IMBALANCE ENERGY CHARGE COMPUTATION		
D 1	Purpo	ose of charge
	of not and a Energ repres Repla	mbalance Energy charge is the term used for allocating the cost only the Imbalance Energy (the differences between scheduled ctual Generation and Demand), but also any Unaccounted for yy (UFE) and any errors in the forecasted Transmission Losses as sented by the GMMs. Any corresponding cost of Dispatched iccement Reserve Capacity that is not allocated as an Ancillary ce is also included along with the Imbalance Energy charge.
D 2	Fundamental formulae	
D 2.1.1	Uninstructed Imbalance Energy Charges on Scheduling Coordinators	
	Coord deem charg settled	tructed Imbalance Energy attributable to each Scheduling linator in each Settlement Period in the relevant Zone shall be ed to be sold or purchased, as the case may be, by the ISO and es or payments for Uninstructed Imbalance Energy shall be d by debiting or crediting, as the case may be, the Scheduling linator with an amount for each Settlement Period equal to the of:
	(a)	The quantity of undelivered Instructed Imbalance Energy, multiplied by the Effective Price, and
	(b)	The quantity of deviation from the final Hour-Ahead Schedule multiplied by the Hourly Ex Post Price.
	Imbal	ance Energy charge will be calculated as follows:
	IECharge = DevC + ASSEDevC	
	Where:	
	$DevC = \sum_{i} GenDevC_{i} - \sum_{i} LoadDevC_{i} + \sum_{q} Im \ pDevC_{q} - \sum_{q} ExpDevC_{q} + UFEC$	
	$ASSEDevC = \sum_{i} ASSEGenDevC_{i} + \sum_{i} ASSELoadDevC_{i} + \sum_{q} ASSEIm \ pDevC_{q}$	
	and	
		eviation between scheduled and actual Energy Generation for rator i represented by Scheduling Coordinator j in Zone x during ement Period t is calculated as follows:

 $GenDevC_i = G_S * GMM_f - [(G_a - G_{adj}) * GMM_{ah} - G_{a/s} - G_{s/e}] - UnavailAncServMW_{ixt}$

Where:

 $\begin{aligned} & \text{UnavailAncServMW}_{\text{ixt}} = & Max[-(G_{i,oblig}, G_{a/s}), Min(0, PMax - Ga - (G_{i,oblig}, G_{a/s}))] \end{aligned}$

 $GenDevC_i = GenDev_i * P$ in case of (b) above, and

If $G_{a/s} + G_{s/e} > 0$ and $P < P_{eff}$ then:

 $ASSEGenDevC_i=Max[0,[G_{a/s}+G_{s/e}-Max[0,(G_a-G_{adj}-G_s)]]]^*(P_{eff-l}-P)$ in case of (a) above, or

If $G_{a/s} + G_{s/e} < 0$ and $P > P_{eff}$ then:

ASSEGenDevC_i=Min[0,[$G_{a/s}$ + $G_{s/e}$ -Min[0,(G_a - G_{adj} - G_s)]]]*(P_{eff-l} -P) in case of (a) above

The deviation between scheduled and actual Load consumption for Load i represented by Scheduling Coordinator j in Zone x during Trading Interval t is calculated as follows:

$$LoadDev_i = L_s - \left[\left(L_a - L_{adj} \right) + L_{a/s} + L_{s/e} \right].$$

UnavailDispLoadMW_{ixt}

Where:

 $UnavailDispLoadMW_{ixt} = Max[0, (L_{i, oblig} - L_{a/s}) - L_{a}]$

 $LoadDevC_i = LoadDev_i * P$ in case of (b) above, and

If $L_{a/s} + L_{s/e} > 0$ and $P < P_{eff}$ then:

 $ASSELoadDevC_i=Max[0,[L_{a/s}+L_{s/e}-Max[0,-(L_a-L_{adj}-L_s)]]]^*(P_{eff-l}-P)$ in case of (a) above, or

If $L_{a/s} + L_{s/e} < 0$ and $P > P_{eff}$ then:

ASSELoadDevC_i=Min[0,[$L_{a/s}+L_{s/e}$ -Min[0,-($L_a-L_{adj}-L_s$)]]]*($P_{eff-l}-P$) in case of (a) above

The deviation between forward scheduled and Real Time adjustments to Energy imports¹, adjusted for losses, for Scheduling Point represented by Scheduling Coordinator j into zone x Settlement Period t is calculated as follows:

 $ImpDev_q = I_s * GMM_{fq} - [(I_a - I_{adj}) * GMM_{ahq}] + I_{a/s}$

 $ImpDevC_q = ImpDev_q * P$ in case of (b) above, and

If $I_{a/s} > 0$ and $P < P_{eff}$ then:

 $ASSEImpDevC_q=Max[0,[I_{a/s}-Max[0,(I_a-I_{a/j}-I_s)]]]^*(P_{eff-q}-P)$ in case of (a) above, or

If $I_{a/s} < 0$ and $P > P_{eff}$ then:

 $ASSEImpDevC_q=Min[0, [I_{a/s}-Min[0, (I_a-I_{a/g}-I_s)]]]^*(P_{eff-q}-P)$ in case of (a) above

