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Energy storage is a tiny
portion of our system today

U.S. installed power capacity by technology
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Growth in capacity will be
mainly in renewables

U.S. installed power capacity by technology
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C2.2. In energy systems. modelled global pathways (considered in the literature) limiting global
warming to 1.5°C with no or limited overs shoot (for more details see Figure SPM.3b). generally
meet energy service demand with lower energy use. including through enhanced energy efficiency.
and show faster electrification of energy end use compared to 2°C (high confidence). In 1.5°C
pathways with no or limited overshoot. low-emission energy sources are projected to have a higher
share, compared with 2°C pathways, particularly before 2050 (high confidence).In 1.5°C pathways
with no or limited overshoot, renewables are projected to supply 70—-85% (interquartile range) of
electricity in 2050 (/iigh confidence). In electricity generation, shares of nuclear and fossil fuels
with carbon dioxide capture and storage (CCS) are modelled to increase in most 1.5°C pathways
with no or limited overshoot. In modelled 1.5°C pathways with limited or no overshoot. the use of
CCS would allow the electricity generation share of gas to be approximately 8% (3-11%
interquartile range) of global electricity in 2050. while the use of coal shows a \rcep reduction in all
pathways and would be reduced to close to 0% (0-2%) of electricity (high confidence). While
acknowledging the challenges. and differences between the options and national circumstances,
political. economic. social and technical feasibility of solar energy, wind energy and electricity
storage technologies have substantially improved over the past few years (high confidence). These
improvements signal a potential system fransifion in electricity generation (Figure SPM.3b) {2.4.1,
2.4.2, Figure 2.1. Table 2.6, Table 2.7, Cross-Chapter Box 6 in Chapter 3. 4.2.1, 43.1. 4.3.3, 4.5.2}
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“The 100 Percent Clean Energy Act”

=== ENERGY®

Enefgy S{orage to Play Key Role
California's Electricity Dreams  in Reaching California Target of

Still Need Natural Gas 100% Zero-Emission Electricity by
2045 and Beyond

RTO Insider

Can Calif. Go All Green Without a Western
RTO?

BloombergNEF

California's 100% 'Clean Energy’
Law Omits Some Details

by Stephen Munro /13 Sep 2018
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Technology
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Largest sources of lithium-ion
battery demand over time

Lithium-ion battery demand by segment
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Largest sources of lithium-ion
battery demand over time

Lithium-ion battery demand by segment
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Largest sources of lithium-ion
battery demand over time

Lithium-ion battery demand by segment
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Largest sources of lithium-ion
battery demand over time

Lithium-ion battery demand by segment
GWhlyear EVs account to 22X

1,600 stationary storage demand for
battgries in
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How much grid lithium-ion
required by 20307?

LARGEST U.S. RENEWABLE ENERGY OFFTAKERS—-BOTH UTILITIES AND
CORPORATES—NOVEMBER 2016

Southern California Edison Company

MidAmerican Energy Company

Pacific Gas and Electric Company
Public Service Company of Colorado
PacifiCorp

Google

Northern States Power Company—MN
Southwestern Public Service Company
Tennessee Valley Authority

Austin Energy

CPS Energy

San Diego Gas & Electric Co

Amazon

Public Service Company of Oklahoma
Duke Energy Progress, LLC

Westar Energy

Oklahoma Gas and Electric Company
Arizona Public Service Company
Portland General Electric Company

Exelon Generation Company, LLC

Source: Google

“SCE models showed that in order to reduce its
grid-based GHG emissions to 28 million metric
tons by 2030, California load-serving entities would
need to procure an additional 9,604 MW of energy
Source: utilitydive.com storage.”

