

Agenda Reliability Assessment and Study Updates

Jody Cross Stakeholder Engagement and Policy Specialist

2018-2019 Transmission Planning Process Stakeholder Meeting September 20-21, 2018

2018-2019 Transmission Planning Process Stakeholder Meeting – Day 1 (September 20) Agenda

Торіс	Presenter
Introduction	Jody Cross
Overview	Jeff Billinton
Key Issues	Neil Millar
Reliability Assessment - North	Regional Transmission Engineers - North
Reliability Assessment - South	Regional Transmission Engineers - South
Consideration of Storage as a Transmission Asset	Neil Millar
Next Steps	Jody Cross

2018-2019 Transmission Planning Process Stakeholder Meeting – Day 2 (September 21) Agenda

Торіс	Presenter	
GridLiance Proposed Reliability Solutions	GridLiance	
SDG&E Proposed Reliability Solutions	SDG&E	
PG&E Proposed Reliability Solutions	PG&E	
Policy Assessment Update	Sushant Barave	
Inter-regional Process Update	Gary DeShazo	
Economic Study Assumptions and PCM Development	Yi Zhang	
LCR 10-Year Assessments	Regional Transmission Engineers	
Economic Valuing of Local Capacity Requirements	Jeff Billinton	
Special Study – PNW Study Update	Ebrahim Rahimi	
Wrap-up and Next Steps	Jody Cross	

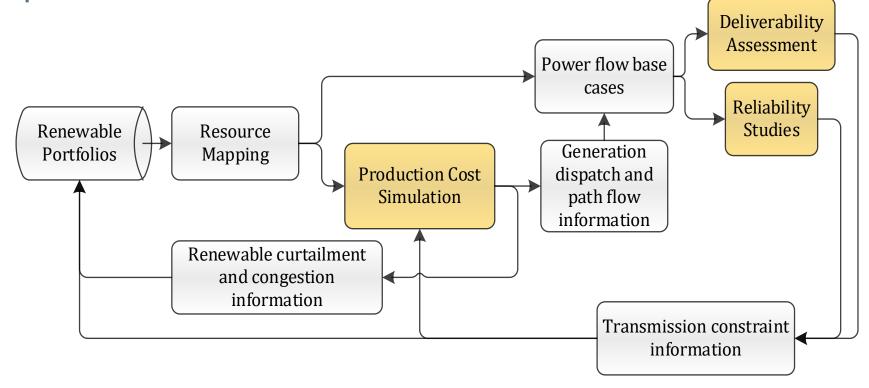
2018-2019 TPP Policy-driven Assessment

Sushant Barave Regional Transmission Engineering Lead

2018-2019 Transmission Planning Process Stakeholder Meeting September 20-21, 2018

Outline

- 2018-2019 policy-driven assessment objectives
- Study methodology
- A discussion about key inputs and assumptions
 - Renewable portfolios
 - Resource mapping
 - Study year and topology assumptions
- Next steps and timeline



Four key objectives of policy-driven assessment in 2018-2019 TPP

- 1. Study the transmission impacts of the sensitivity portfolio transmitted to the ISO by CPUC
 - a. Capture reliability impacts
 - b. Test the deliverability of resources selected to be full capacity deliverability status (FCDS)
 - c. Analyze renewable curtailment data
- 2. Evaluate transmission solutions (only Category 2 in this planning cycle) needed to meet state, municipal, county or federal policy requirements or directives as specified in the Study Plan
- Test the transmission capability estimates used in CPUC's integrated resource planning (IRP) process and provide recommendations for the next cycle of portfolio creation
- 4. Test deliverability of FCDS resources in the portfolio using new renewable output assumptions that take into account the new qualifying capacity calculations for solar and wind

