 | Q1 | LA Basin | Eastern, Valley-
Devers | | SCE | SANWD_1_QF | 25646 | SANWIND | 115 | 3.26 | Q2 | LA Basin | Eastern, Valley-
Devers | | SCE | SBERDO_2_PSP3 | 24923 | MNTV-ST1 | 18 | 257.82 | 1 | LA Basin | Eastern, West of Devers | | SCE | SBERDO_2_PSP3 | 24921 | MNTV-CT1 | 18 | 148.59 | 1 | LA Basin | Eastern, West of Devers | | SCE | SBERDO_2_PSP3 | 24922 | MNTV-CT2 | 18 | 148.59 | 1 | LA Basin | Eastern, West of Devers | | SCE | SBERDO_2_PSP4 | 24926 | MNTV-ST2 | 18 | 257.82 | 1 | LA Basin | Eastern, West of Devers | | SCE | SBERDO_2_PSP4 | 24924 | MNTV-CT3 | 18 | 148.59 | 1 | LA Basin | Eastern, West of Devers | | SCE | SBERDO_2_PSP4 | 24925 | MNTV-CT4 | 18 | 148.59 | 1 | LA Basin | Eastern, West of Devers | | SCE | SBERDO_2_QF | 24214 | SANBRDNO | 66 | 0.14 | | LA Basin | Eastern, West of Devers | | SCE | SBERDO_2_REDLND | 24214 | SANBRDNO | 66 | 0.54 | | LA Basin | Eastern, West of Devers | | 1 | ı | 1 | 1 | | | | 1 | 1 | |-----|-----------------|-------|-------------|------|--------|----|----------|-----------------------------------| | SCE | SBERDO_2_RTS005 | 24214 | SANBRDNO | 66 | 0.68 | | LA Basin | Eastern, West of Devers | | SCE | SBERDO_2_RTS007 | 24214 | SANBRDNO | 66 | 0.68 | | LA Basin | Eastern, West of
Devers | | SCE | SBERDO_2_RTS011 | 24214 | SANBRDNO | 66 | 0.95 | | LA Basin | Eastern, West of
Devers | | SCE | SBERDO_2_RTS013 | 24214 | SANBRDNO | 66 | 0.95 | | LA Basin | Eastern, West of Devers | | SCE | SBERDO_2_RTS016 | 24214 | SANBRDNO | 66 | 0.41 | | LA Basin | Eastern, West of Devers | | SCE | SBERDO_2_RTS048 | 24214 | SANBRDNO | 66 | 0.00 | | LA Basin | Eastern, West of Devers | | SCE | SBERDO_2_SNTANA | 24214 | SANBRDNO | 66 | 0.30 | | LA Basin | Eastern, West of Devers | | SCE | SBERDO_6_MILLCK | 24214 | SANBRDNO | 66 | 1.09 | | LA Basin | Eastern, West of Devers | | SCE | SENTNL_2_CTG1 | 29101 | SENTINEL_G1 | 13.8 | 103.76 | 1 | LA Basin | Eastern, Valley-
Devers | | SCE | SENTNL_2_CTG2 | 29102 | SENTINEL_G2 | 13.8 | 95.34 | 1 | LA Basin | Eastern, Valley-
Devers | | SCE | SENTNL_2_CTG3 | 29103 | SENTINEL_G3 | 13.8 | 96.85 | 1 | LA Basin | Eastern, Valley-
Devers | | SCE | SENTNL_2_CTG4 | 29104 | SENTINEL_G4 | 13.8 | 102.47 | 1 | LA Basin | Eastern, Valley-
Devers | | SCE | SENTNL_2_CTG5 | 29105 | SENTINEL_G5 | 13.8 | 103.81 | 1 | LA Basin | Eastern, Valley-
Devers | | SCE | SENTNL_2_CTG6 | 29106 | SENTINEL_G6 | 13.8 | 100.99 | 1 | LA Basin | Eastern, Valley-
Devers | | SCE | SENTNL_2_CTG7 | 29107 | SENTINEL_G7 | 13.8 | 97.06 | 1 | LA Basin | Eastern, Valley-
Devers | | SCE | SENTNL_2_CTG8 | 29108 | SENTINEL_G8 | 13.8 | 101.80 | 1 | LA Basin | Eastern, Valley-
Devers | | SCE | TIFFNY_1_DILLON | 29021 | WINTEC6 | 115 | 9.45 | 1 | LA Basin | Eastern, Valley-
Devers | | SCE | TRNSWD_1_QF | 25637 | TRANWIND | 115 | 8.18 | QF | LA Basin | Eastern, Valley-
Devers | | SCE | TULEWD_1_TULWD1 | | | | 26.80 | | LA Basin | Eastern, Valley-
Devers | | SCE | VALLEY_5_PERRIS | 24160 | VALLEYSC | 115 | 7.94 | | LA Basin | Eastern, Valley,
Valley-Devers | | SCE | VALLEY_5_REDMTN | 24160 | VALLEYSC | 115 | 3.80 | | LA Basin | Eastern, Valley,
Valley-Devers | |-----|------------------|-------|----------|------|-------|----|----------|-----------------------------------| | SCE | VALLEY_5_RTS044 | 24160 | VALLEYSC | 115 | 2.16 | | LA Basin | Eastern, Valley,
Valley-Devers | | SCE | VALLEY_5_SOLAR1 | 24160 | VALLEYSC | 115 | 0.00 | | LA Basin | Eastern, Valley,
Valley-Devers | | SCE | VALLEY_5_SOLAR2 | 25082 | WDT786 | 34.5 | 5.40 | EQ | LA Basin | Eastern, Valley,
Valley-Devers | | SCE | VENWD_1_WIND1 | 25645 | VENWIND | 115 | 1.98 | Q1 | LA Basin | Eastern, Valley-
Devers | | SCE | VENWD_1_WIND2 | 25645 | VENWIND | 115 | 3.37 | Q2 | LA Basin | Eastern, Valley-
Devers | | SCE | VENWD_1_WIND3 | 25645 | VENWIND | 115 | 4.00 | EU | LA Basin | Eastern, Valley-
Devers | | SCE | VERNON_6_GONZL1 | 24342 | FEDGEN | 13.8 | 5.75 | 1 | LA Basin | Western | | SCE | VERNON_6_GONZL2 | 24342 | FEDGEN | 13.8 | 5.75 | 1 | LA Basin | Western | | SCE | VERNON_6_MALBRG | 24241 | MALBRG3G | 13.8 | 49.26 | S3 | LA Basin | Western | | SCE | VERNON_6_MALBRG | 24239 | MALBRG1G | 13.8 | 42.37 | C1 | LA Basin | Western | | SCE | VERNON_6_MALBRG | 24240 | MALBRG2G | 13.8 | 42.37 | C2 | LA Basin | Western | | SCE | VILLPK_2_VALLYV | 24216 | VILLA PK | 66 | 4.10 | DG | LA Basin | Western | | SCE | VILLPK_6_MWDYOR | 24216 | VILLA PK | 66 | 3.60 | | LA Basin | Western | | SCE | VISTA_2_RIALTO | 24901 | VSTA | 230 | 0.27 | | LA Basin | Eastern | | SCE | VISTA_2_RTS028 | 24901 | VSTA | 230 | 0.95 | | LA Basin | Eastern | | SCE | VISTA_6_QF | 24902 | VSTA | 66 | 0.10 | | LA Basin | Eastern | | SCE | WALCRK_2_CTG1 | 29201 | WALCRKG1 | 13.8 | 96.43 | 1 | LA Basin | Western | | SCE | WALCRK_2_CTG2 | 29202 | WALCRKG2 | 13.8 | 96.91 | 1 | LA Basin | Western | | SCE | WALCRK_2_CTG3 | 29203 | WALCRKG3 | 13.8 | 96.65 | 1 | LA Basin | Western | | SCE | WALCRK_2_CTG4 | 29204 | WALCRKG4 | 13.8 | 96.49 | 1 | LA Basin | Western | | SCE | WALCRK_2_CTG5 | 29205 | WALCRKG5 | 13.8 | 96.65 | 1 | LA Basin | Western | | SCE | WALNUT_2_SOLAR | | | | 0.00 | | LA Basin | Western | | SCE | WALNUT_6_HILLGEN | 24063 | HILLGEN | 13.8 | 32.97 | D1 | LA Basin | Western | | SCE | WALNUT_7_WCOVST | 24157 | WALNUT | 66 | 5.37 | | LA Basin | Western | | SCE | WHTWTR_1_WINDA1 | 29061 | WHITEWTR | 33 | 12.92 | 1 | LA Basin | Eastern, Valley-
