Why a Ramp RA Product?

Benjamin F. Hobbs

Chair, Market Surveillance Committee, California ISO

Schad Professor of Environmental Management, DoGEE Director, Environment, Energy, Sustainability & Health Institute The Johns Hopkins University

MSC Meeting, Folsom, Sept. 6, 2013

Why is the Market Failing (or about to)?

- Issue: Suboptimally small amount of installed ramping capability
- Why doesn't market support it?
 - Distorted prices
 - Missing prices
- What is the cause (market failure)?
- Why is it important to identify the cause?
 - More effective solutions
 - Fewer unintended consequences

Candidate Causes & Solutions

Inadequate returns in short-run markets:

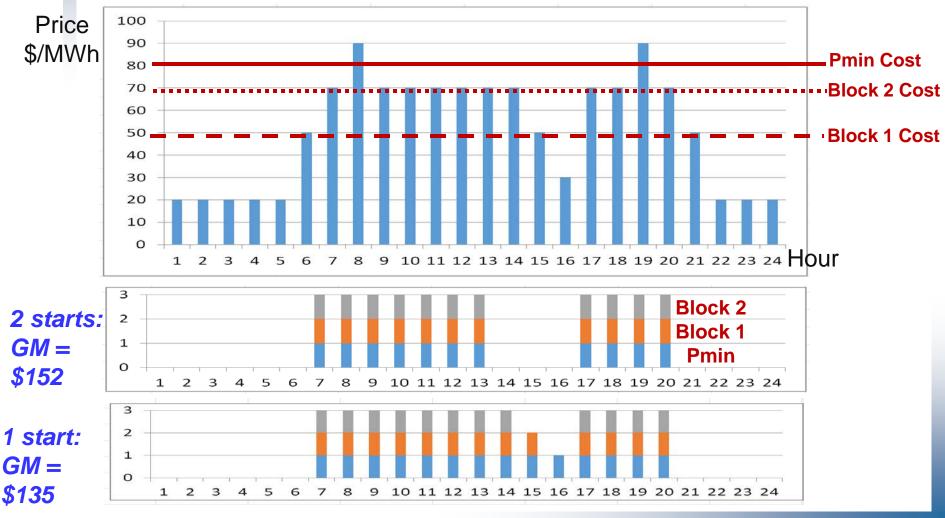
- Suppressed price spikes > RA market (1 flavor)
 - Price caps (missing money) > Raise price cap
 - Averaging intervals (1 hr, 5 minute) > Shorter intervals
- Deterministic scheduling
 - Net Load forecast error
- > Short- or long-run
 - ramp products
- Realized ramps more volatile than forecasts

Stochastic scheduling

Short-sightedness, risk aversion

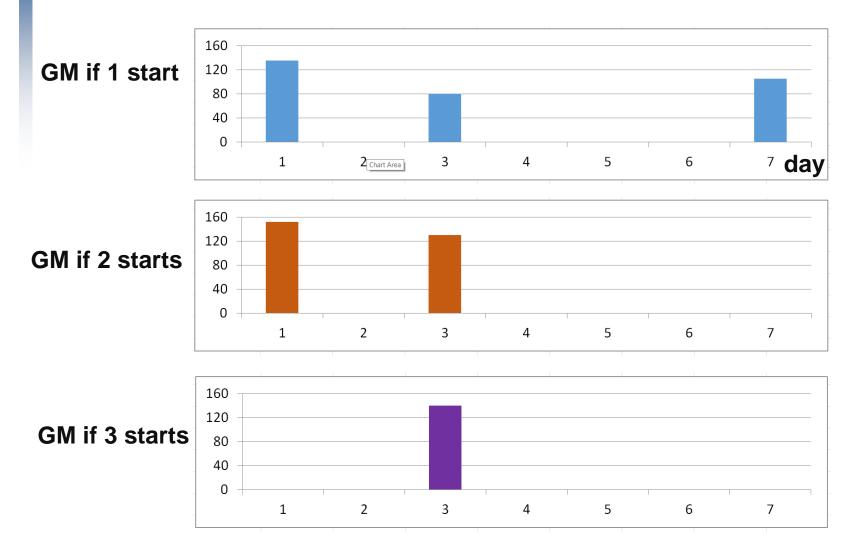
- Regulatory risk
- Illiquid RA market
- Long lead times for generation
- Time horizon of RA too short
- Multiyear RA
 RA Market

- A limit on the number of starts over some period ("season") for a unit
- Unit always started up in RTUC, and shut down by midnight
 - 5 minute prices relevant
 - Can consider profit in each day separately
 - Multiple starts per day allowed
- Future distribution of 5 minute prices known
 - Can construct a representative time series of prices for remainder of season
 - Actual profitability approximateable by deterministic SCUC
 - Not actually true: prices might be higher or lower than expected.
 - > Ideal: stochastic programming (SDP; see Oren et al.)
 - Could have multiple scenarios (hot/cool summer; major outages; etc.)



Solve over entire season

- *Decisions*: timing of starts & shut-downs, and energy/AS production by 5 minute interval
- *Objective:* Max Revenues Variable Costs
- Constraints:
 - Internal unit commitment, dispatch constraints
 - Total number of starts over seasons = N
 - Perhaps also limits on total operating hours, emissions, ...
- **Opportunity Cost: Shrink N by 1, note decrease in objective**
- Separability of days allows a 2 step procedure that involves calculation one day at a time
 - 1. For each day, calculate optimal commitment in a single day given 1, 2, 3, ... starts
 - Note gross margin for each day d for each # of starts n: GM(d,n)
 - A simple single-unit unit commitment model for each day
 - **2.** Then choose *n* for each *d* in the season to:
 - Max Sum_d GM(d,n)
 - A simple 0-1 program


Step 1: Unit Commitment to Calculate GM(d,n)

- 3 MW unit 24 hrs: Pmin = 1 MW, 2 variable blocks
 - \$50 start up cost; \$80/hr Pmin cost
 - Variable cost block 1 \$49/MWh; block 2 \$69/MWh

Step 2: Optimal Starts over Season (7 days)

Which 4 starts should be selected to maximize gross margin?