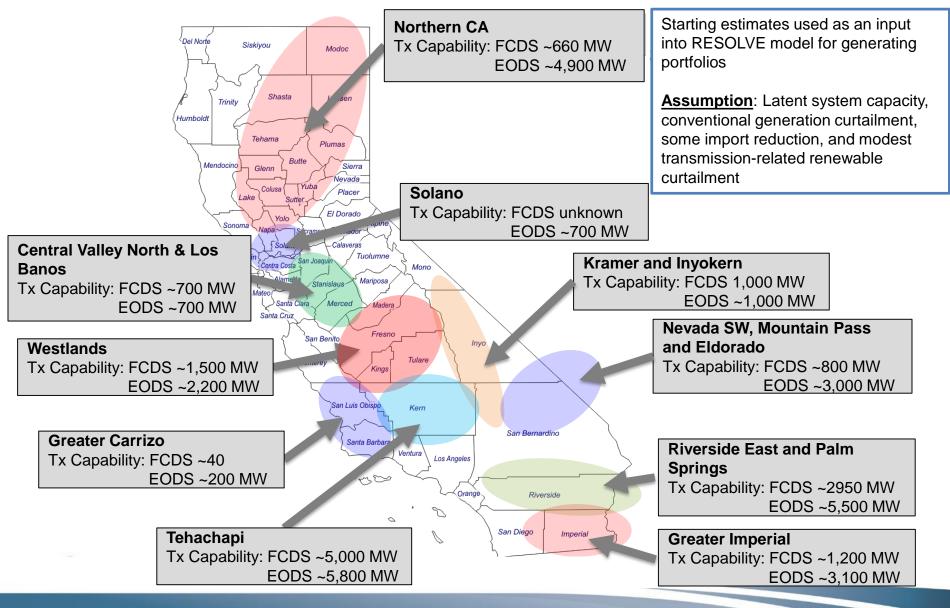
Methodology: An iterative process comprised of three types of technical studies, identifies required upgrades and generates transmission input for the next set of portfolios

Renewable portfolios identified in the integrated resource planning (IRP) process will be used

- CPUC adopted the 2-year integrated resource planning cycle on February 08, 2018 – <u>http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/</u> <u>M209/K878/209878964.PDF</u>
- The adopted decision prescribed two portfolios to be utilized in 2018-2019 TPP
 - Default scenario
 - 42 MMT scenario

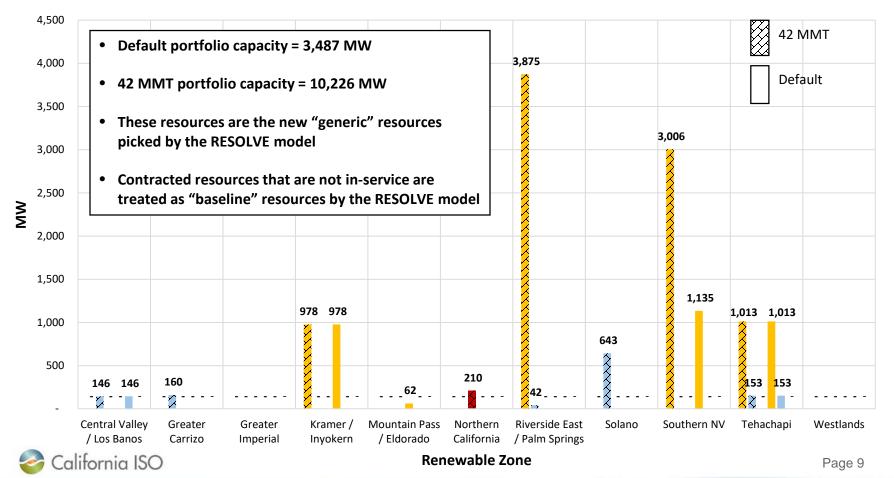
Only a sensitivity portfolio was transmitted to the ISO for policy-driven studies; no baseline portfolio

- Default scenario
 - 50% RPS entails ~3,500 MW of new 'generic' resources
 - Modeled in the TPP year-10 reliability base cases
- 42 MMT scenario
 - Used as a 'sensitivity' study under policy-driven framework

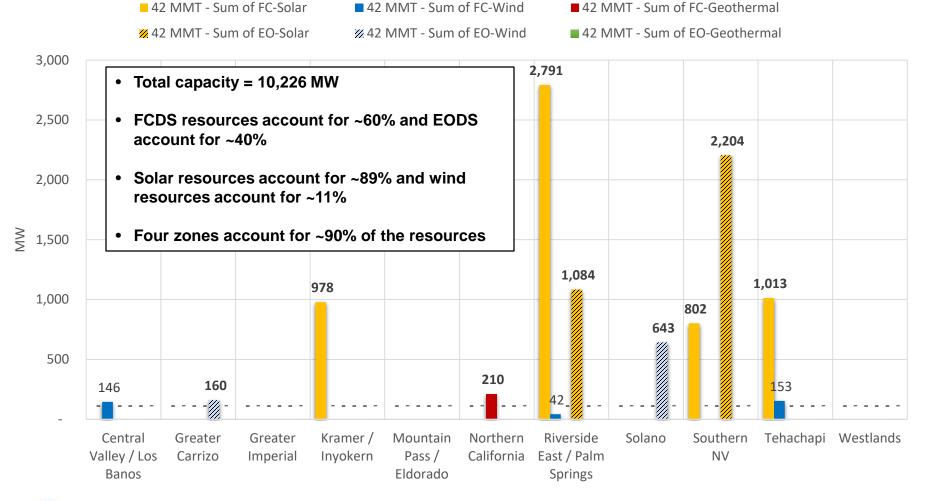


Major changes to the portfolio models and the nature of modeling/mapping data (compared to prior years)