Devers | | SCE | ZZ_ARCOGN_2_UNITS | 24018 | BRIGEN | 13.8 | 0.00 | 1 | LA Basin | Western | |-----|-----------------------|--------|-------------|------|-------|----|----------|----------------------------| | SCE | ZZ_HINSON_6_QF | 24064 | HINSON | 66 | 0.00 | 1 | LA Basin | Western | | SCE | ZZ_LAFRES_6_QF | 24332 | PALOGEN | 13.8 | 0.00 | D1 | LA Basin | Western, El Nido | | SCE | ZZ_MOBGEN_6_UNIT 1 | 24094 | MOBGEN | 13.8 | 0.00 | 1 | LA Basin | Western, El Nido | | SCE | ZZ_NA | 24327 | THUMSGEN | 13.8 | 0.00 | 1 | LA Basin | Western | | SCE | ZZ_NA | 24329 | MOBGEN2 | 13.8 | 0.00 | 1 | LA Basin | Western, El Nido | | SCE | ZZ_NA | 24330 | OUTFALL1 | 13.8 | 0.00 | 1 | LA Basin | Western, El Nido | | SCE | ZZ_NA | 24331 | OUTFALL2 | 13.8 | 0.00 | 1 | LA Basin | Western, El Nido | | SCE | ZZ_NA | 29260 | ALTAMSA4 | 115 | 0.00 | 1 | LA Basin | Eastern, Valley-
Devers | | SCE | ZZZ_New | 698082 | ALMITOS B1A | 0.42 | 50.00 | 1 | LA Basin | Western | | SCE | ZZZ_New | 698083 | ALMITOS B12 | 0.42 | 50.00 | 1 | LA Basin | Western | | SCE | ZZZ_New | 97624 | WH_STN_1 | 13.8 | 49.00 | 1 | LA Basin | Western | | SCE | ZZZ_New | 97625 | WH_STN_2 | 13.8 | 49.00 | 1 | LA Basin | Western | | SCE | ZZZZZ_ALAMIT_7_UNIT 1 | 24001 | ALAMT1 G | 18 | 0.00 | 1 | LA Basin | Western | | SCE | ZZZZZ_ALAMIT_7_UNIT 2 | 24002 | ALAMT2 G | 18 | 0.00 | 2 | LA Basin | Western | | SCE | ZZZZZ_ALAMIT_7_UNIT 6 | 24161 | ALAMT6 G | 20 | 0.00 | 6 | LA Basin | Western | | SCE | ZZZZZ_BRDWAY_7_UNIT 3 | 29007 | BRODWYSC | 13.8 | 0.00 | | LA Basin | Western | | SCE | ZZZZZ_CENTER_2_QF | 29953 | SIGGEN | 13.8 | 0.00 | D1 | LA Basin | Western | | SCE | ZZZZZ_CHINO_6_SMPPAP | 24140 | SIMPSON | 13.8 | 0.00 | D1 | LA Basin | Eastern | | SCE | ZZZZZ_ETIWND_7_MIDVLY | 24055 | ETIWANDA | 66 | 0.00 | | LA Basin | Eastern | | I ' | l | | l | 1 | | 1 . | l | 1 | |-------|---------------------------|-------|-----------------|------|--------|------|----------|-----------------------------------| | SCE | ZZZZZ_ETIWND_7_UNIT 3 | 24052 | MTNVIST3 | 18 | 0.00 | 3 | LA Basin | Eastern | | SCE | ZZZZZ_ETIWND_7_UNIT 4 | 24053 | MTNVIST4 | 18 | 0.00 | 4 | LA Basin | Eastern | | SCE | ZZZZZ_HNTGBH_7_UNIT 1 | 24066 | HUNT1 G | 13.8 | 0.00 | 1 | LA Basin | Western | | SCE | ZZZZZ_INLDEM_5_UNIT 1 | 29041 | IEEC-G1 | 19.5 | 0.00 | 1 | LA Basin | Eastern, Valley,
Valley-Devers | | SCE | ZZZZZ_INLDEM_5_UNIT 2 | 29042 | IEEC-G2 | 19.5 | 0.00 | 1 | LA Basin | Eastern, Valley,
Valley-Devers | | SCE | ZZZZZ_LAGBEL_2_STG1 | | | | 0.00 | /' | LA Basin | Western | | SCE | ZZZZZ_MIRLOM_6_DELGEN | 29339 | DELGEN | 13.8 | 0.00 | 1 | LA Basin | Eastern | | SCE | ZZZZZ_REDOND_7_UNIT 7 | 24123 | REDON7 G | 20 | 0.00 | 7 | LA Basin | Western | | SCE | ZZZZZ_RHONDO_2_QF | 24213 | RIOHONDO | 66 | 0.00 | DG | LA Basin | Western | | SCE | ZZZZZ_RHONDO_6_PUENT
E | 24213 | RIOHONDO | 66 | 0.00 |
 | LA Basin | Western | | SCE | ZZZZZ_VALLEY_7_BADLND | 24160 | VALLEYSC | 115 | 0.00 | | LA Basin | Eastern, Valley,
Valley-Devers | | SCE | ZZZZZ_VALLEY_7_UNITA1 | 24160 | VALLEYSC | 115 | 0.00 |
 | LA Basin | Eastern, Valley,
Valley-Devers | | SCE | ZZZZZ_WALNUT_7_WCOVC
T | 24157 | WALNUT | 66 | 0.00 |
 | LA Basin | Western | | SCE | ZZZZZZ_ELSEGN_7_UNIT 4 | 24048 | ELSEG4 G | 18 | 0.00 | 4 | LA Basin | Western, El Nido | | SDG&E | | 22149 | CALPK_BD | 13.8 | 51.25 | 1 | SD-IV | San Diego, Border | | SDG&E | | 22085 | BORREGO | 12.5 | 1.70 | DG | SD-IV | San Diego | | SDG&E | BREGGO_6_SOLAR | 22082 | BR GEN1 | 0.21 | 7.02 | 1 | SD-IV | San Diego | | SDG&E | CARLS1_2_CARCT1 | 22783 | EA5
REPOWER1 | 13.8 | 105.50 | 1 | SD-IV | San Diego | | SDG&E | CARLS1_2_CARCT1 | 22784 | EA5
REPOWER2 | 13.8 | 105.50 | 1 | SD-IV | San Diego | | SDG&E | CARLS1_2_CARCT1 | 22786 | EA5
REPOWER4 | 13.8 | 105.50 | 1 | SD-IV | San Diego | | SDG&E | CARLS1_2_CARCT1 | 22788 | EA5
REPOWER3 | 13.8 | 105.50 | 1 | SD-IV | San Diego | | SDG&E | | 22787 | EA5
