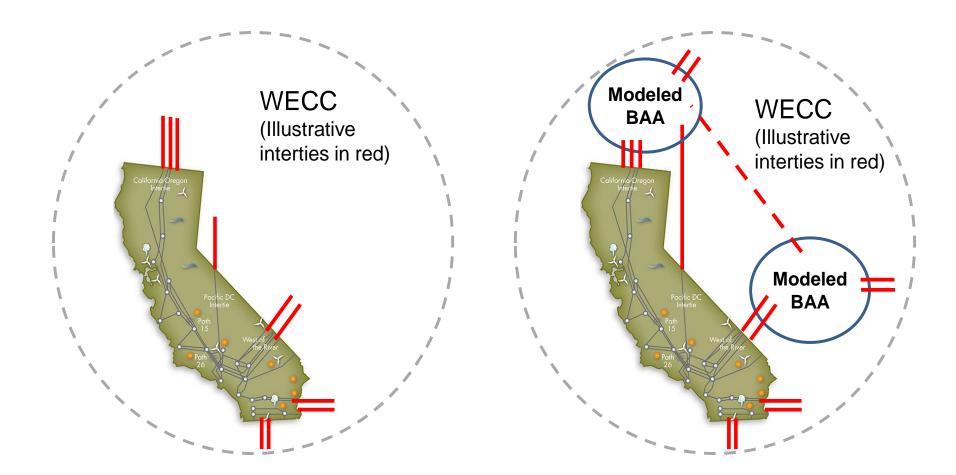
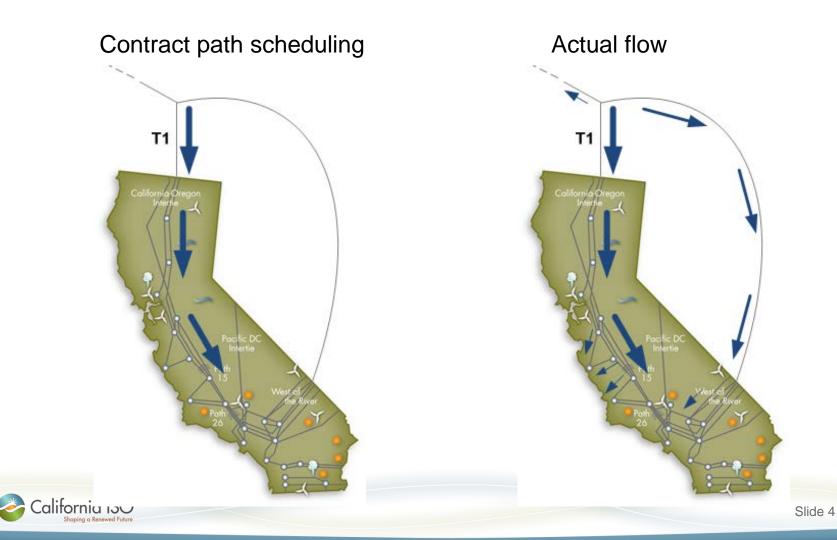


Full Network Model and Energy Imbalance Market Metrics


Mark Rothleder VP Market Quality and Renewable Integration

Board of Governor Meeting General Session September 18-19, 2014

Full Network Model



The full network model expansion increases the ISO's modeling capabilities.

Accurately accounting for unscheduled flow in the dayahead market improves reliability and market efficiency.

Full Network Model Background

- ISO Board approved Full Network Model proposal in February 2014
 - Management committed to presenting a preimplementation analysis so Board can assess the accuracy of the ISO's unscheduled flow modeling
- FERC approved ISO's Full Network Model proposal in July 2014, conditioned on:
 - Continued implementation is contingent on the market results passing an ongoing accuracy metric
 - ISO submission of an informational report on its preimplementation analysis

An accuracy metric compares the ability to forecast actual unscheduled flow a day-ahead under two scenarios

• Scenario 1: ISO models external unscheduled flow impacts in the day-ahead

• Scenario 2: ISO does <u>not</u> model external unscheduled flow impacts in the day-ahead