- "RESOLVE" model instead of the RPS calculator
- CEC staff developed the locational mapping of resources
- Portfolio now includes only the new "generic" resources
- Contracted resources (on-line and planned) are now considered as baseline resources in RESOLVE model
- A mix of resources with Full Capacity Deliverability Status (FCDS) and Energy Only Deliverability Status (EODS)
- 2,000 MW energy storage included in the portfolio is primarily for integration purpose

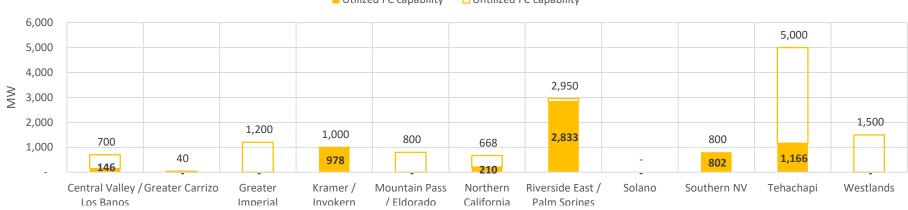

Transmission capability estimates provided to the CPUC

California ISO Public


Default portfolio modeled in the year-10 TPP reliability case is a subset of the 42 MMT portfolio which includes FCDS and EODS resources

🛿 42 MMT - Sum of Solar 🗊 42 MMT - Sum of Wind 🔳 42 MMT - Sum of Geothermal 💻 Default - Sum of Solar 🔳 Default - Sum of Wind 🔳 Default - Sum of Geothermal

California ISO Public


EO resources are selected in Greater Carrizo, Solano, Riverside East and Southern NV zones

Estimated FCDS transmission capability is fully utilized by the RESOLVE model in Kramer-Inyokern, Riverside East and Southern NV zones

Estimated FCDS transmission capability utilized by 42 MMT portfolio

Utilized FC capability Untilized FC capability

Estimated EODS transmission capability (incremental to FC capability) utilized by 42 MMT portfolio

Utilized EO capability Unuti

Unutilized EO capability

The ISO used a proposed resource mapping provided by the CEC staff and made minor modifications

- The portfolios are at a geographic scale that is too broad for transmission planning, which requires specific interconnection locations.
- CEC staff developed a proposed substation allocation* by relying on information from the CPUC, the ISO, RETI 2.0, California Department of Fish and Wildlife, and U.S. Bureau of Land Management (Nevada)
- The ISO relied on specific information about interconnection challenges regarding some locations that resulted in changing resource allocation to substations in Southern NV zone

