FERC Order 745 B-C Test: Two Simple Analytics

B.F. Hobbs Member, CAISO MSC MSC Meeting, April 29, 2011

No Forward Contracts

Let: Q_o = load without DR ΔQ = load reduction (<0) resulting from DR P_o = LMP without DR P_1 = LMP with DR $= P_o (1+(1/\varepsilon) \Delta Q/Q_o)$ for ΔQ small ε = supply elasticity

The "cost-effectiveness" test (sic) is that:

$LoadPayment_1/(Q_0 - \Delta Q) \leq LoadPayment_0/Q_0$

Where:

LoadPayment_o is the total bill paid by load without DR,

*LoadPayment*₁ is the total bill with DR (assume DR is paid LMP) This test becomes:

 $(P_1Q_0)/(Q_0 - \Delta Q) \le (P_0Q_0)/(Q_0)$ For small ΔQ . this test reduces to:

ε≤1

Forwards Change the Test Radically

However, the above assumes no forward contracts.

If the amount of forward contracted power is Q_f , then

 $LoadPayment_{0} = Q_{f}P_{f} + (Q_{o}-Q_{f})P_{o}$ $LoadPayment_{1} = Q_{f}P_{f} + (Q_{o}-Q_{f})P_{1}$

Inserting these into the test yields:

 $\varepsilon \leq (Q_o - Q_f) / [Q_o + Q_f (P_f - P_o) / P_o]$

This is likely (but not always) well below 1, unless the LMP is at shortage levels.

E.g., if:

 P_f is 20% higher than the spot price, and

70% of the load is forward contracted

 ϵ must be 0.26 or less, or average price to consumers increases.

This test depends on unobservables (forward contract Q's & P's)