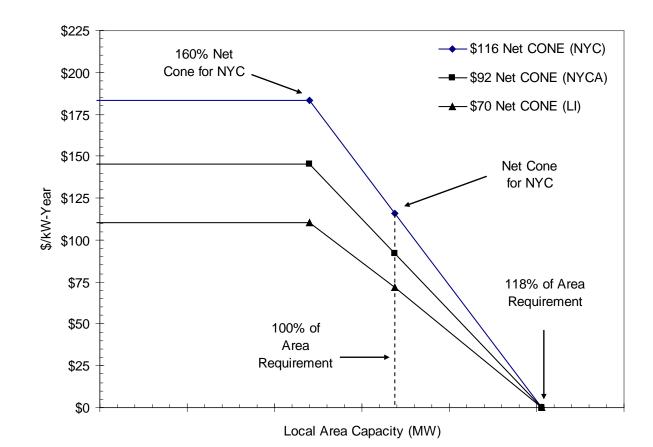


### Potential Effectiveness of the Demand Curve Approach for Mitigation of Local Market Power in Capacity Markets

Eric Hildebrandt, Ph.D Department of Market Monitoring California Independent System Operator

CRRI Advanced Workshop in Regulation and Competition 21<sup>th</sup> Annual Western Conference Monterey, California June 19, 2009




## Background

- CPUC and CAISO leading ongoing effort to consider centralized capacity market in California.
- Local market power mitigation key part of any centralized capacity market design in CA.
  - Ownership of supply within major local pockets in California highly concentrated (e.g., 2 major suppliers).
- Two major approaches proposed:
  - Demand curve approach (NYISO-style)
  - Direct bid/price mitigation (similar to PJM, ISO-NE)



## **Demand Curve Approach**

- Relatively high bid cap on suppliers
  - e.g., 160% of the Net Cost of New Entry (CONE)
- Administratively set demand curve used to establish "demand elasticity"

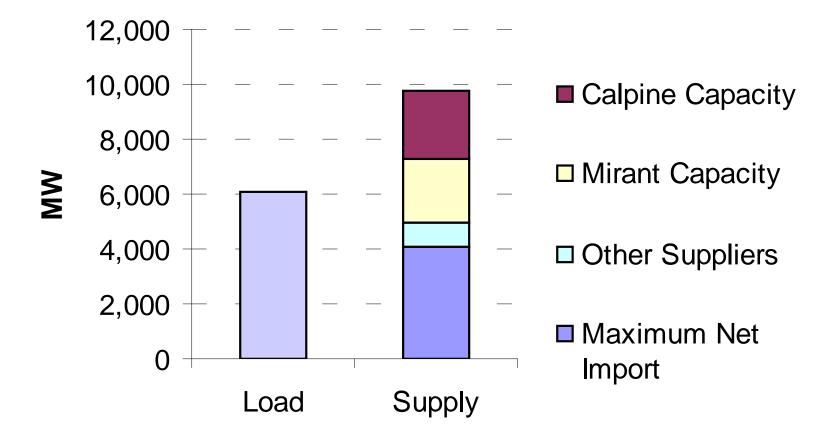




#### Analysis of Demand Curve Approach: Methodology

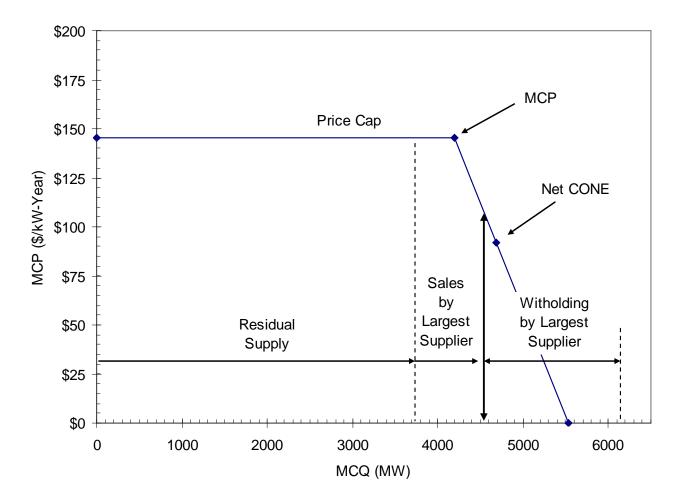
- Shape of administrative demand curve based on NYISO demand curve for New York City area
- Data on local area capacity requirements and available supply based on CAISO 2007 and 2008 CAISO Local Capacity Area (LCA) studies
- The major LCAs examined:
  - San Diego
  - Western LA Basin (sub-area of LA Basin LCR)
  - San Francisco Bay Area
- Two approaches for modeling market power:
  - Pivotal Supplier (Unilateral model)
  - Cournot Equilibrium (Duopolistic *reaction function* model)