* https://efiling.energy.ca.gov/GetDocument.aspx?tn=222569

Substation mapping utilized for portfolio modeling

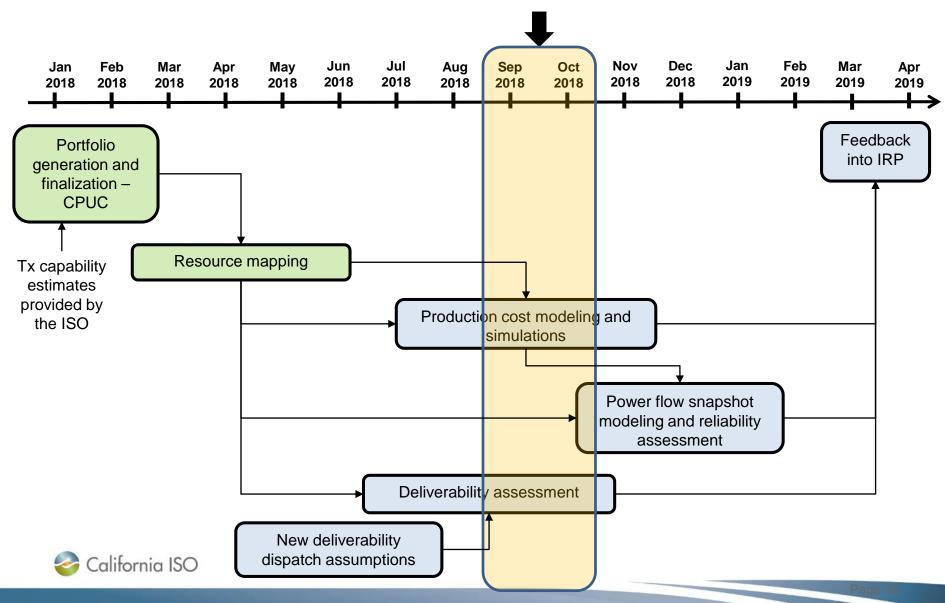
Zone	42 N	/MT (N	IW)	Substation select	ted for	•
ZOIIe	Solar	Wind	GeoT	modeling purp	ose	
Northern CA (all FC)	-	-	210	Round Mountain 230 kV		
	-	281		Tesla 230 kV		
Solano	-	42		Contra Costa 230 kV		•
(All EO)	-	18		Christie 60 kV		
(/ C)	-	247		Vaca 115 kV		
	-	55	-	Eight Mile 230 kV		
Central Valley / Los Banos (All FC)	-	146	-	Los Banos 230 kV		•
	-	41	-	Carrizo 230 kV		
Greater Carrizo	-	56	-	Templeton 230 kV		
	-	26	-	Zaca 115 kV		
(All EO)	-	24	-	Gaviota		
	-	13	-	Palmer 115 kV		
	-	153	-	Highwind 230 kV		
Tehachapi	627	-	-	Windhub 230 kV		•
(All FC)						
	386	-		Highwind 230 kV	Modified	by
	778	-	-	Kramer 230 kV	the ISO	~,
Kramer / Inyokern					110 150	
(All FC)	100	-		Cottonwood 115 kV	/	Solar
	100	-		Gale 115 kV		
	-	-		Valley 138 kV (VEA)		1,399
Mountain Pass /	989	-		Innovation 230 kV (VEA)		458
Eldorado / Southern NV	-	-		Vista 138 kV (VEA)		377
(FC = 802 MW;	445	-		Desert View 230 kV (VEA)		445
Rest all EO)	326	-	-	Eldorado 230 kV (SCE) - S		326
,	716			Crazy Eyes 230 kV (propo		-
Diverside Feet / Delm	530			Gamebird 230 kV (propose	ea)	-
Riverside East / Palm	1,055	-		Red Bluff 500 kV Colorado River 500 kV		
Springs (FC = 2,791 MW;	2,820	-	-			
(FC = 2,791 MW) Rest all is EO)	-	42	-	Devers 230 kV		

- Except for one zone, all the substations selected by the CEC staff were perfectly reasonable
- In Southern NV zone, initial resource allocation included modeling ~1776 MW on VEA's 138 kV system
- In the light of challenges associated with interconnecting generation on VEA's 138kV system, the ISO proposed mapping this generation to GridLiance's 230 kV system
- The ISO vetted this modified mapping with the concerned PTOs and the CEC staff

	staff			Initially propose	ed
ar	Wind	Geol		7	
399	-	-	Valley 138 kV (VEA)		
158	-	-	Innovation 230 kV (VEA)		
377	-	-	Vista 138 kV (VEA)		
145	-	-	Desert View 230 kV (VEA)		
326	-	-	Eldorado 230 kV (SCE) - SV	V_NV	
-	-	-	Crazy Eyes 230 kV (propose	ed)	
-	-	-	Gamebird 230 kV (proposed	(k	

North and South bulk reliability were merged and are being used to model the 50% portfolios

- Starting base cases
 - Year-10 base cases used for 2018-2019 TPP annual reliability assessment are used as a starting point
- Load assumption
 - The ISO will identify severe snapshots to be modeled based on high transmission system usage hours under high renewable dispatch in respective study areas, and the corresponding load levels were modeled.
- Transmission assumption
 - Same assumptions as the ISO Annual Reliability Assessments for NERC Compliance (all transmission projects approved by the ISO)
- Dispatch assumption
 - For reliability assessment, dispatch renewables based on the identified snapshot
 - For deliverability assessment, according to the deliverability methodology



Next steps

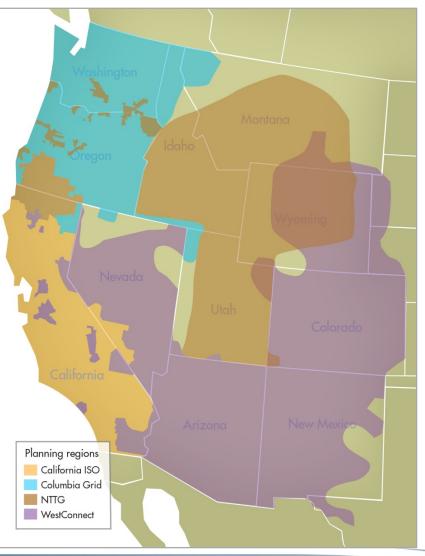
- Capture and analyze renewable curtailment based on production cost simulation runs; if required, run sensitivities to gain more insights
- Select power flow snapshots for reliability assessment; model these snapshots and run contingency analyses
- Document deliverability results

Timeline and current status

Order No. 1000 Interregional Coordination 2018-2019 Transmission Planning Process

Gary DeShazo Director, Regional Coordination

2018-2019 Transmission Planning Process Stakeholder Meeting September 20-21, 2018