REPOWER5 | 13.8 | 105.50 | 1 | SD-IV | San Diego | | SDG&E | CCRITA_7_RPPCHF | 22124 | CHCARITA | 138 | 3.60 | 1 | SD-IV | San Diego | | SDG&E | CHILLS 1 SYCENG | 22120 | CARLTNHS | 138 | 0.62 | 1 | SD-IV | San Diego | |-------|-----------------|-------|-------------|------|-------|----|-------|------------------------| | SDG&E | CHILLS 7 UNITA1 | 22120 | CARLTNHS | 138 | 1.52 | 2 | SD-IV | San Diego | | SDG&E | | 23463 | DW GEN3&4 | 0.33 | 33.75 | | SD-IV | 2.090 | | SDG&E | | 23463 | DW GEN3&4 | 0.33 | 0.00 | 2 | SD-IV | | | SDG&E | | 22112 | CAPSTRNO | 138 | 5.71 | 1 | SD-IV | San Diego | | SDG&E | | 23309 | IV GEN3 G1 | 0.31 | 20.85 | G1 | SD-IV | <u> </u> | | SDG&E | CPVERD 2 SOLAR | 23301 | IV GEN3 G2 | 0.31 | 16.68 | G2 | SD-IV | | | SDG&E | | 22152 | CREELMAN | 69 | 0.54 | DG | SD-IV | San Diego | | SDG&E | CRELMN 6 RAMON2 | 22152 | CREELMAN | 69 | 1.35 | DG | SD-IV | San Diego | | SDG&E | CRELMN_6_RAMSR3 | | | | 0.93 | | SD-IV | San Diego | | SDG&E | CRSTWD_6_KUMYAY | 22915 | KUMEYAAY | 0.69 | 10.50 | 1 | SD-IV | San Diego | | SDG&E | CSLR4S_2_SOLAR | 23298 | DW GEN1 G1 | 0.32 | 17.55 | G1 | SD-IV | | | SDG&E | CSLR4S_2_SOLAR | 23299 | DW GEN1 G2 | 0.32 | 17.55 | G2 | SD-IV | | | SDG&E | ELCAJN_6_EB1BT1 | 22208 | EL CAJON | 69 | 7.50 | 1 | SD-IV | San Diego, El
Cajon | | SDG&E | ELCAJN_6_LM6K | 23320 | EC GEN2 | 13.8 | 48.10 | 1 | SD-IV | San Diego, El
Cajon | | SDG&E | ELCAJN_6_UNITA1 | 22150 | EC GEN1 | 13.8 | 45.42 | 1 | SD-IV | San Diego, El
Cajon | | SDG&E | ENERSJ_2_WIND | 23100 | ECO GEN1 G1 | 0.69 | 32.57 | G1 | SD-IV | | | SDG&E | ESCNDO_6_EB1BT1 | 22256 | ESCNDIDO | 69 | 10.00 | 1 | SD-IV | San Diego | | SDG&E | ESCNDO_6_EB2BT2 | 22256 | ESCNDIDO | 69 | 10.00 | 1 | SD-IV | San Diego | | SDG&E | ESCNDO_6_EB3BT3 | 22256 | ESCNDIDO | 69 | 10.00 | 1 | SD-IV | San Diego | | SDG&E | ESCNDO_6_PL1X2 | 22257 | ESGEN | 13.8 | 48.71 | 1 | SD-IV | San Diego | | SDG&E |
ESCNDO_6_UNITB1 | 22153 | CALPK_ES | 13.8 | 48.04 | 1 | SD-IV | San Diego | | SDG&E | ESCO_6_GLMQF | 22332 | GOALLINE | 69 | 36.41 | 1 | SD-IV | San Diego | | SDG&E | IVSLRP_2_SOLAR1 | 23440 | DW GEN2 G1 | 0.36 | 54.00 | 1 | SD-IV | | | SDG&E | IVWEST_2_SOLAR1 | 23155 | DU GEN1 G1 | 0.2 | 21.91 | G1 | SD-IV | | | SDG&E | IVWEST_2_SOLAR1 | 23156 | DU GEN1 G2 | 0.2 | 18.59 | G2 | SD-IV | | | SDG&E | JACMSR_1_JACSR1 | 23352 | ECO GEN2 | 0.55 | 5.40 | 1 | SD-IV | | | SDG&E | LAKHDG_6_UNIT 1 | 22625 | LKHODG1 | 13.8 | 20.00 | 1 | SD-IV | San Diego | | SDG&E | LAKHDG_6_UNIT 2 | 22626 | LKHODG2 | 13.8 | 20.00 | 2 | SD-IV | San Diego | | SDG&E | | 22074 | LRKSPBD1 | 13.8 | 46.00 | 1 | SD-IV | San Diego, Border | | SDG&E | LARKSP_6_UNIT 2 | 22075 | LRKSPBD2 | 13.8 | 46.00 | 1 | SD-IV | San Diego, Border | | SDG&E | LAROA1_2_UNITA1 | 20187 | LRP-U1 | 16 | 0.00 | 1 | SD-IV | | |-------|-----------------|-------|--------------|------|--------|----|-------|-----------| | SDG&E | LAROA2 2 UNITA1 | 22997 | INTBCT | 16 | 176.81 | 1 | SD-IV | | | SDG&E | LAROA2 2 UNITA1 | 22996 | INTBST | 18 | 145.19 | 1 | SD-IV | | | SDG&E | LILIAC_6_SOLAR | 22404 | LILIAC | 69 | 0.81 | DG | SD-IV | San Diego | | SDG&E | MRGT_6_MEF2 | 22487 | MEF_MR2 | 13.8 | 44.00 | 1 | SD-IV | San Diego | | SDG&E | MRGT_6_MMAREF | 22486 | MEF_MR1 | 13.8 | 45.00 | 1 | SD-IV | San Diego | | SDG&E | MSHGTS_6_MMARLF | 22448 | MESAHGTS | 69 | 4.03 | 1 | SD-IV | San Diego | | SDG&E | MSSION_2_QF | 22496 | MISSION | 69 | 0.70 | 1 | SD-IV | San Diego | | SDG&E | MURRAY_6_UNIT | 22532 | MURRAY | 69 | 0.00 | | SD-IV | San Diego | | SDG&E | OCTILO_5_WIND | 23314 | OCO GEN G1 | 0.69 | 27.83 | G1 | SD-IV | | | SDG&E | OCTILO_5_WIND | 23318 | OCO GEN G2 | 0.69 | 27.83 | G2 | SD-IV | | | SDG&E | OGROVE 6 PL1X2 | 22628 | PA GEN1 | 13.8 | 48.00 | 1 | SD-IV | San Diego | | SDG&E | OGROVE_6_PL1X2 | 22629 | PA GEN2 | 13.8 | 48.00 | 1 | SD-IV | San Diego | | SDG&E | OTAY_6_PL1X2 | 22617 | OYGEN | 13.8 | 35.50 | 1 | SD-IV | San Diego | | SDG&E | OTMESA_2_PL1X3 | 22607 | OTAYMST1 | 16 | 272.27 | 1 | SD-IV | San Diego | | SDG&E | OTMESA_2_PL1X3 | 22606 | OTAYMGT2 | 18 | 166.17 | 1 | SD-IV | San Diego | | SDG&E | OTMESA_2_PL1X3 | 22605 | OTAYMGT1 | 18 | 165.16 | 1 | SD-IV | San Diego | | SDG&E | PALOMR_2_PL1X3 | 22265 | PEN_ST | 18 | 225.24 | 1 | SD-IV | San Diego | | SDG&E | PALOMR_2_PL1X3 | 22262 | PEN_CT1 | 18 | 170.18 | 1 | SD-IV | San Diego | | SDG&E | PALOMR_2_PL1X3 | 22263 | PEN_CT2 | 18 | 170.18 | 1 | SD-IV | San Diego | | SDG&E | PIOPIC_2_CTG1 | 23162 | PIO PICO CT1 | 13.8 | 111.30 | 1 | SD-IV | San Diego | | SDG&E | PIOPIC_2_CTG2 | 23163 | PIO PICO CT2 | 13.8 | 112.70 | 1 | SD-IV | San Diego | | SDG&E | PIOPIC_2_CTG3 | 23164 | PIO PICO CT3 | 13.8 | 112.00 | 1 | SD-IV | San Diego | | SDG&E | | | | | 0.00 | | SD-IV | San Diego | | SDG&E | | 22704 | SAMPSON | 12.5 | 0.85 | 1 | SD-IV | San Diego | | SDG&E | | 23442 | DW GEN2 G3A | 0.6 | 40.50 | 1 | SD-IV | | | SDG&E | | 23443 | DW GEN2 G3B | 0.6 | 27.00 | 1 | SD-IV | | | SDG&E | | 22724 | SANMRCOS | 69 | 1.50 | 1 | SD-IV | San Diego | | SDG&E | TERMEX_2_PL1X3 | 22981 | TDM STG | 21 | 280.13 | 1 | SD-IV | | | SDG&E | TERMEX 2 PL1X3 | 22982 | TDM CTG2 | 18 | 156.44 | 1 | SD-IV | [[| |-------|-----------------|-------|--------------|------|--------|----|-------|-----------| | SDG&E | | 22983 | TDM CTG3 | 18 | 