ATTACHMENT 3

Inter-Zonal Congestion Payments

□ Using Constraint Shadow Costs:

$$R = \sum_{j} \mu_{j} P_{j \max}$$

j: zonal interface index

 μ_j : constraint shadow cost

 $P_{j \max}$: zonal interface rating

Inter-Zonal Congestion Charges

Using Zonal Prices:

$$R_{l} = \sum_{k} \lambda_{l,k} \sum_{i \in Z_{k}} (D_{l,i} - G_{l,i})$$

$$\lambda_{l,k} = \frac{\sum_{i \in Z_k} \lambda_{l,i} \sum_{l} (D_{l,i} - G_{l,i})}{\sum_{i \in Z_k} \sum_{l} (D_{l,i} - G_{l,i})}$$

$$R = \sum_{l} R_{l} = \sum_{k} \sum_{i \in Z_{k}} \lambda_{i} \left(D_{i} - G_{i} \right) = \sum_{i} \lambda_{i} \left(D_{i} - G_{i} \right)$$

l: SC index $Z_k: set of nodes in zone k$

k : zone index $\lambda_{l,i}$: nodal price

i : node index $\lambda_{l,k}$: zonal price

 $oldsymbol{D}$: demand $oldsymbol{G}$: generation

Revenue Adequacy

$$R = \sum_{l} R_{l} = \sum_{j} \mu_{j} P_{j \max} = \sum_{i} \lambda_{i} (D_{i} - G_{i})$$

l: SC index

i: node index

j: zonal interface index

Congestion Management and Pricing

Congestion Pricing

- □ Fundamental Assumptions:
 - ♦ Inter-zonal congestion:
 - relatively frequent; global effect; high cost
 - marginal pricing
 - congestion revenue allocated to TCCs
 - ♦ Intra-zonal congestion:
 - infrequent; local effect; low cost
 - cost-based (pay as bid) pricing
 - congestion cost rolled in as a zonal uplift

Inter-Zonal CM

- □ Fundamental Assumptions:
 - ♦ It is performed over the whole network.
 - ♦ It has a minimum cost objective.
 - ◆ SC portfolios are kept in balance.
 - ♦ SC portfolios are not optimized within zones.
 - ♦ Only inter-zonal constraints are monitored.
 - ♦ Lossless linear network models are used.

Inter-Zonal CM Algorithm

$$\min \sum_{l=1}^L \sum_{i=1}^N C_{l,i} \Delta P_{l,i}$$

s.t.
$$\mathbf{B}'\Delta\delta = \Delta\mathbf{P}$$

$$F\delta \leq P_{F \max}$$

$$P_{l,i \min} \le P_{l,i} \le P_{l,i \max}$$
 : $l = 1, 2, ..., L; i = 1, 2, ..., N$

$$\sum_{i=1}^{N} \Delta P_{l,i} = 0 \qquad :: l = 1, 2, ..., L - 1$$

P: power injection

P: nodal power injection vector

B': linearized Jacobian

F: branch power flow coefficient matrix

 δ : voltage phase vector

l: SC index

i: node index

c: inc.bid

 $\mathbf{P}_{F \max}$: branch power flow limit vector

Intra-Zonal CM

- □ Fundamental Assumptions:
- In is performed for each zone separately.
- ♦ It has an "economic" minimum shift objective.
- Only zonal resources are used and pooled.
- Only zonal constraints are monitored, including zonal ties and interfaces.
- ♦ Lossless linear network models are used.

Intra-Zonal CM Algorithm

$$\min \sum_{i=1}^{N} (c_{i}^{+} \Delta P_{i}^{+} + c_{i}^{-} \Delta P_{i}^{-})$$

s.t. **B** '
$$\Delta \delta = \Delta \mathbf{P}$$

$$F\delta \leq P_{F \max}$$

$$P_{i \min} \le P_i = P_i^+ - P_i^- \le P_{i \max}$$
 : $i = 1, 2, ..., N$

$$\Delta P_i^+ \geq 0, \Delta P_i^- \geq 0 \qquad \therefore i = 1, 2, ..., N$$

$$c_{i}^{+} \geq 0, c_{i}^{-} \geq 0$$
 $\therefore i = 1, 2, ..., N$

P: power injection

P: nodal power injection vector

B': linearized Jacobian

F: branch power flow coefficient matrix

i: node index

c: cost coefficients

 $\mathbf{P}_{F\max}$: branch power flow limit vector

 $\delta \;\; : \mbox{voltage phase vector}$