Order 1000 amended Order 890 requiring "public utility transmission providers" to meet six new requirements

- Participate in a regional transmission planning process that produces a regional transmission plan
- Include procedures that consider public policy requirements
- Remove federal right of first refusal for certain new transmission facilities
- Improve coordination between neighboring transmission planning regions for new interregional transmission facilities
- Participate in a regional transmission planning process that has:
 - A regional cost allocation methodology
 - An interregional cost allocation methodology for new transmission facilities that are jointly evaluated by two or more planning regions

Page 2

Implementing Order 1000's regional requirement resulted in four western planning regions (WPRs)

Page 3

California ISO Public

The WPR's common tariff requirements for interregional coordination (IC) became effective in 2015

• Establish a process

To coordinate and share the results of each region's regional transmission plans to identify possible interregional transmission facilities that could address regional transmission needs more efficiently or cost effectively than separate regional transmission facilities

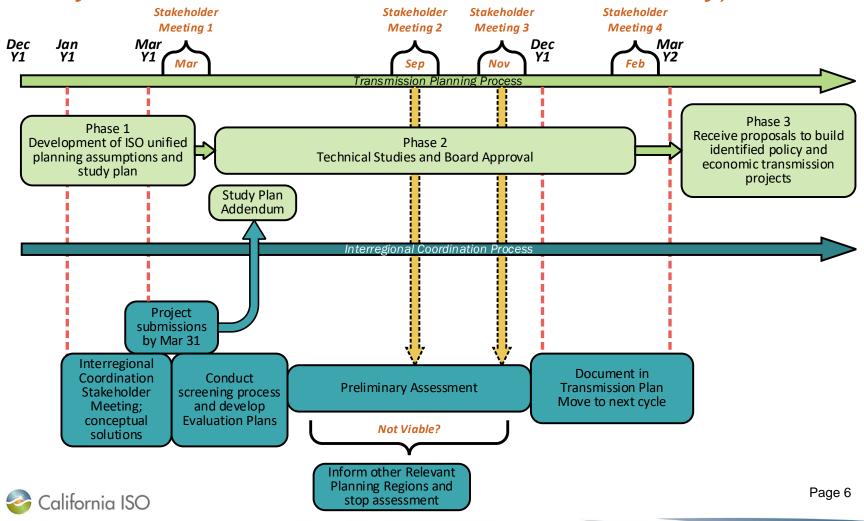
• Develop a formal procedure

To identify and jointly evaluate transmission facilities that are proposed to be located in both transmission planning regions

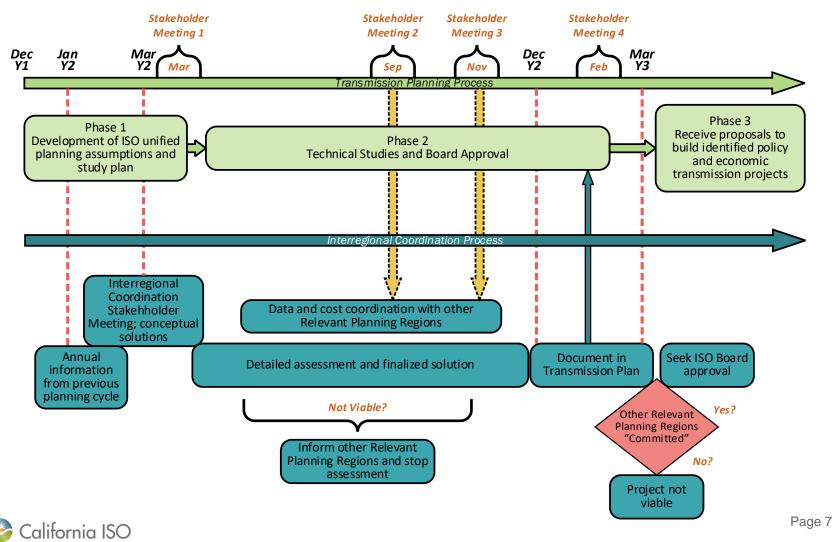
• An agreement

To exchange, at least annually, planning data and information

• A website or e-mail list for the communication of information related to the coordinated planning process

