

# Contingency Modeling Enhancements

Market Surveillance Committee Meeting March 19, 2013

Lin Xu, Ph.D. Senior Market Development Engineer



## Background

- Contingency modeling enhancements initiative introduces a preventive-corrective constraint to reduce exceptional dispatch and minimum online commitment constraints
- The preventive-corrective constraint is proposed because:
  - It can model post-contingency need in market optimization (rather than determining need on a static basis pre-contingency)
  - Compensates affected generators through LMP and potentially through a separate capacity payment when applicable
  - Is a framework that can consider both post-contingency preventive-corrective constraints and generation contingencies





- Compare two models
  - Weak preventive model (ISO's current model)
  - Preventive-corrective model: co-optimizes pre contingency dispatch and post contingency re-dispatch



## Weak preventive model solution

| Gen   | Dispatch |      |       | LMP  | Bid cost | Revenue  | Profit  |
|-------|----------|------|-------|------|----------|----------|---------|
| G1    | 700      | \$50 | -\$20 | \$30 | \$21,000 | \$21,000 | \$0     |
| G2    | 100      | \$50 | \$0   | \$50 | \$5,000  | \$5,000  | \$0     |
| G3    | 400      | \$50 | \$0   | \$50 | \$14,000 | \$20,000 | \$6,000 |
| total | 1,200    | N/A  | N/A   | N/A  | \$40,000 | \$46,000 | \$6,000 |

- Merit order:G1 (constrained by SOL), G2 (constrained by Pmax), G3
- A-B congestion shadow price \$20
- If contingency occurs, within 20 minutes
  - G1 will ramp down to 350 MW
  - G2 will ramp up to 300 MW limited by ramp rate
  - G3 stays at 400 MW
  - 350+300+400 = 1,050 MW < 1,200 MW load, so the system is short of 150 MW upward corrective capacity at location B



### Preventive-corrective model solution

|       | Energ | ју   |          |          | Corrective capacity |                 |                             |                                   |
|-------|-------|------|----------|----------|---------------------|-----------------|-----------------------------|-----------------------------------|
| Gen   | MW    | LMP  | Bid cost | Revenue  | Profit              | Re-<br>dispatch | LMCP  <br>opp.<br>cost      | Profit LMCP  <br>opp. cost        |
| G1    | 700   | \$30 | \$21,000 | \$21,000 | \$0                 | -350            | \$0  <br><mark>\$0</mark>   | \$0  <br><mark>\$0</mark>         |
| G2    | 250   | \$50 | \$12,500 | \$12,500 | \$0                 | 200             | \$15  <br><mark>\$0</mark>  | \$3,000  <br><mark>\$0</mark>     |
| G3    | 250   | \$50 | \$8,750  | \$12,500 | \$3,750             | 150             | \$15  <br><mark>\$15</mark> | \$2,250  <br><mark>\$2,250</mark> |
| total | 1,200 | N/A  | \$42,250 | \$46,000 | \$3,750             | 0               | N/A                         | \$5,250  <br><mark>\$2,250</mark> |

- G3 being dec'ed down to 250 MW to provide the 150 MW corrective capacity, and has an opportunity cost \$15
- LMCP at location B reflects G3's opportunity cost
- G2 does not have opportunity cost, but its corrective capacity is as valuable as G3's corrective capacity. Should G2 be compensated?



### General questions on compensation

- Is it appropriate to provide compensation to generators for corrective capacity?
- If so, on what should the compensation be based? Would it be based on a movement to create the corrective capacity or the corrective capacity created?
- Should the compensation be akin to a market clearing price (LMCP) or pay as bid (opportunity cost)?
- What are the cost implications to load over the short-term? Over the long-term?
- What are the compensation implications to generation over the short-term? Over the long-term?
- How can compensation incentivize real-time performance?

