

Baselines for Retail Demand Response Programs

Bruce Kaneshiro
California Public Utilities Commission
March 12, 2009

Contact Info: bsk@cpuc.ca.gov

Purpose of Baselines in Demand Response

- What is the "Baseline"?
 - An hourly estimate of what a customer's load would have been on the day of the DR event without taking any DR actions, for the purpose of determining the customer's peak load reduction.
- Proper baselines lead to accurate estimates of a customer's peak load reduction, which is important for:
 - Settlement: compensating the customer fairly for the load reduction he provided.
 - **Resource Planning:** the aggregate DR contribution of a entire program can be accounted for in Resource Adequacy and long-term procurement planning.
 - Cost-effectiveness evaluation: DR programs can be properly compared, evaluated and adjusted if regulators are able to assess what the program can deliver relative to their costs.

The CPUC's Load Impact Protocol

- A set of guidelines that the Investor-Owned Utilities (IOUs) follow in estimating load impacts from DR programs.
 - The purpose of the LI Protocols is to provide ex ante forecasts of DR programs that will then be used to inform the CPUC's Resource Adequacy (RA) and Long-Term Procurement Plan (LTPP) proceedings.
 - The LI Protocols require the IOUs to determine ex-post impacts of DR programs for the past year (2008), but these impacts are not intended for settlements.
 - The LI Protocols do not adopt specific baselines. Rather they provide guidance on what impacts should be estimated, issues to consider in selecting an approach and how to report/format the information.
 - The IOUs are required to file an annual report on April 1 that provides the load impacts for each program in their DR portfolio.
 - CPUC decision: http://docs.cpuc.ca.gov/PUBLISHED/FINAL DECISION/81972.htm
 - Load Impact Protocols: http://docs.cpuc.ca.gov/word_pdf/FINAL_DECISION/81979.pdf

IOU DR Programs: Variation in Methods of Settlement

Most Non-Emergency DR Programs Rely on a Baseline for Settlements:

Standard "3-in-10" baseline.

DR Programs with No Baseline for Settlements

- Critical Peak Pricing (CPP): a time-of-use rate where participants pay higher energy rates during critical peaks
- Base Interruptible Program (BIP): participants agree to drop load to a firm service level.
- Air Conditioner (AC) Cycling: participants in PG&E's program receive a one-time enrollment incentive. Load drops are not measured for settlements.

Enrolled¹ MWs in IOU Demand Response Programs

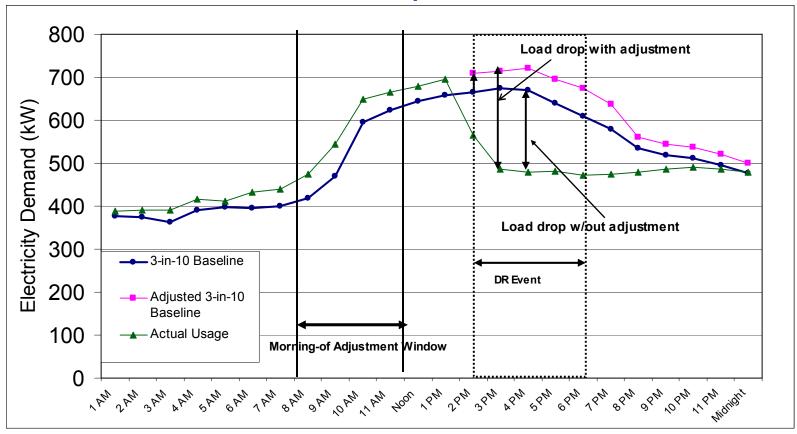
	July 2003	July 2005	December 2008	5% of System Peak Demand (DR Goal)
Dynamic Pricing (CPP)	0 MWs	50 MWs	177 MWs	2,500 MWs
Price-Responsive Incentive-Based DR Programs	0 MWs	800 MWs	717 MWs	
IOU-Aggregator Contracts	0 MWs	0 MWs	181 MWs	
Sub-Total for Non- Emergency Programs			1075 MWs	
Emergency-triggered Programs	1,485 MWs	1,600 MWs	2,072 MWs	N/A

^{[1] &}quot;Upper-bound" estimates – represents highest potential load drop. Actual results may vary.