156.44 | 1 | SD-IV | | | SDG&E | VLCNTR_6_VCSLR | 22870 | VALCNTR | 69 | 0.63 | DG | SD-IV | San Diego | | SDG&E | VLCNTR_6_VCSLR1 | 22870 | VALCNTR | 69 | 0.68 | DG | SD-IV | San Diego | | SDG&E | VLCNTR_6_VCSLR2 | 22870 | VALCNTR | 69 | 1.35 | DG | SD-IV | San Diego | | SDG&E | VSTAES_6_VESBT1 | 23541 | ME GEN 1_BS1 | 0.64 | 5.50 | 1 | SD-IV | San Diego | | SDG&E | | 23216 | ME GEN 1_BS2 | 0.48 | 5.50 | 1 | SD-IV | San Diego | | SDG&E | WISTRA_2_WRSSR1 | 23287 | Q429_G1 | 0.31 | 27.00 | 1 | SD-IV | | | SDG&E | ZZ_NA | 22916 | PFC-AVC | 0.6 | 0.00 | 1 | SD-IV | San Diego | | SDG&E | ZZZ_New Unit | 23710 | Q1170_BESS | 0.48 | 62.50 | 1 | SD-IV | San Diego | | SDG&E | ZZZ_New Unit | 23441 | DW GEN6 | 0.42 | 40.58 | 1 | SD-IV | | | SDG&E | ZZZ_New Unit | 22020 | AVOCADO | 69 | 40.00 | S2 | SD-IV | San Diego | | SDG&E | ZZZ_New Unit | 23544 | Q1169_BESS1 | 0.4 | 35.00 | C8 | SD-IV | San Diego | | SDG&E | ZZZ_New Unit | 23519 | Q1169_BESS2 | 0.4 | 35.00 | C8 | SD-IV | San Diego | | SDG&E | ZZZ_New Unit | 23412 | Q1434_G | 0.64 | 30.00 | 1 | SD-IV | San Diego | | SDG&E | ZZZ_New Unit | 22942 | BUE GEN 1_G1 | 0.69 | 11.60 | G1 | SD-IV | | | SDG&E | ZZZ_New Unit | 22945 | BUE GEN 1_G2 | 0.69 | 11.60 | G2 | SD-IV | | | SDG&E | ZZZ_New Unit | 22947 | BUE GEN 1_G3 | 0.69 | 11.60 | G3 | SD-IV | | | SDG&E | ZZZ_New Unit | 22256 | ESCNDIDO | 69 | 6.50 | S2 | SD-IV | San Diego | | SDG&E | ZZZ_New Unit | 22112 | CAPSTRNO | 138 | 5.90 | 1 | SD-IV | San Diego | | SDG&E | ZZZ_New Unit | 22112 | CAPSTRNO | 138 | 4.00 | S2 | SD-IV | San Diego | | SDG&E | | 23597 | Q1175_BESS | 0.48 | 0.00 | 1 | SD-IV | | | SDG&E | _ | 22404 | LILAC | 69 | 0.00 | S2 | SD-IV | San Diego | | SDG&E | ZZZ_New Unit | 22512 | MONSRATE | 69 | 0.00 | S2 | SD-IV | San Diego | Attachment A - List of physical resources by PTO, local area and market ID | SDG&E | ZZZZZ_CBRLLO_6_PLSTP1 | 22092 | CABRILLO | 69 | 0.00 | 1 | SD-IV | San Diego | |-------|---------------------------|-------|----------|------|------|---|-------|------------------------| | SDG&E | ZZZZZ_DIVSON_6_NSQF | 22172 | DIVISION | 69 | 0.00 | 1 | SD-IV | San Diego | | SDG&E | ZZZZZ_ELCAJN_7_GT1 | 22212 | ELCAJNGT | 12.5 | 0.00 | 1 | SD-IV | San Diego, El
Cajon | | SDG&E | ZZZZZ_ENCINA_7_EA1 | 22233 | ENCINA 1 | 14.4 | 0.00 | 1 | SD-IV | San Diego | | SDG&E | ZZZZZ_ENCINA_7_EA2 | 22234 | ENCINA 2 | 14.4 | 0.00 | 1 | SD-IV | San Diego | | SDG&E | ZZZZZ_ENCINA_7_EA3 | 22236 | ENCINA 3 | 14.4 | 0.00 | 1 | SD-IV | San Diego | | SDG&E | ZZZZZ_ENCINA_7_EA4 | 22240 | ENCINA 4 | 22 | 0.00 | 1 | SD-IV | San Diego | | SDG&E | ZZZZZ_ENCINA_7_EA5 | 22244 | ENCINA 5 | 24 | 0.00 | 1 | SD-IV | San Diego | | SDG&E | ZZZZZ_ENCINA_7_GT1 | 22248 | ENCINAGT | 12.5 | 0.00 | 1 | SD-IV | San Diego | | SDG&E | ZZZZZ_KEARNY_7_KY2 | 22373 | KEARN2AB | 12.5 | 0.00 | 1 | SD-IV | San Diego | | SDG&E | ZZZZZ_KEARNY_7_KY2 | 22374 | KEARN2CD | 12.5 | 0.00 | 1 | SD-IV | San Diego | | SDG&E | ZZZZZ_KEARNY_7_KY2 | 22373 | KEARN2AB | 12.5 | 0.00 | 2 | SD-IV | San Diego | | SDG&E | ZZZZZ_KEARNY_7_KY2 | 22374 | KEARN2CD | 12.5 | 0.00 | 2 | SD-IV | San Diego | | SDG&E | ZZZZZ_KEARNY_7_KY3 | 22375 | KEARN3AB | 12.5 | 0.00 | 1 | SD-IV | San Diego | | SDG&E | ZZZZZ_KEARNY_7_KY3 | 22376 | KEARN3CD | 12.5 | 0.00 | 1 | SD-IV | San Diego | | SDG&E | ZZZZZ_KEARNY_7_KY3 | 22375 | KEARN3AB | 12.5 | 0.00 | 2 | SD-IV | San Diego | | SDG&E | ZZZZZ_KEARNY_7_KY3 | 22376 | KEARN3CD | 12.5 | 0.00 | 2 | SD-IV | San Diego | | SDG&E | ZZZZZ_MRGT_7_UNITS | 22488 | MIRAMRGT | 12.5 | 0.00 | 1 | SD-IV | San Diego | | SDG&E | ZZZZZ_MRGT_7_UNITS | 22488 | MIRAMRGT | 12.5 | 0.00 | 2 | SD-IV | San Diego | | SDG&E | ZZZZZ_NIMTG_6_NIQF | 22576 | NOISLMTR | 69 | 0.00 | 1 | SD-IV | San Diego | | SDG&E | ZZZZZ_OTAY_6_LNDFL5 | 22604 | OTAY | 69 | 0.00 | | SD-IV | San Diego | | SDG&E | ZZZZZ_OTAY_6_LNDFL6 | 22604 | OTAY | 69 | 0.00 | | SD-IV | San Diego | | SDG&E | ZZZZZ_OTAY_6_UNITB1 | 22604 | OTAY | 69 | 0.00 | 1 | SD-IV | San Diego | | SDG&E | ZZZZZ_OTAY_7_UNITC1 | 22604 | OTAY | 69 | 0.00 | 3 | SD-IV | San Diego | | SDG&E | ZZZZZ_PTLOMA_6_NTCCG
N | 22660 | POINTLMA | 69 | 0.00 | 2 | SD-IV | San Diego | | SDG&E | ZZZZZ_PTLOMA_6_NTCQF | 22660 | POINTLMA | 69 | 0.00 | 1 | SD-IV | San Diego | # Attachment B – Effectiveness factors for procurement guidance Table - Eagle Rock. Effectiveness factors to the Eagle Rock-Cortina 115 kV line: | Gen Bus | Gen Name | Gen ID | Eff Factor (%) | |---------|----------|--------|----------------| | 31406 | GEYSR5-6 | 1 | 36 | | 31406 | GEYSR5-6 | 2 | 36 | | 31408 | GEYSER78 | 1 | 36 | | 31408 | GEYSER78 | 2 | 36 | | 31412 | GEYSER11 | 1 | 37 | | 31435 | GEO.ENGY | 1 | 35 | | 31435 | GEO.ENGY | 2 | 35 | | 31433 | POTTRVLY | 1 | 34 | | 31433 | POTTRVLY | 3 | 34 | | 31433 | POTTRVLY | 4 | 34 | | 38020 | CITY UKH | 1 | 32 | | 38020 | CITY UKH | 2 | 32 | Table - Fulton Effectiveness factors to