

MRTU Ancillary Service Pricing Under Deficiency Conditions

Shucheng Liu, Ph.D. Principal Market Developer

MSC/Stakeholder Meeting

July 30, 2008

Guideline for MRTU A/S Pricing Under Deficiency Conditions

- There is no ancillary service (A/S) Scarcity Pricing in MRTU
 - FERC accepted in concept the CAISO's initial limited scarcity proposal
 - FERC directed the CAISO to implement a more extensive Scarcity Pricing mechanism within 12 months after the startup of MRTU

MRTU A/S Pricing Under Deficiency Conditions

- In case of insufficient supply, minimum A/S requirement will be reduced.
 - Supply deficiency is identified in Scheduling Run
 - A/S requirement is reduced in Pricing Run to eliminate supply deficiency
- Marginal economic A/S bid always sets A/S market clearing price (ASMP) with opportunity cost of providing energy

Additional MRTU A/S Pricing Rules

- A/S pricing under deficiency conditions also follows the following rules
 - Not to procure lower quality A/S to meet the requirement for a deficient higher quality A/S
 - To procure more the same or higher quality A/S from the outer Region to meet the requirement of an A/S deficient in a nested Sub-Region

General Assumptions of Examples

- Two nested regions
 - Region 2 a Sub-Region within the CAISO system
 - Region 1 the CAISO system excluding Region 2
- Energy and one A/S product
 - With fixed energy demand and minimum A/S requirement in each region
- Supply constraints for each of the four suppliers
 - Maximum bid-in A/S capacity
 - Maximum total bid-in capacity

2

Example 1 – No A/S Supply Deficiency

There is no A/S supply deficiency

Input Assumptions

	Energy	y Offer	A/S	Offer	Maximum	Demand
	Quantity	Price	Quantity	Price	Capacity	(MW)
Perion 1	(10100)	(\$/1010011)	(10100)	(\$/1010011)	(10100)	
Region						
Energy Demand						4750
A/S Requirement						195
Supplier 1		25	45	6	4500	
Supplier 2		30	160	10	500	
Region 2						
Energy Demand						1500
A/S Requirement						90
Supplier 3		50	20	12	1500	
Supplier 4		150	80	18	100	

Example 1 – Scheduling Run Co-optimization Model

Objective Function:		
$\min(25 \cdot E_1)$	$E_{1,1} + 30 \cdot E_{1,2} + 50 \cdot E_{2,3} + 150 \cdot E_{2,4} + 6 \cdot AS_{1,1} + 10 \cdot AS_{1,2}$	
$+12 \cdot A$	$S_{2,3} + 18 \cdot AS_{2,4} + 2000 \cdot SLK_{AS1} + 2000 \cdot SLK_{AS2})$	
Subject to:		
Region 2:	$AS_{2,3} + AS_{2,4} + SLK_{SAS2} \ge 90$	α
	$E_{2,3} + E_{2,4} = 1500$	β
	$E_{2,3} + AS_{2,3} \le 1500$	χ
	$E_{2,4} + AS_{2,4} \le 100$	δ
Region 1 & 2:	$AS_{1,1} + AS_{1,2} + AS_{2,3} + AS_{2,4} + SLK_{AS1} \ge 285$	ε
Region 1:	$E_{1,1} + E_{1,2} = 4750$	ϕ
	$E_{1,1} + AS_{1,1} \le 4500$	γ
	$E_{1,2} + AS_{1,2} \le 500$	η
	$AS_{1,1} \le 45$, $AS_{1,2} \le 160$, $AS_{2,3} \le 20$, $AS_{2,4} \le 80$	
Non-negative Value:	$AS_{i,j}, E_{i,j}, SLK_{ASi} \ge 0$	
$E_{i,j}, AS_{i,j}$ – Energ SLK_{ASi} – Slack va	gy schedule and A/S procurements from supplier <i>j</i> in region <i>i</i> ariables of A/S in region <i>i</i> (MW)	(MW)
0 0 1	Oberlaus which of the construction	

 $\alpha, \beta, \chi, \delta, \varepsilon, \phi, \gamma, \eta$ – Shadow price of the constraints

California ISO Public

Example 1 – Results of Scheduling Run and Pricing Run

Scheduling Run Results

Optima	Optimal Energy Dispatch and A/S Procurement (MW)									
AS ₁₁	AS ₁₂	AS _{2,3}	AS _{2,4}	<i>E</i> ₁₁	E_{12} $E_{2,3}$ $E_{2,4}$ SLK_{AS1} SLK_{AS2}					
35	160	10	80	4465	285	1490	10	0	0	
Shado	w Price (\$	/MWh)			Marke	t Clearing	Price (\$/N	/Wh)		
α	β	ε	ϕ		$P_{1,AS}$	$P_{2,AS}$	$P_{1,E}$	$P_{2,E}$		
101	150	11	30		11	112	30	150		