Baselines Used in IOU's DR Programs for Settlements

Standard "3-in-10" baseline

- Based on the hourly average of the three (3) highest energy usages on the immediate past ten (10) similar days.
- The three (3) highest energy usage days are those days with the highest total kilowatt hour usages within a certain time frame (e.g. noon and 8:00 p.m.)
- The past ten (10) similar days includes Monday through Friday, excluding holidays, and excludes days when the customer was paid to reduce load for a DR event or days when rotating outages are called


The Morning-of Adjustment (PG&E Pilot)

- Intended to adjust for potential bias in the 3-in-10 baseline for weather-sensitive participants.
- Participant's morning electricity usage for 4 hours used as a factor to adjust the participant's 3-in-10 baseline.
- Any adjustment to the baseline is limited to plus or minus 20% of the existing baseline.
- Participants who choose the morning-of adjustment are locked into this methodology for the year.

Illustration of Morning-of Adjustment for a Weather-Sensitive DR Participant

Baselines Under Consideration for '09-'11 Programs

- 10-Day Average Baseline
 - Based on the hourly averages of energy usage on the immediate past ten (10) similar days.
- 3-in-10 Baseline
- 5-in-10 Baseline
- Morning-of Adjustments:
 - Default or Opt-in?
 - Two-way or Upward Only?
 - Cap or no cap?
 - Number of hours for the adjustment period
- Aggregate vs. Individual Baselines
- CPUC Decision on Retail Baselines Expected by May 2009

Aggregate vs. Individual Baseline Issues

- Aggregate Baseline Method (for 3-in-10 baseline):
 - The hourly loads for all of an aggregator's nominated customers are summed for each of the past 10 days
 - The 3 highest days are identified from the 10 aggregated days
 - The three (3) highest energy usage days are those days with the highest total kilowatt hour usages within a certain time frame (e.g. noon and 8:00 p.m.)
 - The 3 highest days are then averaged to produce the baseline load for the aggregate group
- Individual Baseline Method (for 3-in-10 baseline)
 - The hourly loads for each of an aggregator's customers are evaluated separately to identify their <u>individual</u> 3 highest days of the past 10.
 - The average loads over those three days are calculated for a customer-specific baselines
 - The individual customer baselines are summed up to produce the baseline load for the aggregate group
- The 3 highest days for the aggregated group is not necessarily the 3 highest days for each individual of the group.

Additional Baseline Issues

- Baseline methodologies need to be accurate and difficult to game, yet also simple and transparent so that participants can understand how they will be compensated.
- The performance of baseline estimation methods depends crucially on the inherent variability of customers' loads.
 - One baseline cannot fit all
- If a multiple/individual-method baseline approach is the way to go, how would it be implemented?
- Customers with highly variable usage patterns: baselines do not work for them. How can these customers appropriately participate in DR?
- Should baselines adopted for wholesale settlements be the same or similar to the baselines adopted for retail settlements? What are the pros/cons if they are not the same/similar?

Recent Baseline Studies

- Protocol Development for Demand Response Calculation Findings and Recommendations. California Energy Commission Consultant Report. KEMA-XENERGY Miriam L. Goldberg and G. Kennedy Agnew. February 2003 http://www.energy.ca.gov/reports/2003-03-10_400-02-017F.PDF
- Evaluation of 2005 Statewide Large Nonresidential Day-Ahead and Reliability Demand Response Programs. Quantum Consulting Inc./Summit Blue Consulting, LLC. April 28, 2006
- California Day-Ahead DR Program Baseline Load Analysis and PY-2006 Impact Evaluation. Steven D. Braithwait, Michael Welsh, Dan Hansen, David Armstrong Christensen Associates Energy Consulting, LLC. January 2008
- Estimating Demand Response Load Impacts: Evaluation of Baseline Load Models for Non-Residential Building in California
 Coughlin, K., M.A. Piette, C. Goldman and S. Kiliccote. LBNL-63728. January 2008 http://drrc.lbl.gov/pubs/63728.pdf