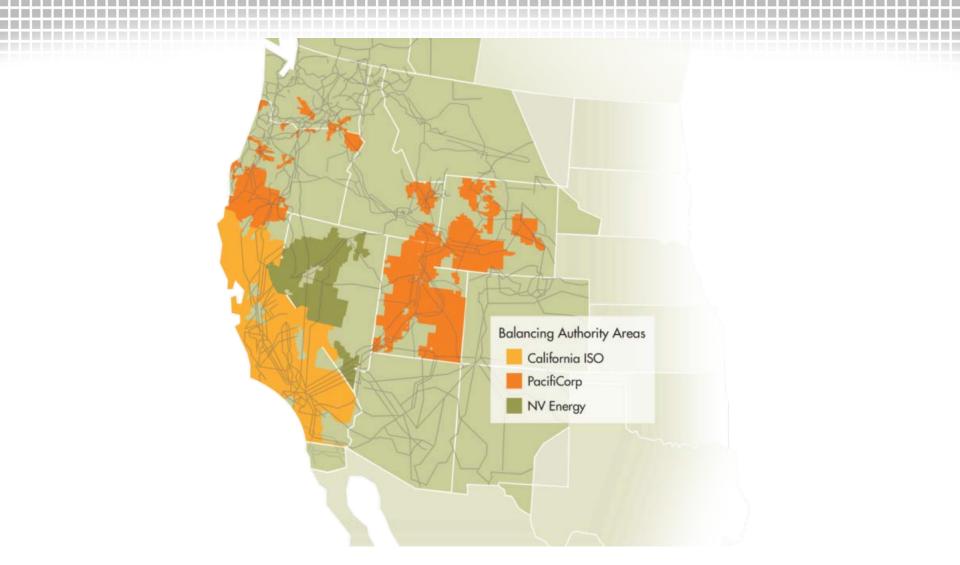
Accuracy metric: illustrative example

• Example for one hour under one intertie. In practice, metric sums all ties for all hours.

Scenario	Day-Ahead Forecast of Unscheduled Flow	Actual Unscheduled Flow	Difference
1) ISO models external unscheduled flow impacts in the day-ahead	Intertie 1 Hour 1 = 200 MW	Intertie 1 Hour 1 = 300 MW	200 - 300 = 100 MW
2) ISO <u>does not</u> model external unscheduled flow impacts in the day- ahead	Intertie 1 Hour 1 = 0 MW	Intertie 1 Hour 1 = 300 MW	0 -300 = 300 MW

Accuracy metric passes because 100 MW < 300 MW

Pre-Implementation Accuracy Metric Results


- Performed analysis on 14 days
- 12 of 14 days confirms modeling of external flow impacts was more accurate than not modeling external flow impacts
- 2 of 14 days modeling of external flow was less accurate than not modeling external flow impacts due to input data issues

Conclusion

- Implementation and testing of full network model is complete
- Pre-implementation analysis supports that modeling of unscheduled flow in the day-ahead is more accurate than not modeling external flow impacts
- A data quality check process will be implemented to ensure external load, generation and interchange forecasts are reasonable
- The ISO will monitor 3 week cumulative accuracy metric:
 - Metric passes => Continue model external effects
 - Metric fails => Stop model external effects until demonstration of the metric can be achieved

TRACKING OF EIM BENEFITS

ISO will track EIM regional benefits and provide quarterly reports to stakeholders

- Compare dispatch cost to a case without EIM
- Quantify imbalance energy <u>dispatch benefits</u> that enable:
 - real-time economic transfers
 - new balancing resources
 - efficient and secure dispatch
- Quantify <u>flexibility benefits</u> that enable:
 - diversity to reducing flexibility reserves
 - sharing and compensation of flexibility reserves

Quantifying the benefits

- EIM benefit is the difference between EIM dispatch cost with EIM and without EIM dispatch
 - Cost shifted from the supply region to the demand region
 - Calculated using 15-minute market solution due to practical computational considerations
- Benefits calculated by balancing authority
- In the future, we will explore tracking other metrics including associated with:
 - Over-generation
 - Negative prices
 - Renewable production

Quantifying the benefits – areas for cost savings

- Participating resources dispatched more efficiently to meet intra-hour imbalances and transmission constraints
- Access to economic transfers between EIM regions
- Opportunity for new participating resources to displace more expensive generation
- Real-time load and supply variability will be met economically
- EIM may result in less flexible ramping needs and allow flexible ramping between regions, reducing overall flexibility procurement costs