the Lakeville-Petaluma-Cotati 60 kV line: | Gen Bus | Gen Name | Gen ID | Eff Factor (%) | |---------|----------|--------|----------------| | 31466 | SONMA LF | 1 | 52 | | 31422 | GEYSER17 | 1 | 12 | | 31404 | WEST FOR | 1 | 12 | | 31404 | WEST FOR | 2 | 12 | | 31414 | GEYSER12 | 1 | 12 | | 31418 | GEYSER14 | 1 | 12 | | 31420 | GEYSER16 | 1 | 12 | | 31402 | BEAR CAN | 1 | 12 | | 31402 | BEAR CAN | 2 | 12 | Attachment B – Effectiveness factors for procurement guidance | Gen Bus | Gen Name | Gen ID | Eff Factor (%) | |---------|----------|--------|----------------| | 38110 | NCPA2GY1 | 1 | 12 | | 38112 | NCPA2GY2 | 1 | 12 | | 32700 | MONTICLO | 1 | 10 | | 32700 | MONTICLO | 2 | 10 | | 32700 | MONTICLO | 3 | 10 | | 31435 | GEO.ENGY | 1 | 6 | | 31435 | GEO.ENGY | 2 | 6 | | 31408 | GEYSER78 | 1 | 6 | | 31408 | GEYSER78 | 2 | 6 | | 31412 | GEYSER11 | 1 | 6 | | 31406 | GEYSR5-6 | 1 | 6 | | 31406 | GEYSR5-6 | 2 | 6 | ## Table - North Coast and North Bay Effectiveness factors to the Vaca Dixon-Lakeville 230 kV line: | Gen Bus | Gen Name | Gen ID | Eff Factor (%) | |---------|----------|--------|----------------| | 31400 | SANTA FE | 2 | 38 | | 31430 | SMUDGE01 | 1 | 38 | | 31400 | SANTA FE | 1 | 38 | | 31416 | GEYSER13 | 1 | 38 | | 31424 | GEYSER18 | 1 | 38 | | 31426 | GEYSER20 | 1 | 38 | | 38106 | NCPA1GY1 | 1 | 38 | | 38108 | NCPA1GY2 | 1 | 38 | | 31421 | BOTTLERK | 1 | 36 | | 31404 | WEST FOR | 2 | 36 | | 31402 | BEAR CAN | 1 | 36 | | 31402 | BEAR CAN | 2 | 36 | | 31404 | WEST FOR | 1 | 36 | | 31414 | GEYSER12 | 1 | 36 | | 31418 | GEYSER14 | 1 | 36 | | 31420 | GEYSER16 | 1 | 36 | Attachment B – Effectiveness factors for procurement guidance | Gen Bus | Gen Name | Gen ID | Eff Factor (%) | |---------|----------|--------|----------------| | 31422 | GEYSER17 | 1
| 36 | | 38110 | NCPA2GY1 | 1 | 36 | | 38112 | NCPA2GY2 | 1 | 36 | | 31446 | SONMA LF | 1 | 36 | | 32700 | MONTICLO | 1 | 31 | | 32700 | MONTICLO | 2 | 31 | | 32700 | MONTICLO | 3 | 31 | | 31406 | GEYSR5-6 | 1 | 18 | | 31406 | GEYSR5-6 | 2 | 18 | | 31405 | RPSP1014 | 1 | 18 | | 31408 | GEYSER78 | 1 | 18 | | 31408 | GEYSER78 | 2 | 18 | | 31412 | GEYSER11 | 1 | 18 | | 31435 | GEO.ENGY | 1 | 18 | | 31435 | GEO.ENGY | 2 | 18 | | 31433 | POTTRVLY | 1 | 15 | | 31433 | POTTRVLY | 2 | 15 | | 31433 | POTTRVLY | 3 | 15 | | 38020 | CITY UKH | 1 | 15 | | 38020 | CITY UKH | 2 | 15 | Table - Rio Oso Effectiveness factors to the Rio Oso-Atlantic 230 kV line: | Gen Bus | Gen Name | Gen ID | Eff Factor. (%) | |---------|----------|--------|-----------------| | 32498 | SPILINCF | 1 | 49 | | 32500 | ULTR RCK | 1 | 49 | | 32456 | MIDLFORK | 1 | 33 | | 32456 | MIDLFORK | 2 | 33 | | 32458 | RALSTON | 1 | 33 | Attachment B – Effectiveness factors for procurement guidance | 32513 | ELDRADO1 | 1 | 32 | |-------|----------|---|----| | 32514 | ELDRADO2 | 1 | 32 | | 32510 | CHILIBAR | 1 | 32 | | 32486 | HELLHOLE | 1 | 31 | | 32508 | FRNCH MD | 1 | 30 | | 32460 | NEWCSTLE | 1 | 26 | | 32478 | HALSEY F | 1 | 24 | | 32512 | WISE | 1 | 24 | | 38114 | Stig CC | 1 | 14 | | 38123 | Q267CT | 1 | 14 | | 38124 | Q267ST | 1 | 14 | | 32462 | CHI.PARK | 1 | 8 | | 32464 | DTCHFLT1 | 1 | 4 | #### Table - Sierra Overall Effectiveness factors to the Table Mountain – Pease 60 kV line: | Gen Bus | Gen Name | Gen ID | Eff Factor. (%) | |---------|-----------|--------|-----------------| | 32492 | GRNLEAF2 | 1 | 17 | | 32494 | YUBA CTY | 1 | 17 | | 32496 | YCEC | 1 | 17 | | 31794 | WOODLEAF | 1 | 6 | | 31814 | FORBSTWN | 1 | 6 | | 31832 | SLY.CR. | 1 | 6 | | 31834 | KELLYRDG | 1 | 6 | | 31888 | OROVLENRG | 1 | 6 | Attachment B – Effectiveness factors for procurement guidance | Gen Bus | Gen Name | Gen ID | Eff Factor. (%) | |---------|----------|--------|-----------------| | 32451 | FREC | 1 | 5 | | 32450 | COLGATE1 | 1 | 5 | | 32466 | NARROWS1 | 1 | 5 | | 32468 | NARROWS2 | 1 | 5 | | 32470 | CMP.FARW | 1 | 5 | | 32452 | COLGATE2 | 1 | 5 | | 32156 | WOODLAND | 1 | 4 | | 32498 | SPILINCF | 1 | 4 | | 32502 | DTCHFLT2 | 1 | 4 | | 32454 | DRUM 5 | 1 | 3 | | 32474 | DEER CRK | 1 | 3 | | 32476 | ROLLINSF | 1 | 3 | | 32484 | OXBOW F | 1 | 3 | | 32504 | DRUM 1-2 | 1 | 3 | | 32504 | DRUM 1-2 | 2 | 3 | | 32506 | DRUM 3-4 | 1 | 3 | | 32506 | DRUM 3-4 | 2 | 3 | | 32464 | DTCHFLT1 | 1 | 3 | | 32480 | BOWMAN | 1 | 3 | | 32488 | HAYPRES+ | 1 | 3 | | 32488 | HAYPRES+ | 2 | 3 | | 32472 | SPAULDG | 1 | 3 | | 32472 | SPAULDG | 2 | 3 | Attachment B – Effectiveness factors for procurement guidance | Gen Bus | Gen Name | Gen ID | Eff Factor. (%) | |---------|----------|--------|-----------------| | 32472 | SPAULDG | 3 | 3 | | 32462 | CHI.PARK | 1 | 3 | | 32500 | ULTR RCK | 1 | 3 | | 31784 | BELDEN | 1 | 3 | | 31786 | ROCK CK1 | 1 | 3 | | 31788 | ROCK CK2 | 1 | 3 | | 31790 | POE 1 | 1 | 3 | | 31792 | POE 2 | 1 | 3 | | 31812 | CRESTA | 1 | 3 | | 31812 | CRESTA | 2 | 3 | | 31820 | BCKS CRK | 1 | 3 | | 31820 | BCKS CRK | 2 | 3 | | 32478 | HALSEY F | 1 | 2 | | 32512 | WISE | 1 | 2 | | 32460 | NEWCSTLE | 1 | 2 | | 32510 | CHILIBAR | 1 | 2 | | 32513 | ELDRADO1 | 1 | 2 | | 32514 | ELDRADO2 | 1 | 2 | | 32456 | MIDLFORK | 1 | 2 | | 32456 | MIDLFORK | 2 | 2 | | 32458 | RALSTON | 1 | 2 | | 32486 | HELLHOLE | 1 | 2 | | 32508 | FRNCH MD | 1 | 2 | Attachment B – Effectiveness factors for procurement guidance | Gen Bus | Gen Name | Gen ID | Eff Factor. (%) | |---------|----------|--------|-----------------| | 38114 | STIG CC | 1 | 1 | | 38123 | LODI CT1 | 1 | 1 | | 38124 | LODI ST1 | 1 | 1 | Table - San Jose Effectiveness factors to the Metcalf 230/115 kV transformer #1: | Gen Bus | Gen Name | Gen ID | Eff Factor (%) | |---------|----------|--------|----------------| | 35850 | GLRY COG | 1 | 25 | | 35850 | GLRY COG | 2 | 25 | | 35851 | GROYPKR1 | 1 | 25 | | 35852 | GROYPKR2 | 1 | 25 | | 35853 | GROYPKR3 | 1 | 25 | | 35623 | SWIFT | BT | 21 | | 35863 | CATALYST | 1 | 20 | | 36863 | DVRaGT1 | 1 | 9 | | 36864 | DVRbGt2 | 1 | 9 | | 36865 | DVRaST3 | 1 | 9 | | 36859 | Laf300 | 2 | 9 | | 36859 | Laf300 | 1 | 9 | | 36858 | Gia100 | 1 | 8 | | 36895 | Gia200 | 1 | 8 | | 35861 | SJ-SCL W | 1 | 8 | | 35854 | LECEFGT1 | 1 | 7 | | 35855 | LECEFGT2 | 1 | 7 | | 35856 | LECEFGT3 | 1 | 7 | | 35857 | LECEFGT4 | 1 | 7 | | 35858 | LECEFST1 | 1 | 7 | | 35860 | OLS-AGNE | 1 | 7 | ## Table - South Bay-Moss Landing Effectiveness factors to the Moss Landing-Las Aguillas 230 kV line: | Gen Bus | Gen Name | Gen ID | Eff Factor. (%) | | |---------|----------|--------|-----------------|--| | | | | | | Attachment B – Effectiveness factors for procurement guidance | 2222 | OLD ENDO | | 00 | |-------|----------|----|----| | 36209 | SLD ENRG | 1 | 20 | | 36221 | DUKMOSS1 | 1 | 20 | | 36222 | DUKMOSS2 | 1 | 20 | | 36223 | DUKMOSS3 | 1 | 20 | | 36224 | DUKMOSS4 | 1 | 20 | | 36225 | DUKMOSS5 | 1 | 20 | | 36226 | DUKMOSS6 | 1 | 20 | | 36405 | MOSSLND6 | 1 | 17 | | 36406 | MOSSLND7 | 1 | 17 | | 35881 | MEC CTG1 | 1 | 13 | | 35882 | MEC CTG2 | 1 | 13 | | 35883 | MEC STG1 | 1 | 13 | | 35850 | GLRY COG | 1 | 12 | | 35850 | GLRY COG | 2 | 12 | | 35851 | GROYPKR1 | 1 | 12 | | 35852 | GROYPKR2 | 1 | 12 | | 35853 | GROYPKR3 | 1 | 12 | | 35623 | SWIFT | ВТ | 10 | | 35863 | CATALYST | 1 | 10 | | 36863 | DVRaGT1 | 1 | 8 | | 36864 | DVRbGt2 | 1 | 8 | | 36865 | DVRaST3 | 1 | 8 | | 36859 | Laf300 | 2 | 8 | | 36859 | Laf300 | 1 | 8 | | 36858 | Gia100 | 1 | 7 | Attachment B – Effectiveness factors for procurement guidance | 36895 | Gia200 | 1 | 7 | |-------|----------|---|---| | 35854 | LECEFGT1 | 1 | 7 | | 35855 | LECEFGT2 | 1 | 7 | | 35856 | LECEFGT3 | 1 | 7 | | 35857 | LECEFGT4 | 1 | 7 | | 35858 | LECEFST1 | 1 | 7 | | 35860 | OLS-AGNE | 1 | 7 | ## Table - Ames/Pittsburg/Oakland Effectiveness factors to the Ames-Ravenswood #1 115 kV line: | Gen Bus | Gen Name | Gen ID | Eff Factor. (%) | |---------|----------|--------|-----------------| | 35304 | RUSELCT1 | 1 | 10 | | 35305 | RUSELCT2 | 2 | 10 | | 35306 | RUSELST1 | 3 | 10 | | 33469 | OX_MTN | 1 | 10 | | 33469 | OX_MTN | 2 | 10 | | 33469 | OX_MTN | 3 | 10 | | 33469 | OX_MTN | 4 | 10 | | 33469 | OX_MTN | 5 | 10 | | 33469 | OX_MTN | 6 | 10 | | 33469 | OX_MTN | 7 | 10 | | 33107 | DEC STG1 | 1 | 3 | | 33108 | DEC CTG1 | 1 | 3 | | 33109 | DEC CTG2 | 1 | 3 | | 33110 | DEC CTG3 | 1 | 3 | Attachment B – Effectiveness factors for procurement guidance | 33102 | COLUMBIA | 1 | 3 | |-------|-------------|---|---| | 33111 | LMECCT2 | 1 | 3 | | 33112 | LMECCT1 | 1 | 3 | | 33113 | LMECST1 | 1 | 3 | | 33151 | FOSTER W | 1 | 2 | | 33151 | FOSTER W | 2 | 2 | | 33151 | FOSTER W | 3 | 2 | | 33136 | CCCSD | 1 | 2 | | 33141 | SHELL 1 | 1 | 2 | | 33142 | SHELL 2 | 1 | 2 | | 33143 | SHELL 3 | 1 | 2 | | 32900 | CRCKTCOG | 1 | 2 | | 32910 | UNOCAL | 1 | 2 | | 32910 | UNOCAL | 2 | 2 | | 32910 | UNOCAL | 3 | 2 | | 32920 | UNION CH | 1 | 2 | | 32921 | ChevGen1 | 1 | 2 | | 32922 | ChevGen2 | 1 | 2 | | 32923 | ChevGen3 | 3 | 2 | | 32741 | HILLSIDE_12 | 1 | 2 | | 32901 | OAKLND 1 | 1 | 1 | | 32902 | OAKLND 2 | 2 | 1 | | 32903 | OAKLND 3 | 3 | 1 | | 38118 | ALMDACT1 | 1 | 1 | | 38119 | ALMDACT2 | 1 | 1 | ## Effectiveness factors to the Moraga-Claremont #2 115 kV line: | Gen Bus | Gen Name | Gen ID | Eff Factor (%) | |---------|----------|--------|----------------| | 32921 | ChevGen1 | 1 | 17 | | 32922 | ChevGen2 | 1 | 17 | | 32923 | ChevGen3 | 3 | 17 | | 32901 | OAKLND 1 | 1 | 16 | | 32902 | OAKLND 2 | 1 | 16 | | 32903 | OAKLND 3 | 1 | 16 | | 38118 | ALMDACT1 | 1 | 16 | | 38119 | ALMDACT2 | 1 | 16 | | 32920 | UNION CH | 1 | 16 | | 32910 | UNOCAL | 1 | 15 | | 32910 | UNOCAL | 2 | 15 | | 32910 | UNOCAL | 3 | 15 | | 33141 | SHELL 1 | 1 | 10 | | 33142 | SHELL 2 | 1 | 10 | | 33143 | SHELL 3 | 1 | 10 | | 33136 | CCCSD | 1 | 9 | | 32900 | CRCKTCOG | 1 | 8 | | 33151 | FOSTER W | 1 | 6 | | 33151 | FOSTER