### San Francisco Bay Area: Local Area Requirements and Supply

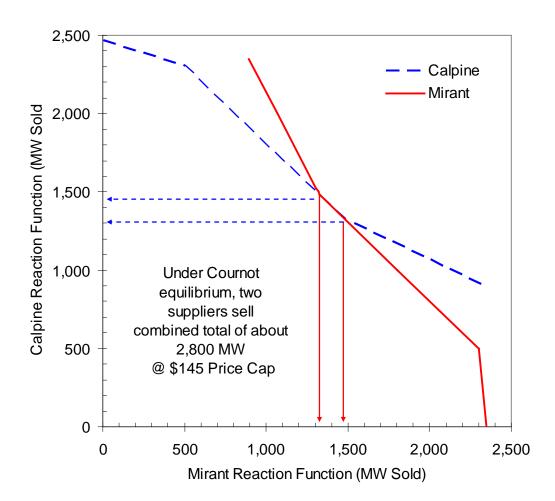
| Bay Area Capacity Requirement | 4,688 MW                       |
|-------------------------------|--------------------------------|
| Bay Area Supply               |                                |
| Calpine                       | 2,573 MW (41% of supply)       |
| Mirant                        | 2,347 MW (38% of supply)       |
| PG&E                          | 613 MW (10% of supply)         |
| Other                         | 681 MW (11% of supply)         |
| Total                         | 6,215 MW (132% of requirement) |




California Independent System Operator Corporation

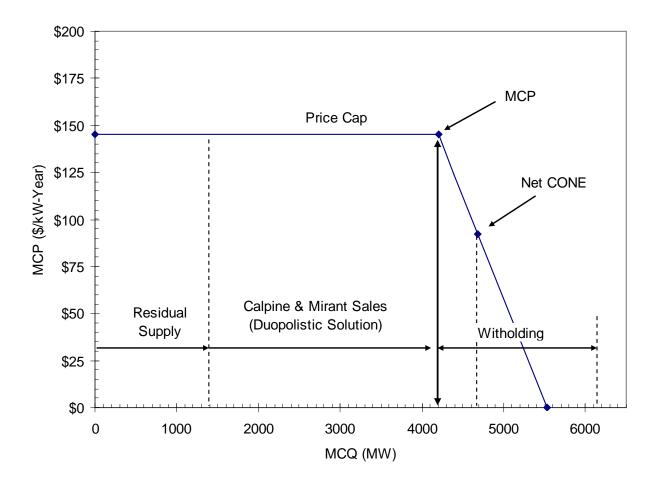
## Supply and Demand Balance (Bay Area)





