

Flexible Ramping Product Requirements: Performance review, challenges, and potential enhancement analysis/paths discussion

Amber Motley Short Term Forecasting

Market Surveillance Committee Meeting General Session November 29, 2023

Recent concerns on FRP requirements

Performance metrics mapped to key items

* denotes new requirement for presentation **bold denotes proposed grouping by MSC** How to analyze requirement performance

ISO PUBLIC

Page 3

Presentation Roadmap

Page 4

PRODUCTION RESULTS

Informativeness

Equivalent coverage Difference in *informativeness*

uncertainty

Mosaic requirements are responsive to realized uncertainty

- Informativeness
 Mosaic carries low requirement at
- 1) Mosaic carries low requirement at low uncertainty
- 2) Mosaic shows coverage closer to target at high uncertainty

Instances where uncertainty exceeded mosaic and/or histogram requirement (summer 2023, all BAAs)

Mosaic better captures realized uncertainty

uncertainty exceeded mosaic and/or histogram (summer 2023, CISO)

mosaic

This slide pares down the data visualization from the previous slide and shows spread during periods where uncertainty is near requirements.

Performance benefits of mosaic are most clearly seen at the extremes (low and high) of uncertainty.

	Informat	tiveness
000/		T 000/

Spread (10 th -90 th)	Lowest 20% [0-701 MW]	Middle 20% [981–1525 MW]	Top 20% [2026–3460 MW]
mosaic	642.7	753.9	685.9
histogram	873.5	839.5	631.7

histogram

uncertainty exceeded mosaic and/or histogram (summer 2023, CISO)

Mosaic leads to lower requirements

Mosaic method has lower average and median requirement magnitudes. Historical production data shows about a **100 MW reduction in FRU** and 10 to 50 MW in FRD.

		Mosaic	Histogram
Ŋ	Mean	1040	1141
FR	Median	874	996
FRD	Mean	-801	-868
	Median	-694	-707

Mosaic coverage is greater on weekdays than weekends

Coverage		Weekday only	Weekend only	Weekday/ Weekend combined
=	Mosaic	0.931	> 0.897	0.921
4	Histogram	0.942	0.934	0.940
\Box	Mosaic	0.966	> 0.945	0.960
	Histogram	0.973	0.966	0.970
Q	Mosaic	0.965	• 0.956	0.962
L L L	Histogram	0.973	0.972	0.972

- Coverage is evaluated over the historical period of analysis (2/2/23 to 10/18/23).
- Note that coverage is one characteristic of many and the above metrics offer comparison of day-type performance rather than mosaic vs histogram performance.

Weekend coverage suffers from smaller sample size due to day-type split.

🍣 California ISO

Quantification of inter-hour movement in RTPD

(1) Mosaic movement relative to histogram is greater in FRD than in FRU and (2) movement in observed uncertainty is greater than either method, which helps validate the need for this movement

Inter-hour absolute magnitude changes		Mean		Median		90 th perc	entile
_	Mosaic		277.8		175.9		660.2
FRU	Histogram		240.0		149.1		587.3
	Histogram \rightarrow mosaic % change	15.8%		18.0%		12.4%	
	Mosaic		222.1		155.5		508.2
FRD	Histogram		162.2		107.3		396.0
	Histogram \rightarrow mosaic % change	36.3%		44.9%		28.5%	
	Observed uncertainty		414.2		297.8		931.8

Usability

Dynamic thresholds comprise the bulk of threshold activity

Summer (6/1 – 9/30)			Overall (2/2 – 10/18)					
	Zero	Static	Dynamic	Total	Zero	Static	Dynamic	Total
CISO	0.5%	1.7%	9.7%	9.8%	0.8%	1.5%	10.6%	10.9%
EIM Area	0.7%	0.6%	7.4%	7.4%	0.7%	1.4%	9.1%	9.6%

% of requirements hitting thresholds, evaluated per day and averaged over a defined period (# hits / 288)

Top priorities of cause to symptom: FRP requirements from a forecasting perspective

SIMULATION RESULTS

STF Analysis Plan

1) Define Objective [function]

- From Benchmark, increase calibration towards target coverage and decrease cost
- From Benchmark, increase calibration towards
 target coverage and increase informativeness.
- 2) Select the parameters to modify/add/subtract
 - Pooled suggestions from DMM/MSC and are pursuing in merit order

3) Choose a Search Strategy

Expand grid space / results as they increase objective Fage

- Simulations focused on two key areas with respect to sample size:
 - Day Type Consideration
 - Historical Data Utilized
- CAISO will use a subset of metrics to approximate the Pareto optimization of calibration (through coverage) vs. cost (through average requirement) as primary driver of decisions (objective)
- Proposed alternatives are performed in parameter "sets"