- Since there is no supply deficiency, energy prices are set by marginal economic bids.
- ASMPs include marginal A/S bids and opportunity costs
- Pricing Run has the same results

Example 2 – A/S Supply Deficiency in Region 2

Based on Example 1, Supplier 3's bid-in A/S capacity is reduced to create a deficiency in Region 2

Input Assumptions

	Energ	y Offer	A/S	Offer	Maximum	Domond
	Quantity	Price	Quantity	Price	Capacity	(MW)
	(MW)	(\$/MWh)	(MW)	(\$/MWh)	(MW)	(1111)
Region 1						
Energy Demand						4750
A/S Requirement						195
Supplier 1		25	45	6	4500	
Supplier 2		30	160	10	500	
Region 2						
Energy Demand						1500
A/S Requirement						90
Supplier 3		50	(5)	12	1500	
Supplier 4		150	80	18	100	

Example 2 – Scheduling Run Results

Scheduling Run Results

Optima	Optimal Energy Dispatch and A/S Procurement (MW)									
AS ₁₁	AS ₁₂	AS _{2,3}	AS _{2,4}	E ₁₁	E ₁₂	E _{2,3}	E _{2,4}	SLK _{AS1}	SLK _{AS2}	
40	160	5	80	4460	290	1495	5	0	(5)	
Shado	w Price (\$	/MWh)			Marke	t Clearing	Price (\$/N	/Wh)		
α	β	ε	ϕ		$P_{1,AS}$	$P_{2,AS}$	$P_{1,E}$	$P_{2,E}$		
2000	150	11	30		11	2011	30	150		

- There is a 5 MW A/S supply deficiency in Region 2
- A/S minimum requirement of Region 2 will be reduced by 5 MW in Pricing Run

Example 2 – Pricing Run Co-optimization Model

Objective Function:

$$\min(25 \cdot E_{1,1} + 30 \cdot E_{1,2} + 50 \cdot E_{2,3} + 150 \cdot E_{2,4} + 6 \cdot AS_{1,1} + 10 \cdot AS_{1,2} + 12 \cdot AS_{2,3} + 18 \cdot AS_{2,4} + 0.01 \cdot SLK_{AS1} + 0.01 \cdot SLK_{AS2})$$

Subject to:

Region 2:	$AS_{2,3} + AS_{2,4} + SLK_{SAS2} \ge 85$	α
	$E_{2,3} + E_{2,4} = 1500$	β
	$E_{2,3} + AS_{2,3} \le 1500$	χ
	$E_{2,4} + AS_{2,4} \le 100$	δ
Region 1 & 2:	$AS_{1,1} + AS_{1,2} + AS_{2,3} + AS_{2,4} + SLK_{AS1} \ge 285$	ε
Region 1:	$E_{1,1} + E_{1,2} = 4750$	ϕ
	$E_{1,1} + AS_{1,1} \le 4500$	γ
	$E_{1,2} + AS_{1,2} \le 500$	η
	$AS_{1,1} \le 45$, $AS_{1,2} \le 160$, $AS_{2,3} \le 5$, $AS_{2,4} \le 80$	
Upper Limits:	$SLK_{AS1} \le 0.001,$ $SLK_{AS2} \le 0.001$	
Non-negative Value:	$AS_{i,j}, E_{i,j}, SLK_{ASi} \ge 0$	

Example 2 – Pricing Run Results

Pricing Run Results

Optima	Optimal Energy Dispatch and A/S Procurement (MW)									
AS ₁₁	AS_{12}	AS _{2,3}	AS _{2,4}	E ₁₁	<i>E</i> ₁₂	E _{2,3}	E _{2,4}	SLK _{AS1}	SLK _{AS2}	
40	160	5	80	4460	290	1495	5	0	0	
Shado	w Price (\$	/MWh)			Marke	t Clearing	Price (\$/N	/Wh)		
α	β	ε	ϕ		$P_{1,AS}$	$P_{2,AS}$	$P_{1,E}$	$P_{2,E}$		
101	150	11	30		11	112	30	150		

- There is no more A/S supply deficiency in Pricing Run
- The ISO procures 5 MW more A/S in Region 1 to meet the total A/S requirement of Region 1 & 2
- Energy dispatch and A/S procurements are different than Example 1 (shown in red), but ASMPs are the same.