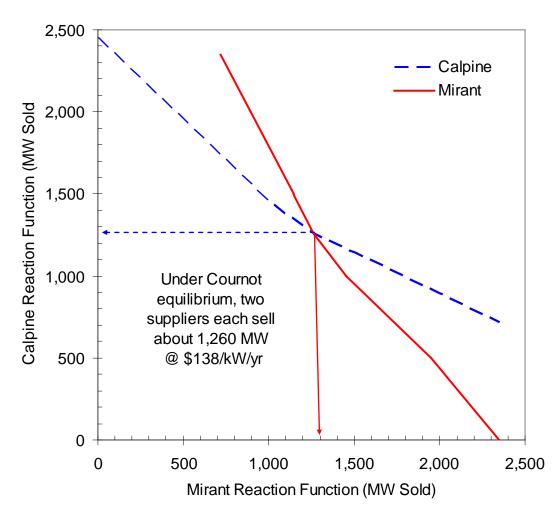

#### Profit Maximimizing Level of Sales by Largest Supplier under Unilateral Model of Market Power






#### Reaction Functions of Largest Two Suppliers in Bay Area






#### Profit Maximimizing Level of Sales by Largest Suppliers under Duopolistic Model of Market Power

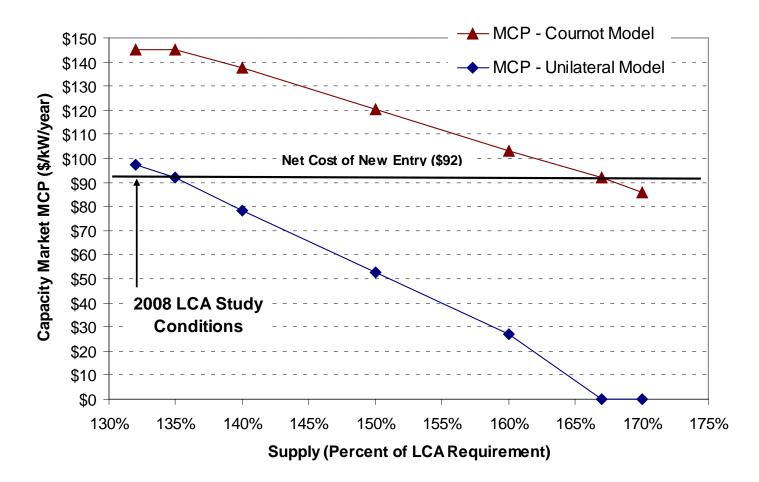




#### Reaction Functions of Largest Two Suppliers with Addition of 350 MW of Residual Supply






### Comparative Analysis of Potential Local Market Power Using Unilateral and Cournot Approaches

|                        |                  | Market Shares |        | Unilateral Approach |               | Cournot Approach |               |
|------------------------|------------------|---------------|--------|---------------------|---------------|------------------|---------------|
|                        | Supply<br>Margin | Calpine       | Mirant | МСР                 | % Net<br>CONE | MCP              | % Net<br>CONE |
| 2008 LCA Study         | 132%             | 41%           | 38%    | \$98                | 106%          | \$145            | 158%          |
| 100 MW of New Supply   | 135%             | 39%           | 37%    | <b>\$92</b>         | 100%          | \$145            | 158%          |
| 350 MW of New Supply   | 140%             | 38%           | 36%    | \$78                | 85%           | \$138            | 150%          |
| 825 MW of New Supply   | 150%             | 35%           | 33%    | \$53                | 57%           | \$120            | 131%          |
| 1,300 MW of New Supply | 160%             | 33%           | 31%    | \$27                | 30%           | \$103            | 112%          |
| 1,610 MW of New Supply | 167%             | 32%           | 30%    | <b>\$ 0</b>         | 0%            | <b>\$ 92</b>     | 100%          |
| 1,775 MW of New Supply | 170%             | 31%           | 30%    | \$ 0                | 0%            | \$ 86            | 93%           |

- Under unilateral model, addition of 100 MW would lower MCP to 100% Net Cone.
  - Supply = 135% of local capacity requirement
- Under duopolistic model, addition of 1,610 MW would be needed to lower MCP to 100% Net Cone.
  - Supply = 167% of local capacity requirement



#### Comparative Analysis of Potential Local Market Power Using Unilateral and Cournot Approaches





## Conclusions

- NYISO-style demand curve approach unlikely to be effective at mitigating local market power within CAISO's major load pockets (LCAs)
- Unilateral models of market power likely to dramatically underestimate degree of local market power.
- Even if significant new capacity by "residual suppliers" could be added in these areas, this would probably be economically inefficient
  - Very high supply margins in excess of actual capacity requirements would be needed to mitigate local market power of existing suppliers.
- Direct bid/price mitigation such as that used in PJM and ISO-NE likely to be more effective and economically efficient.

