Integrated Hydrogen Utility Systems for Remote Northern Communities

Hydrogen Millennium 10th Canadian Hydrogen Conference May 28 - 31, 2000

Glenn D. Rambach FuelCellPlace@aol.com

Integrated Hydrogen Utility Systems

- Hydrogen as a utility energy storage medium.
 - To buffer the intermittency and phase differences of renewables an loads.
 - Where current electricity values are high (premium power).
 - Niche applications in isolated locations.
 - Permits full autonomy from a fossil fuel supply infrastructure.
 - Provides utility AND transportation functions
- Storage function of hydrogen systems is more complex than either battery storage systems or fossil fueled fuel cell systems.
 - Batteries have one power/energy element.
 - Fossil fuel cell system have two power elements and a simple energy element.
 - Four separate power or energy elements permit optimization in H2 system.
- The technologies necessary for an integrated renewable hydrogen power system are available, and close to the costs needed for full economic use in remote applications.
- Models are yet to be developed for optimization of design and control of a hydrogen system.

Energy Demographics

Country	Population (millions)	Per capita energy use (Bbls oil _(equiv.) /year/person)
USA	270 (4.5%)	23.6 (5.7 x W.A.)
China	(37%)	0 79 (0.19 x W.A.)
India	1000 - (0770)	
Indonesia	202	
World	6000	4.12 (W.A.)

Two billion people on earth do not have electricity.

The relationship between renewable energy sources and fuel cells is generally through hydrogen

The primary fuel for a fuel cell is hydrogen

Hydrogen can be produced from:

	Gasoline	
Diesel fuel		Nonrenewable
Propane		
	Coal	
Wind, solar, hydroelectric and		
geothermal electricity		Renewable
Biomass		
Municipal solid waste and LFG		
Natural gas, Methanol, Ethanol		Either
	-	1

In isolated communities, the most likely indigenous resource that can produce *local-energy-economy quantities* of hydrogen are: Wind, solar, hydroelectric and geothermal electricity Diesel, propane may have a delivery infrastructure Natural gas *may be* locally available or deliverable as LNG

Fuel Cell Utility Power Systems

Configuration options

Source, process, storage and load options

Design criteria for remote hydrogen fuel cell utility power system

Wind, hydrogen, fuel cell isolated power system

Relationship of load, capacity factor, efficiencies to the power of renewable and electrolyzer

$$P_{E} = P_{R} = \frac{(1 - Cf_{R}) PI_{AV}}{Cf_{R} \eta_{E} \eta_{FC} \eta_{C}}$$

- P_E = Electrolyzer rated power
- P_R = Renewable peak capacity
- PI_{AV} = Average load power
- Cf = Capacity factor
- $\eta = \text{Efficiency}(<1)$
- FC = Fuel cell system
- C = Compressor

Effects of renewable capacity factor, electrolyzer efficiency and fuel cell system efficiency on renewable power and electrolyzer power needed

Effects of renewable capacity factor and turn-around efficiency on renewable power and electrolyzer power needed

Load average is 100kW

DRI residential scale, renewable hydrogen, fuel cell test facility and refuel station

Components of DRI renewable hydrogen, fuel cell test facility

Renewable Hydrogen Energy Research System at DRI

Kotzebue, Alaska wind turbine site

Kotzebue, AK wind turbine site

Wind, hydrogen, fuel cell power for KOTZ Radio Transmitter

Wind, hydrogen, fuel cell power for village loads

Evolution of system capital costs for different loads

Summary

- Integrated hydrogen utility systems are an ultimate goal for future power systems.
 - The inclusion of transportation fuel in remote locations adds <u>significant</u> value.
 - Other storage systems include pumped hydro and batteries.
- Wind power, micro-hydroelectric and low-q water current are promising power input stream sources for northern communities.
- The technologies necessary for an integrated renewable hydrogen power system are available, and close to the costs needed for full economic use in remote applications.
 - Cost is a greater challenge than technological development at this point.
- New system models are key enablers to permitting development of the market for integrated hydrogen systems