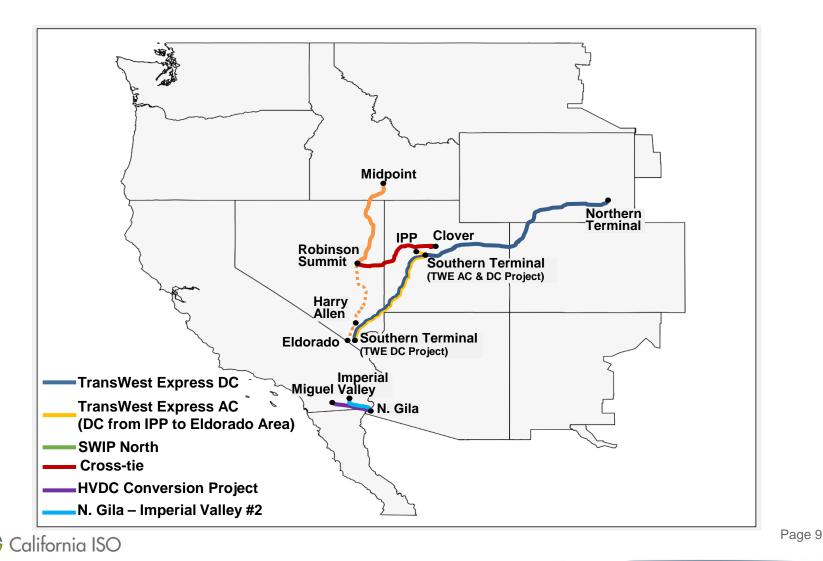

Page 4

The biennial interregional coordination cycle begins every even numbered year


- The WPRs coordinate implementation of each IC cycle
 - "Interregional Coordination and ITP Evaluation Schedule"
 - "ITP Project Submittal Information (Current Regional Planning Cycle)"
- Conducts a biennial "open window" for ITP submittals that closes on March 31 or every even numbered year
- Relevant Planning Regions coordinate the development of ITP Coordination Plans
- Host an annual IC stakeholder meeting in February to share regional transmission plans and seek stakeholder input
- Each WPR developed its own website to provide stakeholder access to IC information

Interregional coordination will be achieved through each planning region's Order 1000 regional process (Even year - ISO's initial assessment on ITP viability)

Odd year - ISOs assessment continues for ITPs considered "viable" in the previous year


2018-2019 ITP Submittal Summary

ITP	Submitted To	Relevant Planning Region	Cost Allocation Requested
Cross-Tie	ISO, NTTG,	NTTG,	ISO, NTTG,
	WestConnect	WestConnect	WestConnect
HVDC Conversion	ISO, WestConnect	ISO, WestConnect	Not Requested
N. Gila-Imperial Valley #2	ISO, WestConnect	ISO, WestConnect	ISO, WestConnect
SWIP North	ISO, NTTG,	ISO, NTTG,	ISO, NTTG,
	WestConnect	WestConnect	WestConnect
TransWest Express	ISO, NTTG,	ISO, NTTG,	ISO, WestConnect
AC/DC	WestConnect	WestConnect	
TransWest Express	ISO, NTTG,	ISO, NTTG,	ISO, WestConnect
DC	WestConnect	WestConnect	

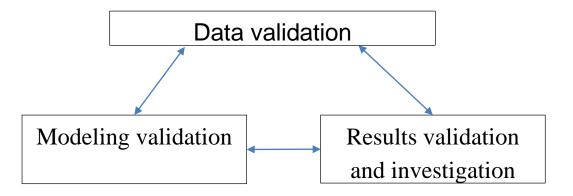
Page 8

Proposed Interregional Transmission Projects 2018-2019 Interregional Coordination Cycle

ISO's assessment of ITP viability and need in the 2018-2019 planning process is underway

Proposed ITP	Sponsor Identified Need	ISO Identified Need
Cross-Tie	Strengthen interconnection between PacifiCorp and Nevada; facilitate California's RPS and GHG needs	Based on 2018-2019 plan assumptions, none identified
HVDC Conversion	Improve/remove existing reliability limitation; decrease San Diego and greater IV/San Diego LCR requirement	LCR assessment in progress
NG-IV#2	Decrease San Diego and greater IV/San Diego LCR requirement	LCR assessment in progress
SWIP North	Economic, policy, reliability, reduce congestion on COI, facilitate access to renewables in PacifiCorp	Economic assessment in progress
TransWest Express AC/DC	Provide needed transmission capacity between the Desert Southwest and California, facilitate California access to renewables	Based on 2018-2019 plan assumptions, none identified
TransWest Express DC	Provide needed transmission capacity between the Desert Southwest and California, facilitate California access to renewables	Based on 2018-2019 plan assumptions, none identified

Page 10



Economic Planning-Production cost model (PCM) development

Yi Zhang Regional Transmission Engineering Lead

2018-2019 Transmission Planning Process Stakeholder Meeting September 21-22, 2018 Anchor Dataset (ADS) PCM status update

- Anchor dataset (ADS) PCM case
 - ADS PCM v1.0 was released end of June
 - Validation is in progress by WECC RAC working groups (PDWG, PMWG) and WECC staff