9,604 MW x 5h =

48 GWh (1 Gigafactory)

x $200/kWh =
$9.6B
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https://www.utilitydive.com/press-release/20180913-energy-storage-to-play-key-role-in-reaching-california-target-of-100-zero-/

EVs demand high energy density

and low cost

Energy density by battery type
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High energy density roadmap
depends on lithium metal

Drivers are energy density and cost

Source: K.G. Gallagher et al, Energy Environ. Sci, 7, 1555 (2014), D. Eroglu et al., J. Electrochem. Soc., 162, A982 (2015)
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Grid storage options are
much broader than lithium-ion

Battery technology energy and power ratings
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Rated energy capacity

" under construction

But can any
compete with
declining
lithium-ion
battery costs?
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Lithium-ion battery cathode -
chemistry mix outlook

Passenger electric vehicles Utility-scale energy storage
% % 811 = 8x more
I aNCA+ BN .nca Nickel than
= NCA = NMC (811) Manganese &
= NMC (811 Cobalt
(811) NMC (622)
e (©22) "NMC (442) | 111 = equal parts
= NMC (532) e (110 | Niokel qualp
u icke
= NMC (111) '
= LFP Manganese
mLFP Cobalt
2 LMO = LMO
2017 2030 2017 2030
Source: Bloomberg NEF Source: Bloomberg NEF

14 BloombergNEF



Economics
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California challenge:
Fading value of solar
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How batteries can bolster
solar economics

No batteries
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How batteries can bolster
solar economics

No batteries
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How batteries can bolster

solar economics
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How batteries can bolster

solar economics
Noibatteries GEWh of batteries
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How batteries can bolster
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How batteries can bolster

solar economics
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Batteries in wholesale markets
deliver value in different timescales

Market Resource Adequacy
Capacity markets

Delivery window Years

Hours

Peak load firming

Passive market

Energy
(Day-Ahead)

Energy Ancillary Services
(Real-Time)
Minutes Seconds
Intra-hourly Frequency
adjustments control

Active markets

Additional use-cases will add complexity and value -
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=

L &y o
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Energy storage system costs
are complex

Battery cost forecast ($/kWh)

Pack only Built for resource adequacy Built for arbitrage
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Source: Bloomberg NEF
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Curtailment

Varies over months, not just
hours and days

Growing rapidly with
increased renewable
penetration

Megawatt hour
8 B 15

........................................

Renewable Curtailment  ~0.1 TWh curtailed

in 1 month

& California ISO
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Lower capital cost targets for
long duration storage *
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Lower capital cost targets for
long duration storage
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Lower capital cost targets for
long duration storage
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What if you could have grid storage at 1/10t" the cost of lithium-ion
with no materials constraints?
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Global Storage Potential:

Pumped Hydro vs. Aqueous Sulfur

Pumped Hydro Facility: Ludington, Michigan
Volume: 39M m3 of Water

Area: 3.4 km?

Storage: 1.9 GW/15 GWh

Global Pumped Hydro:
~170 GW/2 TWh Installed

.........................

|

-

Berri Gas Plant Sulfur Pyramid: Al Jubayl, Saudi Arabia
Volume: 1.6M m?3 Sulfur (70% of KSA annual production)
Area: 0.171 km?

Storage: 24 GW/1.2 TWh Storage Potential

Global Sulfur Resource:
Annual Production: 69 megatons* - 0.5 GW/25 TWh storage potential

*https://minerals.usgs.gov/minerals/pubs/commaodity/sulfur/mcs-2017-sulfu.pdf
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........................................

Storage at Giga Scale

Tomorrow’s battery
technology for grid storag

£

Today’s battery technology
for transportation

Tesa !mw:m. ! l tomselctive Immm San ’“;;‘-w
e g Looks more like a chemical
 200kh | I 1 I plant > < $20/kWh
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Key takeaways

e Grids are becoming increasingly renewable and storage is essential
to the clean energy future.

e |t will add complexity and value.
e We will need lower-cost, longer-duration storage.

e Multiple technologies will be needed beyond lithium-ion batteries.
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Bloomberg NEF (BNEF) is a leading provider
of primary research on clean energy,
advanced transport, digital industry,
innovative materials, and commaodities.

BNEF’s global team leverages the world’s
most sophisticated data sets to create clear
perspectives and in-depth forecasts that
frame the financial, economic and policy
implications of industry-transforming trends
and technologies.

BNEF research and analysis is accessible via
web and mobile platforms, as well as on the
Bloomberg Terminal.
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