W | 2 | 6 | | 33151 | FOSTER W | 3 | 6 | | 33102 | COLUMBIA | 1 | 3 | | 33111 | LMECCT2 | 1 | 3 | | 33112 | LMECCT1 | 1 | 3 | | 33113 | LMECST1 | 1 | 3 | | 33107 | DEC STG1 | 1 | 3 | | 33108 | DEC CTG1 | 1 | 3 | | 33109 | DEC CTG2 | 1 | 3 | | 33110 | DEC CTG3 | 1 | 3 | ## Table – Greater Bay Area Effectiveness factors to the Metcalf 500/230 kV Transformer #13: | Gen Bus | Gen Name | Gen ID | Eff Factor (%) | |---------|----------|--------|----------------| | 35881 | MEC CTG1 | 1 | 40 | | 35882 | MEC CTG2 | 1 | 40 | | 35883 | MEC STG1 | 1 | 40 | Attachment B – Effectiveness factors for procurement guidance | 35859 | HGST-LV | RN | 36 | |-------|----------|----|----| | 35850 | GLRY COG | 1 | 30 | | 35850 | GLRY COG | 2 | 30 | | 35851 | GROYPKR1 | 1 | 30 | | 35852 | GROYPKR2 | 1 | 30 | | 35853 | GROYPKR3 | 1 | 30 | | 35623 | SWIFT | BT | 29 | | 35863 | CATALYST | 1 | 28 | | 33469 | OX_MTN | 1 | 22 | | 33469 | OX_MTN | 2 | 22 | | 33469 | OX_MTN | 3 | 22 | | 33469 | OX_MTN | 4 | 22 | | 33469 | OX_MTN | 5 | 22 | | 33469 | OX_MTN | 6 | 22 | | 33469 | OX_MTN | 7 | 22 | | 36863 | DVRaGT1 | 1 | 21 | | 36864 | DVRbGt2 | 1 | 21 | | 36865 | DVRaST3 | 1 | 21 | | 36859 | Laf300 | 2 | 20 | | 36859 | Laf300 | 1 | 20 | | 36858 | Gia100 | 1 | 20 | | 36895 | Gia200 | 1 | 20 | | 35861 | SJ-SCL W | 1 | 20 | | 35854 | LECEFGT1 | 1 | 20 | | 35855 | LECEFGT2 | 1 | 20 | | 35856 | LECEFGT3 | 1 | 20 | | 35857 | LECEFGT4 | 1 | 20 | | 35858 | LECEFST1 | 1 | 20 | | 35860 | OLS-AGNE | 1 | 20 | | 33468 | SRI INTL | 1 | 16 | | 35304 | RUSELCT1 | 1 | 12 | | 35305 | RUSELCT2 | 2 | 12 | | 35306 | RUSELST1 | 3 | 12 | | 36209 | SLD ENRG | 1 | 9 | | 36221 | DUKMOSS1 | 1 | 7 | | 36222 | DUKMOSS2 | 1 | 7 | | 36223 | DUKMOSS3 | 1 | 7 | | 36224 | DUKMOSS4 | 1 | 7 | | 36225 | DUKMOSS5 | 1 | 7 | | 36226 | DUKMOSS6 | 1 | 7 | | 30532 | 0162-WD | FW | 7 | Attachment B – Effectiveness factors for procurement guidance | 39233 | GRNRDG | 1 | 6 | |-------|-------------|----|---| | 33107 | DEC STG1 | 1 | 6 | | 33108 | DEC CTG1 | 1 | 6 | | 33109 | DEC CTG2 | 1 | 6 | | 33110 | DEC CTG3 | 1
 6 | | 33102 | COLUMBIA | 1 | 6 | | 33111 | LMECCT2 | 1 | 6 | | 33112 | LMECCT1 | 1 | 6 | | 33113 | LMECST1 | 1 | 6 | | 33136 | CCCSD | 1 | 6 | | 33141 | SHELL 1 | 1 | 6 | | 33142 | SHELL 2 | 1 | 6 | | 33143 | SHELL 3 | 1 | 6 | | 33151 | FOSTER W | 1 | 6 | | 33151 | FOSTER W | 2 | 6 | | 33151 | FOSTER W | 3 | 6 | | 32901 | OAKLND 1 | 1 | 6 | | 32902 | OAKLND 2 | 1 | 6 | | 32903 | OAKLND 3 | 1 | 6 | | 38118 | ALMDACT1 | 1 | 6 | | 38119 | ALMDACT2 | 1 | 6 | | 32910 | UNOCAL | 1 | 6 | | 32910 | UNOCAL | 2 | 6 | | 32910 | UNOCAL | 3 | 6 | | 32920 | UNION CH | 1 | 5 | | 33139 | STAUFER | 1 | 5 | | 32741 | HILLSIDE_12 | 1 | 5 | | 32921 | ChevGen1 | 1 | 5 | | 32922 | ChevGen2 | 1 | 5 | | 32923 | ChevGen3 | 3 | 5 | | 32900 | CRCKTCOG | 1 | 5 | | 33188 | MARSHCT1 | 1 | 3 | | 33189 | MARSHCT2 | 2 | 3 | | 33190 | MARSHCT3 | 3 | 3 | | 33191 | MARSHCT4 | 4 | 3 | | 33118 | GATEWAY1 | 1 | 3 | | 33119 | GATEWAY2 | 1 | 3 | | 33120 | GATEWAY3 | 1 | 3 | | 30522 | 0354-WD | EW | 3 | | 33178 | RVEC_GEN | 1 | 3 | | 35310 | PPASSWND | 1 | 3 | **Table – Herndon**Effectiveness factors to the Herndon-Manchester 115 kV line: | Gen Bus | Gen Name | Gen ID | Eff Factor. (%) | |---------|--------------|--------|-----------------| | 34624 | BALCH 1 | 1 | 22 | | 34616 | KINGSRIV | 1 | 21 | | 34648 | DINUBA E | 1 | 20 | | 34671 | KRCDPCT1 | 1 | 19 | | 34672 | KRCDPCT2 | 1 | 19 | | 34308 | KERCKHOF | 1 | 18 | | 34344 | KERCK1-1 | 1 | 18 | | 34345 | KERCK1-3 | 3 | 18 | | 34677 | Q558 | 1 | 15 | | 34690 | CORCORAN_3 | FW | 15 | | 34692 | CORCORAN_4 | FW | 15 | | 34696 | CORCORANPV_S | 1 | 15 | | 34610 | HAAS | 1 | 13 | | 34610 | HAAS | 2 | 13 | | 34612 | BLCH 2-2 | 1 | 13 | | 34614 | BLCH 2-3 | 1 | 13 | | 34431 | GWF_HEP1 | 1 | 8 | | 34433 | GWF_HEP2 | 1 | 8 | | 34617 | Q581 | 1 | 5 | | 34680 | KANSAS | 1 | 5 | | 34467 | GIFFEN_DIST | 1 | 4 | Attachment B – Effectiveness factors for procurement guidance | 34563 | STROUD_DIST | 2 | 4 | |--------|-------------|---|---| | 34563 | STROUD_DIST | 1 | 4 | | 34608 | AGRICO | 2 | 4 | | 34608 | AGRICO | 3 | 4 | | 34608 | AGRICO | 4 | 4 | | 34644 | Q679 | 1 | 4 | | 365502 | Q632BC1 | 1 | 4 | **Table – LA Basin**Effectiveness factors to the Mesa – Laguna Bell #1 230 kV line: | Gen Bus | Gen Name | Gen ID | Eff Factor. (%) | |---------|----------|--------|-----------------| | 29951 | REFUSE | D1 | 35 | | 24239 | MALBRG1G | C1 | 34 | | 24240 | MALBRG1G | C2 | 34 | | 24241 | MALBRG1G | S3 | 34 | | 29903 | ELSEG6ST | 6 | 27 | | 29904 | ELSEG5GT | 5 | 27 | | 29902 | ELSEG7ST | 7 | 27 | | 29901 | ELSEG8GT | 8 | 27 | | 24337 | VENICE | 1 | 26 | | 24094 | MOBGEN1 | 1 | 26 | | 24329 | MOBGEN2 | 1 | 26 | | 24332 | PALOGEN | D1 | 26 | | 24011 | ARCO 1G | 1 | 23 | | 24012 | ARCO 2G | 2 | 23 | Attachment B – Effectiveness factors for procurement