The deviation between forward scheduled and Real Time adjustments to Energy exports² for Scheduling Point q represented by Scheduling Coordinator j from Zone x during Settlement Period t is calculated as follows:

$$ExpDev_q = E_s - (E_a - E_{adj})$$

 $ExpDevC_q = ExpDev_q * P$

The Hourly Ex Post Price applicable to uninstructed deviations in Settlement Period t in each zone will equal the Energy weighted average of the BEEP Interval charges in each zone, calculated as follows:

$$P_{xt} = \frac{\left(\sum_{ji} \left| MWh_{jix} \right| * BIP_{ix} \right)}{\sum_{ji} \left| IMWh_{jix} \right|}$$

Where:

BIP_{ix}= BEEP Interval Ex Post Price

P xt = the Hourly Ex Post Price in Zone x

IIEC jix = the Instructed Imbalance Energy Charges for Scheduling Coordinator j for BEEP Interval i in Zone x

¹ Note that this deviation is a difference between a forward Market value and a Real Time value. It is not inadvertent energy.

² Note that this deviation is a difference between a forward Market value and a Real Time value. It is not inadvertent energy

CALIFORNIA INDEPENDENT SYSTEM OPERATOR CORPORATION FERC ELECTRIC TARIFF ORIGINAL VOLUME NO. III

IMWH jix = the Instructed Imbalance Energy for Scheduling Coordinator j for the BEEP Interval i in Zone x

D 2.1.2 Instructed Imbalance Energy Charges on Scheduling Coordinators

The Instructed Imbalance Energy charge for Settlement Period t for Scheduling Coordinator j for Zone x is calculated using the following formula:

 $IIEC_j = IGDC_j + ILDC_j + IIDC_j$

The instructed Generation deviation payment/charge is calculated as follows:

$$IGDC_{j} = \sum_{gi} \frac{G_{gi} * P_{i}}{HBI}$$

The instructed Load deviation payment/charge is calculated as follows:

$$ILDC_{j} = \sum_{Li} \frac{L_{Li} * P_{i}}{HBI}$$

The instructed import deviation payment/charge is calculated as follows:

$$IIDC_{j} = \sum_{Ii} \frac{I_{Ii} * P_{i}}{HBI}$$

D 2.2 Unaccounted for Energy Charge

The hourly Unaccounted for Energy Charge on Scheduling Coordinator j for Trading Interval t for each relevant Zone is calculated in the following manner:

The UFE for each utility service territory k is calculated as follows,

$$E_{UFE_UDC_k} = (I_k - E_k + G_k - (RTM_k + LPM_k) - TL_k)$$

The Transmission Loss calculation per Trading Interval t per relevant Zone for each utility service territory k is calculated as follows,

$$TL_{k} = \sum [G_{a} * (1 - GMM_{ah})] + \sum [I_{a} (1 - GMM_{ahq})]$$

Each metered demand point, either ISO grid connected or connected through a UDC, is allocated a portion of the UFE as follows:

$$E_{UFE_z} = \frac{D_z}{\sum_z D_z} E_{UFE_UDC_k}$$

D 3.36	LPM _k – MWh The calculated total of the Load Profile metering in utility service territory k per Trading Interval t.
D 3.37	TL_k – MWh The Transmission Losses per Trading Interval t in utility service territory k.
D 3.38	IGDC_j - \$ The total of instructed Generation deviation payments/charges for Scheduling Coordinator j in Settlement Period t.
D 3.39	ILDC _j - \$ The total of instructed Load deviation payments/charges for Scheduling Coordinator j in Settlement Period t.
D 3.40	IIDC _j - \$ The total of instructed import deviation payments/charges for Scheduling Coordinator j in Settlement Period t.
D 3.41	G _{gi} - MW Instructed Energy for Generating Unit g during BEEP Interval i.
D 3.42	L _{Li} - MW
D 3.43	Instructed Energy for Load L during BEEP Interval i. Ii – MW
D 3.44	Instructed Energy for import I during BEEP Interval <u>i</u> P _i \$/MWh
	The BEEP Incremental Ex Post Price for BEEP Interval i if the net instructed Energy for resources is positive, or the BEEP decremental Ex Post Price for BEEP Interval i if the net instructed Energy for resources is negative.
D 3.45	HBI – Number The number (2-12) of BEEP Intervals in Settlement Period t.

D 3.46	ReplObligRatio _{jxt} – fraction
	$ReplObligRatio_{jxt} = \frac{ReplOblig_{jxt}}{\sum_{j} ReplOblig_{jxt}}$
	where:
	<i>ReplOblig_{ixt}</i> is the replacement reserve capacity obligation as defined in Appendix C section C3.67.
D 3.47	G _{i, oblig}
	The amount of Spinning Reserve, the amount of Non-Spinning Reserve, and the amount of Replacement Reserve that Generating Unit or System Resource <i>i</i> has been selected to supply to the ISO, as reflected in final Ancillary Services Schedules.
D 3.48	PMax _i
	The maximum capability (in MW) at which Energy and Ancillary Services may be scheduled from the Generating Unit or System Resource <i>i</i> .
D 3.49	L _{i, oblig}
	The amount of Non-Spinning Reserve and Replacement Reserve that dispatchable Load <i>i</i> has been selected to supply to the ISO as reflected in final Ancillary Services schedules for Settlement Period <i>t</i> .