Some Issues & Proposals in CO₂ Trading & Accounting: Load-Based Systems, Allowance Allocation & Leakage

Benjamin F. Hobbs bhobbs@jhu.edu

Dept. of Geography & Environmental Engineering Whiting School of Engineering The Johns Hopkins University

California ISO Market Surveillance Committee

General Objectives

1. Effective reductions in CO_2 \Rightarrow Deal with leakage

2. Avoid unnecessary distortions and inefficiencies in power markets

- ⇒ Avoid having to track power transactions from source to use
- ⇒ Avoid allocating free allowances to new investment, especially giving more allowances to higher emitting plants

One Approach to Avoid Tracking in Load-Based Systems: Decouple Emissions from Power

- Inspired by "Green Certificate" / "Renewable Energy Credit" programs
 - Power generator sells MWh to power market
 - Sells GCs/RECs to GC/REC markets
 - LSEs buy MWh to meet consumer power demands
 - Buys GCs/RECs to meet regulatory requirements
- > As a result, the ISO does *not* need to:
 - Account for flow of green vs grey electricity to consumers through the grid
 - Have different prices for different colors of power (in addition to LMPs, spinning reserves, nonspinning reserves, reactive power,)
- As a result, desirable (green) producers do not have an incentive to avoid the ISO day-ahead and real-time markets under MRTU
 - If "greenness" attribute not separated from power, a single market would attract only the less valuable (grey) power
 - Would limit the flexibility of the operator, endanger system reliability

E.g., "Tradable Emission Attribute Certificates" (C. Breidenich and M. Gillenwater)

LSEs buy both power and TEACs (MWh) from suppliers *j*, each with average emissions rate *E_i*

Regulator requires that the LSE satisfy:

- $Sum_i TEAC_i = Load$
- $Sum_i E_i TEAC_i = E^{TARGET} * Load$
 - $E^{\check{T}AR\check{G}ET}$ = target emissions rate
- LSE pays Sum_j P x (E^{DEFAULT} E_j)TEAC_j
 P = \$/ton price of CO₂

Generator *j* paid $P x (E^{DEFAULT} - E_j) x MWh_j$

This Type of System Simplifies to an Economically Equivalent System of (1) Source Trading + (2) MWh Tax

- >Mathematical result:
 - If no impors & demand is perfectly inelastic, then *E*^{DEFAULT} doesn't matter
 - *E.g.*, if *E*^{DEFAULT} is set high, consumers pay more for TEACs, & generators receive more.
 - Then the equilibrium price of power is lowered, *exactly* compensating for the increased TEAC payments
 - Might as well set $E^{DEFAULT} = E^{TARGET}$

>If E^{DEFAULT} = E^{TARGET}, then each consumer pays, on net, zero for
TEACs:

- Then no need for TEAC accounting or sales to consumers
- System simplifies to a source-based trading system,
 - with a cap = total load $x E^{TARGET}$
- System is giving away allowances to producers in proportion to MWh production

Higher E^{DEFAULT} values are equivalent to a consumption (per MWh) tax plus source-based trading:

- Tax + source trading is simpler to administer than load-based systems
- Tax + source trading is readily transitioned to national or regional system 4

Adapting "Tradable Emission Attribute Certificates" To A Power Market with Imports

\succ Assume $E^{DEFAULT} = E^{TARGET}$

$> E^W$ = the marginal CO2 emissions rate (t/MWh) at Calif border

- Under a well-functioning power market, this would be the *same* no matter who is the nominal importer to California
 - Requires modeling; depends on season, time of day, and location of import

> For an importer, let z_i = imports.

• Importer is allocated:

 $E^{TARGET} z_i$

... and must buy the following allowances:

 $E^W z_j$

- Eliminates the contract shuffling problem
 - And, if *E^W* is correct, eliminates leakage.

> For an generator who exports, let x_i = imports

• It is then allocated the following allowances:

 $E^{TARGET} (MWh_j - x_j)$

... and needs to buy the following allowances:

 $(E_j MWh_j - E^W x_j)$

Free Allocation of Allowances to New Investment Can Distort Generation Mix and Increase Costs

- Our simulations of power markets have shown that if allowances are given freely to new investment, and more allowances are given to dirtier sources:
 - The mix of generation investment shifts from the least cost mix
 - In extreme cases, gas winds up being baseloaded and coal cycled, without decreasing emissions
 - Costs to consumers goes up
 - In extreme cases, many fold
- Do not allocate allowances in ways that provide incentives to change future investment decisions
- J. Zhao, B.F. Hobbs, and J.-S. Pang, "Long-Run Equilibrium Modeling of Alternative Emissions Allowance Allocation Systems in Electric Power Markets," Working Paper, April 18, 2007