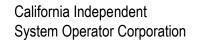


California Independent System Operator Corporation

Scarcity Pricing: Interactions with Demand Response and Virtual Bidding

Frank A. Wolak Chair, Market Surveillance Committee Market Surveillance Committee Meeting/ Stakeholder Meeting February 8, 2008

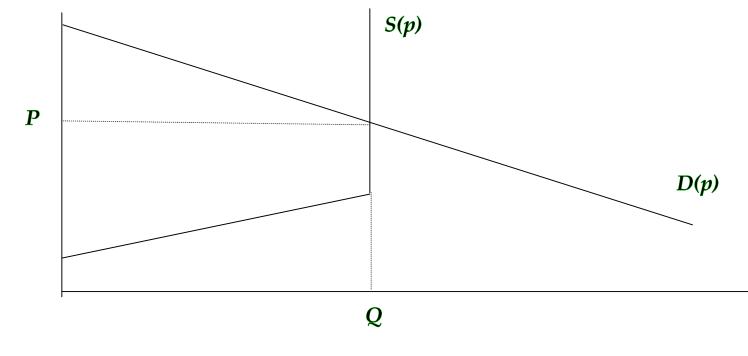

Outline

Goal of scarcity pricing mechanism

– What are we trying to achieve?

Interaction with demand response

- Potential conflicts with existing demand response programs
- Interaction with convergence bidding
 - Can scarcity pricing and convergence bidding coexist?
- Desirable characteristics of scarcity pricing mechanism under MRTU


Goal of Scarcity Pricing Mechanism

- When there is true scarcity of energy or ancillary services, price of relevant product should rise to a level that reflects this scarcity
- Must be careful to distinguish true from artificial scarcity
- Little rationale for price of energy to rise to scarcity levels if energy is not scarce
 - Similar logic applies to the case of ancillary services
- Scarcity prices can arise in both day-ahead and real-time markets
- Scarcity pricing mechanism should only operate when market mechanisms fail
 - Demand is greater than or equal to supply at offer cap on energy or ancillary services market

Scarcity Pricing versus Administrative Scarcity Pricing Mechanism

- Scarcity Pricing--Downward-sloping demand curve allocates a fixed supply
- Administrative Scarcity Pricing Mechanism--Administrative process for setting price when supply is less than demand offer cap

Distinguishing True from Artificial Scarcity

- Cost of an administrative procedure based on system conditions to set "scarcity prices"
 - Suppliers take actions to cause these system conditions to occur
 - Regulator-sanctioned form of exercising unilateral market power
- Properly designed scarcity pricing mechanism should limit opportunities for suppliers to exercise unilateral market power in short-term market
 - Use actual demand-side of market to set scarcity prices not an administrative procedure that can be manipulated by suppliers

Active demand side participation in wholesale market is desired form of scarcity pricing

 With enough demand that actively participates in the dayahead and real-time markets there is no need for an administrative scarcity pricing mechanism

Currently three types of demand response in California ISO markets

- Participating load—Can bid downward sloping curve into day-ahead and real-time market and offer into ancillary services markets
- Non-Participating load—Can bid into day-ahead energy market but not ancillary services market
- Emergency Triggered DR—Interruptible load, but currently can only be curtail if ISO declares a Stage 2 Emergency.
 - Cannot currently offer into ancillary services market.

- Participating load bidding into day-ahead ancillary services market can eliminate need to declare scarcity conditions in day-ahead ancillary services market
 - Demand at ancillary services offer cap always less than or equal to supply at offer cap
- The other two forms of demand-side participation cannot prevent scarcity of ancillary services
 - They cannot offer into ancillary services market
 - ISO purchases day-ahead ancillary services based on its demand forecast
- Scarcity of ancillary services in day-ahead market should not result in administratively set scarcity prices for energy in day-ahead market
 - Non-participating load can submit price-responsive energy bids in day-ahead market so that supply exceeds demand at offer cap
 - No administrative scarcity pricing necessary to clear energy market