Parameter sets to evaluate alternative methods

Vary the sample scheme and size used to determine mosaic and histogram requirements

Sample Scheme	Sample Days	Description	Effective Sample Days Weekday	Effective Sample Days Weekend
1	90	Backwards 90 days w/ no day-type consideration	90	90
1	180	Backwards 180 days w/ no day-type consideration	180	180
2	90	Backwards 90 days w/ day-type consideration	~64	~25
2	180	Backwards 180 days w/ day-type consideration	~128	~51
3	90	Backwards 45 days / Forward 45 days w/ day-type consideration	~64	~25
3	180	Backwards 90 days / Forward 90 days w/ day-type consideration	~128	~51
4	90	Backwards 45 days / Forward 45 days w/ no day- type consideration	90	90
4	180	Backwards 90 days / Forward 90 days w/ no day- type consideration	180	180
Current	Scheme	Configurable parameters: Sample days (90 vs.180) 		
🍣 Calif	ornia ISO	 Sample scheme (backwards-only vs. backwards/forwards Day-type split (y/n) ISO PUBLIC 	S)	Page 17

Interpreting simulation results

Pareto Optimization of Calibration and Cost (FRU/WEEKEND)

FRU Requirement vs. FRU Coverage All Hours Weekend (Period Mean)

mosaic w/threshold (blue) vs. histogram (red) | sample size (ascending) production benchmark (black-dashed) | target coverage (gold-dashed)

SUMMARY AND NEXT STEPS

Summary

Production Results

- Positives
 - Mosaic shows significant benefit over histogram at the tails of realized uncertainty.
 - Mosaic has a smoother distribution of requirements and a lower cost/requirement compared to histogram.
- Negatives
 - Mosaic has worse performance on weekends compared to weekdays.
 - Mosaic performance coverage is slightly below target calibration coverage.

Simulation Results

- Eliminating day-type split will improve weekend overage and mosaic performance overall.
- Forward-backward sample scheme is shown to provide benefit to FRP and IR.
- The next step is to run further simulations across BAAs to ensure the amount of historical data is optimized.
 - Example 90 days historical, 90 days forward

Summary of next step focus areas for FRP requirements

Increase Sa Size:	ample
Day Typ	e
Modificatio	ons

Historical Data Utilized:

Forward and Backward Looking

Threshold: Further study on dynamic thresholds

Future Awareness of Requirements:

Posting future requirements for customers

Next steps with priority order

Priority	Impact	Description	Benefit
1	Medium	Change day-type within the mosaic methodology	Weekend model performance
2	Low	Change existing model parameters – in relation to historical sample data utilized	Overall model performance especially during seasonal transition
3	Medium	Posting future requirements for further stakeholder visibility	Customer awareness
4	TBD	Evaluate key timing utilized in requirement formulations	TBD
5	TBD	Dynamic threshold simulations and potential modification	TBD

APPENDIX

Pareto Optimization of Calibration and Cost (FRU/PEAK)

Pareto Optimization of Calibration and Cost (FRU/ALL)

age 26

Simulation results (scheme 4, 160 days) – Informativeness

Removing day-type split and enhancing the sample scheme improves the performance of mosaic as seen in simulated summer 2023 results, especially at low uncertainty values. Histogram changes from production version of this plot as sample scheme is revised, so histogram values reflect simulated histogram requirements.

mosaic

uncertainty exceeded mosaic and/or histogram (summer 2023, CISO)

histogram

uncertainty exceeded mosaic and/or histogram (summer 2023, CISO)

PRODUCTION RESULTS APPENDIX

Morning ramp (summer 2023, CISO)

California ISO

Evening ramp (summer 2023, CISO)

Evening peak (summer 2023, CISO)

ISO PUBLIC

ISO PL

STF BAA-level Replication of Percentane of Significante of Mosaic Coefficients All Hours (Period Mean) BAA NAME (color) | DMM Reported (shape) Inte DOWN UP BAA NAME AVA PACW AZPS PASS GROUP 50.0% -Percent Significance SQUARE Term - %0.08 BANC PGE **BCHA** PNM PSEI BPAT CISO SCL SRP IPCO LADWP TEPC NEVP TIDC NWMT TPWR PACE DMM REPORTED 20.0% FALSE TRUE TID, TPWR, SCL , I. 0.6 0.8 0.2 0.4 0.8 0.2 0.4 0.6 (entities w/o Percent Significance LINEAR Term wind or solar) 20230201 to 20231001 California 130 IOU FUDLIU

Empirically Three Different Ways to Interpret Proposed Enhancements