- ADS PCM v2.0 is projected to be released around end of September
 - More updates and releases may follow

ISO planning PCM components

Grid op	eration	Market c	peration	Trans/Resou	irce planning	Other econ/env.
				•	ization, wheelir constraints/nom	0, 1
				l Coal prices, C ent, AB32 hurd	CO2 allowance, le	Fuel price
	d model - modifier		mand, anr	nual/monthly e	nergy, load sha	pe, losses estimate
	s. operat ge and d		– Conting	gency/SPS, no	mograms, inter	faces, schedule
	•	on model - ages, FOF		e, ramp rate, re	enewable profil	es, hydro model,
	network I location	model – T	ransmissio	on topology, lo	ad distribution,	generator Pmax

TPP Power flow case Key assumptions and inputs for the ISO PCM development in 2018-2019 cycle

- Started from ADS PCM v1.0, but will capture the changes identified and approved in the ADS PCM after ADS PCM v1.0
- ISO TPP 2028 power flow case is used to update the PCM network model
- Two cases with different renewable assumptions
 - CPUC default portfolio case
 - CPUC 42MMT portfolio case
- CEC 2028 load forecast mid-AAEE for load model update
 - AAEE and BTM PV are modeled as resources

Key system and transmission constraints

• Net export limit 2000 MW

- Sensitivity of No Export Limit will be tested

- COI and EOR scheduled outages and derates based on facility owners' submitted data and OASIS data
- Nomograms for major paths based on planning studies or operation procedures
 - COI, Path 15, Path 26
- Contingencies and SPS
 - Critical contingencies identified in ISO's TPP, LCR, and GIP studies
- Consider imported Ancillary Services in the transmission constraints for inter-ties

Next steps

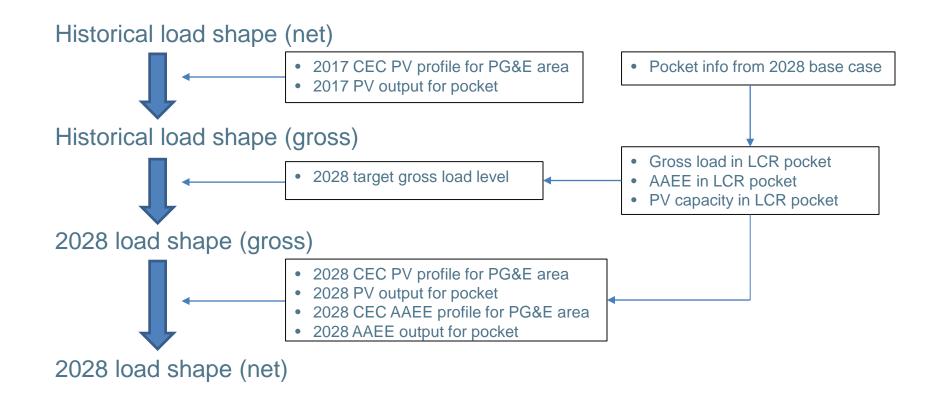
- Continue on database development
- Conduct production cost simulations and congestion analysis for
 - Economic assessment
 - Policy driven study
 - PAC NW study
- Continue on assessment of COI DA congestion
- Provide update in the next TPP Stakeholder Meeting