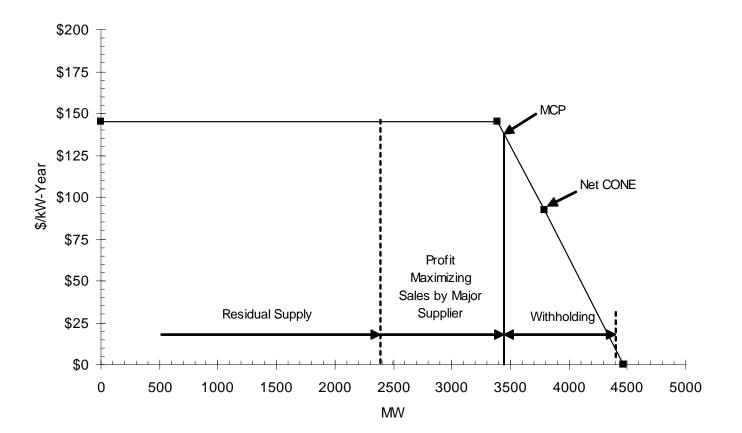


California Independent System Operator Corporation

## **Additional Materials**



California Independent System Operator Corporation


#### Western LA Basin: Local Capacity Requirements and Supply

#### Local Capacity Requirements and Available Supply Western LA Basin Sub-Area

| Sub-Area Area Requirement | 3,788 MW (2007 LCA Study)               |
|---------------------------|-----------------------------------------|
| Sub-Area Supply           |                                         |
| Williams (Bear Stearns)   | 2,019 MW (45% of sub-area supply)       |
| Other Suppliers           | 2,376 MW (55% of sub-area supply)       |
| Total Sub Area            | 4,432 MW (117% of sub-area requirement) |



### Western LA Basin – Base Case





## Western LA Basin – Scenario Analysis

# Table 1.Potential Impact of New Supply on Capacity Market Results<br/>Western LA Basin

|          |              |                |          | Capacity Market Outcomes |          |             |
|----------|--------------|----------------|----------|--------------------------|----------|-------------|
|          |              |                | Supply   |                          |          |             |
|          | Scenario     | Supply as % of | Owned by |                          | MCP as % |             |
| Scenario | Assumptions  | LCA            | Largest  | MCP                      | of Net   | MCQ         |
|          | (New Supply) | Requirement    | Supplier | (\$/kW/yr)               | CONE     | (% of Req.) |
| 2007 LCR | none         | 117%           | 45%      | \$138                    | 150%     | 91%         |
| 1        | 300 MW       | 125%           | 42%      | \$118                    | 128%     | 95%         |
| 2        | 500 MW       | 130%           | 41%      | \$104                    | 114%     | 98%         |
| 3        | 680 MW       | 135%           | 39%      | <b>\$92</b>              | 100%     | 100%        |
| 4        | 870 MW       | 140%           | 38%      | \$79                     | 86%      | 102%        |



### San Diego LCR: Local Capacity Requirements and Supply

# Table 1.Local Capacity Requirements and Available Supply<br/>San Diego Area

| San Diego Area Requirement | 2,957 MW        |                 |
|----------------------------|-----------------|-----------------|
| San Diego Area Supply      |                 |                 |
| NRG                        | 1,133 MW        | (38% of supply) |
| Dynegy                     | 702 MW          | (24% of supply) |
| SDG&E                      | 777 MW          | (26% of supply) |
| Other Suppliers            | 335 MW          | (12% of supply) |
| Total Sub Area             | 2,959 MW (~100% | of requirement) |



**Capacity Market Outcomes** 

## San Diego LCR – Scenario Analysis

# Table 1.Potential Impact of New Supply on Capacity Market Results<br/>San Diego Area

|          |              |                | Supply   |             | •        |             |
|----------|--------------|----------------|----------|-------------|----------|-------------|
|          | Scenario     | Supply as % of | Owned by |             | MCP as % |             |
|          | Assumption   | LCA            | Largest  | MCP         | of Net   | MCQ         |
| Scenario | (New Supply) | Requirement    | Supplier | (\$/kW/yr)  | CONE     | (% of Req.) |
| 2008 LCR |              |                |          |             |          |             |
| Study    | None         | 100%           | 38%      | \$143       | 156%     | 90%         |
| 1        | 300 MW       | 110%           | 35%      | \$118       | 128%     | 95%         |
| 2        | 600 MW       | 120%           | 32%      | <b>\$92</b> | 100%     | 100%        |
| 3        | 890 MW       | 130%           | 29%      | \$67        | 73%      | 105%        |



## **Direct Bid/Price Mitigation Approach**

#### Existing Suppliers subject to price impact test if:

- Bid >60% of net CONE, and
  - Controls >20% of capacity in local area or
  - Is individually pivotal in local area

#### Price Impact Test

- Auction first run with participant's bid, and then with net Avoidable Cost Rate (Net ACR)
- If use of unmitigated market bid increases capacity market price >5%, then mitigated bid (Net ACR) used in final auction
- Physical withholding prevented in local market by provisions that allow "de-listed" capacity to count toward local area requirement.
- Overall market price cap of 140% of Net Cone mitigates potential market power if price set by new supply.