- Emergency Trigged Demand Response does not fit into existing energy scarcity pricing paradigm
 - Real-time demand reduction brought about by calling on interruptible loads reduces level of demand necessary to clear realtime energy market
 - Stage 2 declared because of scarcity of operating reserves in real-time
 - Interruptible load reductions reduces real-time energy demand
 - Lower real-time demand reduces real-time prices
- Best solution is to require all demand response to submit price-responsive bids into real-time energy market
 - High real-time prices, not declaration of Stage 2 by ISO, should cause real-time demand reductions
 - Retailer with interruptible load should decide when to use it based on real-time price signal
 - Allows market test of value of interruptible programs
 - Real-time energy cost savings > Payments to interruptible loads
- CPUC should require interruptible load programs to show cost effectiveness

- Difficult to argue there are scarcity conditions in energy or operating reserves if after interruptible loads are called both operating reserves and energy requirements are met
- Tying the use of interruptible loads to the declaration of a Stage 2 emergency by ISO could create incentive for operators to declare Stage 2 emergency when they expect tight real-time system conditions
- Real-time energy prices should be high when real-time demand versus supply conditions are tight
 - Provides signal to retailers to use interruptible loads
 - Provides suppliers with strong incentive to stay on line and produce
 - Incentive to produce maximum output of unit given high real-time price
- Existing mechanism of tying demand interruption to declaration of Stage 2 emergency limits incentives for suppliers to produce as much as possible
 - Low real-time prices possible because of interruption

Scarcity Pricing and Convergence Bidding

- Convergence bidding help to address problems with existing interruptible loads
 - Convergence bidders can submit demand bids in day-ahead market in anticipation of interruptible demand reductions in realtime because of declaration of Stage 2 emergency
 - Can raise day-ahead energy prices because of higher day-ahead demand
 - More physical generation units selling energy in day-ahead market
 - Day-ahead ancillary services prices may rise because less units available to provide ancillary services
- Reliability consequences of convergence bidding in this context are positive
 - More units committed to supply energy
 - ISO less likely to need to declare Stage 1 or Stage 2 emergency
 - Ancillary services requirements are met or scarcity pricing of ancillary services triggered

Scarcity Pricing and Convergence Bidding

- Convergence bidding alone cannot create scarcity conditions in energy or ancillary services
 - Convergence bidding implies no net production or consumption of electricity,
 - Sale in day-ahead implies purchase in real-time
 - Purchase in day-ahead implies sale in real-time
- Convergence bidding can raise and lower day-ahead and real-time energy and ancillary services prices
- The goal of convergence bidding is make day-ahead prices as reflective as possible of real-time system conditions
 - Day-ahead price equals expected value of real-time prices as of close of day-ahead market
 - Real-time prices cannot be predicted better than day-ahead price given all information available at close of day-ahead market
- Convergence bidding should make scarcity pricing of energy or ancillary services less frequent

Scarcity Pricing Under MRTU

- Do not allow scarcity pricing mechanism to interfere with operation of demand response, convergence bidding, and other market mechanisms
 - As long as supply is greater than demand at offer cap at any horizon to delivery, there is no need to invoke scarcity pricing mechanism
- Scarcity pricing should only be invoked when market fails to procure sufficient energy or ancillary services at relevant time horizon to delivery (day-ahead or real-time)
- CPUC should work to eliminate interruptible load tied to declaration of Stage 2 emergency by ISO
 - Reliability of ISO network should be enhanced if retailer is required to determine when interruptions take place
 - High real-time prices will coincide with tight real-time system conditions

Scarcity Pricing Under MRTU

- The CPUC and ISO should mandate that all load-serving entities submit non-spinning reserve ancillary services load bids at or below bid cap equal to at least 10 percent of dayahead energy schedule
 - Bids for real-time energy associated with ancillary bids must be at or below bid cap on real-time energy market
- This builds in feasible amount of demand response into both ancillary services and real-time energy market
 - Eliminates need to rely on administrative mechanism to set scarcity prices
 - Demand bids will set high energy prices and load will be curtailed in real-time market based on willingness to curtail of loads
 - Minimizes use of administrative scarcity pricing mechanism
 - Willingness to pay of final consumers determines price at which available supply equals amount demanded at that price in virtually all circumstances

California Independent System Operator Corporation

Questions/Comments?