Example 3 – A/S Supply Deficiency in both Region 1 & 2

Based on Example 2, Supplier 1's bid-in A/S capacity is reduced to create deficiencies in both Region 1 & 2

Input Assumptions

	Energ	y Offer	A/S	Offer	Maximum	Demand
	Quantity (MW)	Price (\$/MWh)	Quantity (MW)	Price (\$/MWh)	Capacity (MW)	(MW)
Region 1						
Energy Demand						4750
A/S Requirement			(195
Supplier 1		25	(38)	6	4500	
Supplier 2		30	160	10	500	
Region 2			-			
Energy Demand						1500
A/S Requirement						90
Supplier 3		50	(5)	12	1500	
Supplier 4		150	80	18	100	

Example 3 – Scheduling Run Results

Scheduling Run Results

Optima	Optimal Energy Dispatch and A/S Procurement (MW)									
AS_{11}	AS ₁₂	AS _{2,3}	AS _{2,4}	<i>E</i> ₁₁	<i>E</i> ₁₂	E _{2,3}	E _{2,4}	SLK _{AS1}	SLK _{AS2}	
38	160	5	80	4462	288	1495	5	(2)	(5)	
Shado	w Price (\$	/MWh)			Marke	t Clearing	Price (\$/N	/Wh)		
α	β	ε	φ		$P_{1,AS}$	$P_{2,AS}$	$P_{1,E}$	$P_{2,E}$		
2000	150	2000	30		2000	4000	30	150		

- There is a 5 MW A/S supply deficiency in Region 2 and a 2 MW deficiency in the total of Region 1 & 2
- A/S minimum requirement of Region 2 and the total of Region 1 & 2 will be reduced in Pricing Run

Example 3 – Pricing Run Co-optimization Model

Objective Function:

$$\min(25 \cdot E_{1,1} + 30 \cdot E_{1,2} + 50 \cdot E_{2,3} + 150 \cdot E_{2,4} + 6 \cdot AS_{1,1} + 10 \cdot AS_{1,2} + 12 \cdot AS_{2,3} + 18 \cdot AS_{2,4} + 0.01 \cdot SLK_{AS1} + 0.01 \cdot SLK_{AS2})$$

Subject to:

Region 2:	$AS_{2,3} + AS_{2,4} + SLK_{SAS2} \ge 85$	a
	$E_{2,3} + E_{2,4} = 1500$	β
	$E_{2,3} + AS_{2,3} \le 1500$	χ
	$E_{2,4} + AS_{2,4} \le 100$	δ
Region 1 & 2:	$AS_{1,1} + AS_{1,2} + AS_{2,3} + AS_{2,4} + SLK_{AS1} \ge (283)$	ε
Region 1:	$E_{1,1} + E_{1,2} = 4750$	ϕ
	$E_{1,1} + AS_{1,1} \le 4500$	γ
	$E_{1,2} + AS_{1,2} \le 450$	η
	$AS_{1,1} \le 38$, $AS_{1,2} \le 160$, $AS_{2,3} \le 5$, $AS_{2,4} \le 80$	
Upper Limits:	$SLK_{AS1} \le 0.001,$ $SLK_{AS2} \le 0.001$	
Non-negative Value:	$AS_{i,j}, E_{i,j}, SLK_{ASi} \ge 0$	

Example 3 – Pricing Run Results

Pricing Run Results

Optima	Optimal Energy Dispatch and A/S Procurement (MW)									
AS ₁₁	AS ₁₂	AS _{2,3}	AS _{2,4}	<i>E</i> ₁₁	E ₁₂	E _{2,3}	E _{2,4}	SLK _{AS1}	SLK _{AS2}	
38	160	5	80	4462	288	1495	5	0	0	
Shado	w Price (\$	/MWh)			Marke	t Clearing	Price (\$/N	/Wh)		
α	β	ε	ϕ		$P_{1,AS}$	$P_{2,AS}$	$P_{1,E}$	$P_{2,E}$		
101	150	11	30		11	112	30	150		

- There is no more A/S supply deficiency in Pricing Run
- Energy dispatch and A/S procurements are different than Example 1 (shown in red), but ASMPs are the same.

Summary – No A/S Scarcity Pricing in MRTU

- A/S supply deficiency is eliminated in Pricing Run by reducing A/S requirement
 - Example 1 no A/S supply deficiency
 - Example 2 A/S requirement in Region 2 is reduced
 - Example 3 A/S requirements in Region 2 and the total of Region 1 & 2 are reduced
- MRTU A/S pricing mechanism follows the guideline:
 - No A/S Scarcity Pricing in MRTU
 - Marginal economic A/S bid always sets ASMP with opportunity cost of providing energy

Questions

California ISO Public