guidance | 24013 | ARCO 3G | 3 | 23 | |-------|----------|----|----| | 24014 | ARCO 4G | 4 | 23 | | 24163 | ARCO 5G | 5 | 23 | | 24164 | ARCO 6G | 6 | 23 | | 24062 | HARBOR G | 1 | 23 | | 24062 | HARBOR G | HP | 23 | | 25510 | HARBORG4 | LP | 23 | | 24327 | THUMSGEN | 1 | 23 | | 24020 | CARBGEN1 | 1 | 23 | | 24328 | CARBGEN2 | 1 | 23 | | 24139 | SERRFGEN | D1 | 23 | | 24070 | ICEGEN | 1 | 22 | | 24001 | ALAMT1 G | I | 18 | | 24002 | ALAMT2 G | 2 | 18 | | 24003 | ALAMT3 G | 3 | 18 | | 24004 | ALAMT4 G | 4 | 18 | | 24005 | ALAMT5 G | 5 | 18 | | 24161 | ALAMT6 G | 6 | 18 | | 90000 | ALMT-GT1 | X1 | 18 | | 90001 | ALMT-GT2 | X2 | 18 | | 90002 | ALMT-ST1 | Х3 | 18 | | 29308 | CTRPKGEN | 1 | 18 | | 29953 | SIGGEN | D1 | 18 | | 29309 | BARPKGEN | 1 | 13 | | 29201 | WALCRKG1 | 1 | 12 | | | | • | | Attachment B – Effectiveness factors for procurement guidance | 29202 | WALCRKG2 | 1 | 12 | |-------|------------|----|----| | 29203 | WALCRKG3 | 1 | 12 | | 29204 | WALCRKG4 | 1 | 12 | | 29205 | WALCRKG5 | 1 | 12 | | 29011 | BREAPWR2 | C1 | 12 | | 29011 | BREAPWR2 | C2 | 12 | | 29011 | BREAPWR2 | C3 | 12 | | 29011 | BREAPWR2 | C4 | 12 | | 29011 | BREAPWR2 | S1 | 12 | | 24325 | ORCOGEN | I | 12 | | 24341 | COYGEN | I | 11 | | 25192 | WDT1406_G | I | 11 | | 25208 | DowlingCTG | 1 | 10 | | 25211 | CanyonGT 1 | 1 | 10 | | 25212 | CanyonGT 2 | 2 | 10 | | 25213 | CanyonGT 3 | 3 | 10 | | 25214 | CanyonGT 4 | 4 | 10 | | 24216 | VILLA PK | DG | 9 | | | | | | Table - Rector Effectiveness factors to the Rector-Vestal 230 kV line: | Gen Bus | Gen Name | Gen ID | MW Eff Factor (%) | |---------|----------|--------|-------------------| | 24370 | KAWGEN | 1 | 51 | | 24306 | B CRK1-1 | 1 | 45 | | 24306 | B CRK1-1 | 2 | 45 | Attachment B – Effectiveness factors for procurement guidance | 24307 | B CRK1-2 | 3 | 45 | |-------|----------|----|----| | 24307 | B CRK1-2 | 4 | 45 | | 24319 | EASTWOOD | 1 | 45 | | 24323 | PORTAL | 1 | 45 | | 24308 | B CRK2-1 | 1 | 45 | | 24308 | B CRK2-1 | 2 | 45 | | 24309 | B CRK2-2 | 3 | 45 | | 24309 | B CRK2-2 | 4 | 45 | | 24310 | B CRK2-3 | 5 | 45 | | 24310 | B CRK2-3 | 6 | 45 | | 24315 | B CRK 8 | 81 | 45 | | 24315 | B CRK 8 | 82 | 45 | | 24311 | B CRK3-1 | 1 | 45 | | 24311 | B CRK3-1 | 2 | 45 | | 24312 | B CRK3-2 | 3 | 45 | | 24312 | B CRK3-2 | 4 | 45 | | 24313 | B CRK3-3 | 5 | 45 | | 24317 | MAMOTH1G | 1 | 45 | | 24318 | MAMOTH2G | 2 | 45 | | 24314 | B CRK 4 | 41 | 43 | | 24314 | B CRK 4 | 42 | 43 | ## Table - San Diego Effectiveness factors to the Imperial Valley – El Centro 230 kV line (i.e., the "S" line): | Gen Bus | Gen Name | Gen ID | Eff Factor. (%) | |---------|----------|--------|-----------------| | 22982 | TDM CTG2 | 1 | 25 | | 22983 | TDM CTG3 | 1 | 25 | Attachment B – Effectiveness factors for procurement guidance | 22981 | TDM STG | 1 | 25 | |-------|--------------|----|----| | 22997 | INTBCT | 1 | 25 | | 22996 | INTBST | 1 | 25 | | 23440 | DW GEN2 G1 | 1 | 25 | | 23298 | DW GEN1 G1 | G1 | 25 | | 23156 | DU GEN1 G2 | G2 | 25 | | 23299 | DW GEN1 G2 | G2 | 25 | | 23155 | DU GEN1 G1 | G1 | 25 | | 23441 | DW GEN2 G2 | 1 | 25 | | 23442 | DW GEN2 G3A | 1 | 25 | | 23443 | DW GEN2 G3B | 1 | 25 | | 23314 | OCO GEN G1 | G1 | 23 | | 23318 | OCO GEN G2 | G2 | 23 | | 23100 | ECO GEN1 G | G1 | 22 | | 23352 | ECO GEN2 G | 1 | 21 | | 22605 | OTAYMGT1 | 1 | 18 | | 22606 | OTAYMGT2 | 1 | 18 | | 22607 | OTAYMST1 | 1 | 18 | | 23162 | PIO PICO CT1 | 1 | 18 | | 23163 | PIO PICO CT2 | 1 | 18 | | 23164 | PIO PICO CT3 | 1 | 18 | | 22915 | KUMEYAAY | 1 | 17 | | 23320 | EC GEN2 | 1 | 17 | | 22150 | EC GEN1 | 1 | 17 | | 22617 | OY GEN | 1 | 17 | Attachment B – Effectiveness factors for procurement guidance | 22604 | OTAY | 1 | 17 | |-------|------------|---|----| | 22604 | OTAY | 3 | 17 | | 22172 | DIVISION | 1 | 17 | | 22576 | NOISLMTR | 1 | 17 | | 22704 | SAMPSON | 1 | 17 | | 22092 | CABRILLO | 1 | 17 | | 22074 | LRKSPBD1 | 1 | 17 | | 22075 | LRKSPBD2 | 1 | 17 | | 22660 | POINTLMA | 1 | 17 | | 22660 | POINTLMA | 2 | 17 | | 22149 | CALPK_BD | 1 | 17 | | 22448 | MESAHGTS | 1 | 16 | | 22120 | CARLTNHS | 1 | 16 | | 22120 | CARLTNHS | 2 | 16 | | 22496 | MISSION | 1 | 16 | | 22486 | MEF MR1 | 1 | 16 | | 22124 | CHCARITA | 1 | 16 | | 22487 | MEF MR2 | 1 | 16 | | 22625 | LkHodG1 | 1 | 16 | | 22626 | LkHodG2 | 2 | 16 | | 22332 | GOALLINE | 1 | 15 | | 22262 | PEN_CT1 | 1 | 15 | | 22153 | CALPK_ES | 1 | 15 | | 22786 | EA GEN1 U6 | 1 | 15 | | 22787 | EA GEN1 U7 | 1 | 15 | Attachment B – Effectiveness factors for procurement guidance | 22783 | EA GEN1 U8 | 1 | 15 | |-------|-------------|---|----| | 22784 | EA GEN1 U9 | 1 | 15 | | 22789 | EA GEN1 U10 | 1 | 15 | | 22257 | ES GEN | 1 | 15 | | 22263 | PEN_CT2 | 1 | 15 | | 22265 | PEN_ST | 1 | 15 | | 22724 | SANMRCOS | 1 | 15 | | 22628 | PA GEN1 | 1 | 14 | | 22629 | PA GEN2 | 1 | 14 | | 22082 | BR GEN1 | 1 | 14 | | 22112 | CAPSTRNO | 1 | 12 |