

Real Time Market Parameter Settings: Analytic Results

Edward Lo Lead Engineering Specialist Market & Product Development

MSC/Stakeholder Meeting on Parameter Maintenance July 30, 2008

Objectives of Case Study

- Study scheduling and pricing outcomes under the uneconomic adjustment parameters proposed for the Real Time Market.
- Focus on relaxation of power balance constraint and flowgate transmission constraint and their interactions in the Real Time Dispatch.

Real-Time Dispatch (RTD)

- RTD is an energy-only real-time dispatch with a security constrained economic dispatch (SCED) engine, observing network transmission constraints and individual resource inter-temporal constraints.
- RTD is executed every 5 minutes with optimization horizon comprised of 7 five-minute intervals.
- Non-participating loads are modeled as fixed at the forecast level.
- Distributed load slack is employed in SCED formulation.
- LDF-weighted average of LMPs across all load buses equals the energy component of LMPs at different nodes. We call this quantity the System Energy Price here.

Proposed Uneconomic Adjustment Parameters for Real Time Market

Constraint Type	Scheduling Run Penalty Price	Pricing Run Pricing Parameter
Power Balance	\$6500	\$1500
	Previously \$45000	Unchanged
Flowgate	\$5000	\$1500
California ISO	Unchanged	Unchanged

Design of Test Cases to Evaluate the Functioning of Proposed Parameter Values

- Raise the Load forecast for the first five-minute interval within the optimization horizon, to exceed the available energy supply capacity.
- Enable one transmission flow constraint, namely, the North of SONGS branch group between SCE and SDGE service areas; disable all other transmission constraints.
- Disable individual resource ramping constraints.
- Perform the study using pricing run pricing parameters as proposed, and zero values as alternatives for comparison.

NSONGS Branch Group and its Proximity

- North of SONGS (NSONGS) branch group comprised of four 230-kV lines between SCE and SDGE service areas.
- Transmission capability of NSONGS is set to its normal limit value in both directions for this study.

Four Study Cases

Load exceeds generation supply for all cases.

Case #	NSONGS Flowgate Constraint Enabled (Y/N)	Pricing Run Parameter of Power Balance Constraint	Pricing Run Parameter of Flowgate Constraint
1	N	0	NA
2	N	1500	NA
3	Y	1500	0
4	Y	0	1500

Results of Test Case 1 Shows the Marginal Economic Bid Setting the System Energy Price

Scenario: Load exceeds generation supply; transmission constraint disabled, \$0 as pricing parameter for power balance constraint

- Power Balance constraint must be relaxed: slack variable for power balance is "dispatched" to a positive value to meet system load.
- All generators are dispatched at their maximum levels, and MW flow through NSONGS branch group is from south to north.
- Energy bid prices \leq \$132.96. Loss Penalty Factors of Econ Bids \leq 1.13
- System Energy Price = \$140.22 set by generator with highest product of bid price times loss penalty factor, i.e., the marginal resource in the pricing run.
- LMP at any location = System Energy Price / Loss Penalty Factor; LMP Congestion Component = \$0 for all locations

Location	LMP	
Bay Area	\$139.30	
North of NSONGS	\$132.46	
South of NSONGS	\$127.66	
California ISO Public		

Slide 8

Results of Test Case 2 Shows the Pricing Run Parameters Setting the System Energy Price

Scenario: Load exceeds generation supply; transmission constraint disabled; \$1500 as pricing parameter for power balance constraint

- Same observations as Case 1 for scheduling run.
- System Energy Price = \$1500 in pricing run, set by the pricing parameter.
- LMPs are scaled up by the ratio of \$1500 and the energy price of previous case.

Location	LMP
Bay Area	\$1490.16
North of NSONGS	\$1416.99
South of NSONGS	\$1365.64

Results of Test Case 3 Shows the \$0 Pricing Parameter for Transmission Not Changing the System Energy Price

Scenario: Load exceeds generation supply; transmission constraint enabled; \$1500 as pricing parameter for power balance constraint; \$0 as pricing parameter for flowgate transmission constraint

- With higher penalty price in scheduling run, enforcing power balance constraint takes precedence over flowgate transmission constraint in scheduling run.
- In addition to the relaxation of power balance constraint, NSONGS transmission constraint is also relaxed to accommodate all available power from SDGE area to serve CAISO load.
- Shadow price of relaxed transmission constraint is \$0 in pricing run resulting from a) \$0 pricing parameter, and b) all resources dispatched at maximum levels, so that no system cost reduction can be achieved by further increasing transmission capability of this branch group.
- System Energy Price = \$1500 set by the pricing parameter of power balance, same as case 2.
- LMPs are identical to case 2.

Results of Test Case 4 Shows the Standalone Effect of Transmission Pricing Parameter on System Energy Price

Scenario: Load exceeds generation supply; transmission constraint enabled; \$0 as pricing parameter for power balance constraint; \$1500 as pricing parameter for flowgate transmission constraint

- Shadow price of the relaxed transmission constraint is \$1500 in pricing run, resulting in an LMP differential across the transmission constraint
- System Energy Price = \$1471.32, slightly below case 3. A generator in south of constraint becomes marginal in the pricing run.
- With both pricing parameters at the proposed \$1500, it is expected that System Energy Price = \$1500 set by the power balance pricing parameter, while LMP differential remains approximately at \$1500

across the branch group.

Location	LMP
Bay Area	\$1461.76
North of NSONGS	\$1495.48
South of NSONGS	\$109.59

Conclusions

- Consider the disabling of ramping constraint. Consider \$500 for energy bid cap. With \$0 pricing run parameter for power balance constraint and \$1500 for flowgate transmission constraint, System Energy price under energy supply deficiency can rise to approximately \$2000 due to transmission relaxation but could be less than \$1500, depending on the locations of relaxed transmission constraints and the economic bids behind the constraints.
- With \$1500 pricing run parameter for energy balance constraint, System Energy price will be at least \$1500 under energy supply deficiency.