PG&E System LCR Area Types and Profiles

Binaya Shrestha

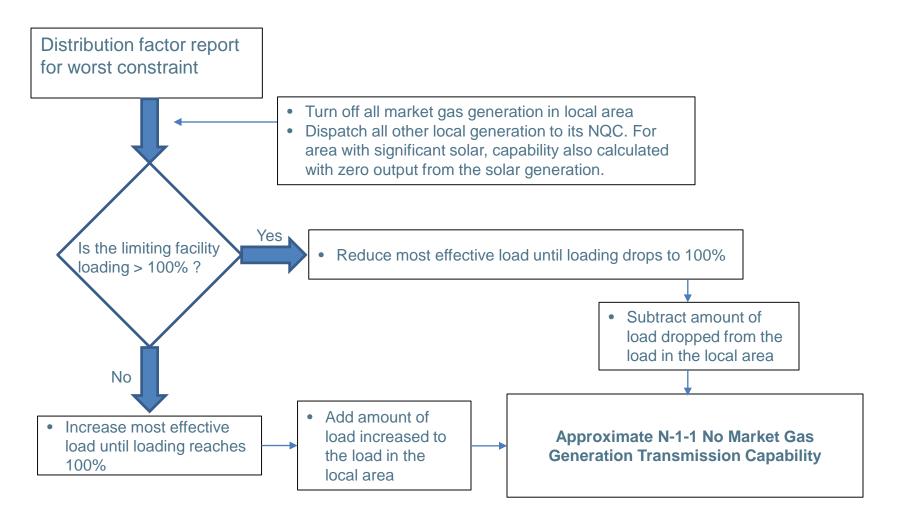
Regional Transmission Engineer Lead

Stakeholder Meeting


September 20-21, 2018

Purpose of providing area profiles

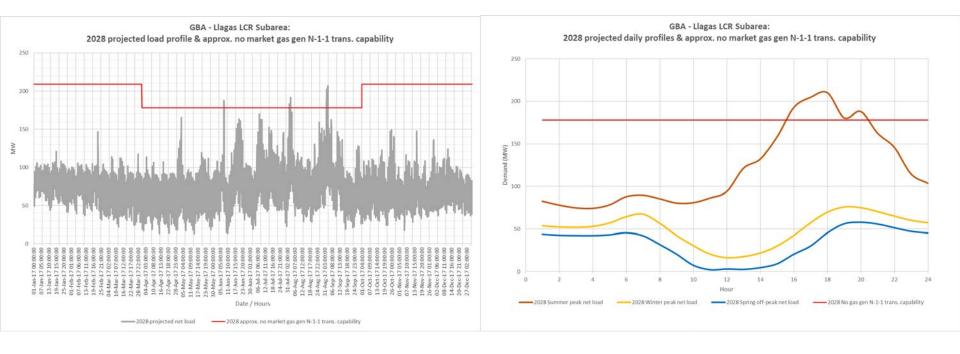
- Profiles are provided to help develop characteristic of potential preferred resources alternatives.
- The ISO will explore and assess alternatives conventional transmission and preferred resources – to reduce requirements of the existing local capacity areas and subareas.



Load Profile and Escalation Process for Defined LCR Area

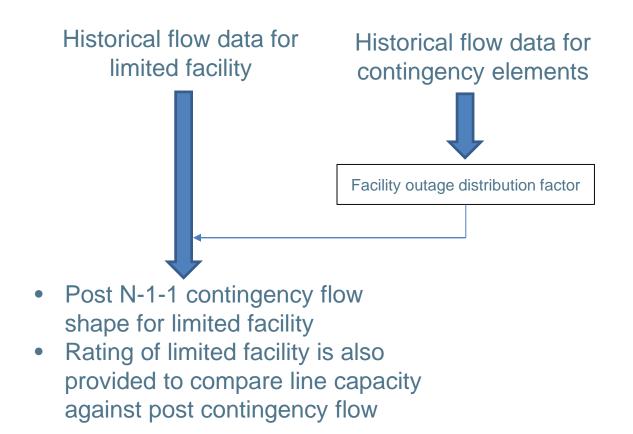
N-1-1 No Market Gas Generation Transmission Capability Approximation*

* Based on DC calculation using distribution factors considering thermal limits only.

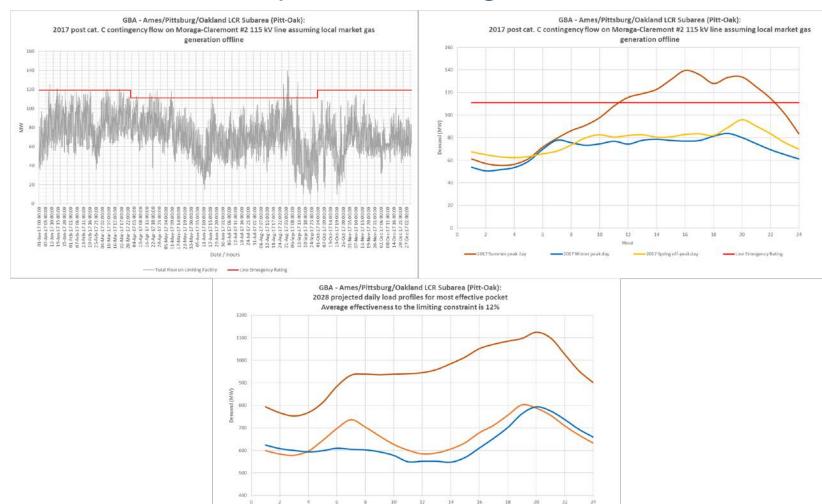


Types of LCR areas/subareas and profiles

Area Type	Profiles
Single source pocket (radial)	 2028 hourly (8760) area load profile
Multi source pocket	 Seasonal daily load profile
Flow-through	 Historical hourly (8760) flow profile Historical seasonal daily flow profile 2028 seasonal daily load profile for the most effective load pocket


Sample Radial or Multi-Source Area Load Profiles

🎯 California ISO


Slide 6

Flow Profile for Flow-Through Type LCR Area

Sample Flow-through Profiles

🍣 California ISO

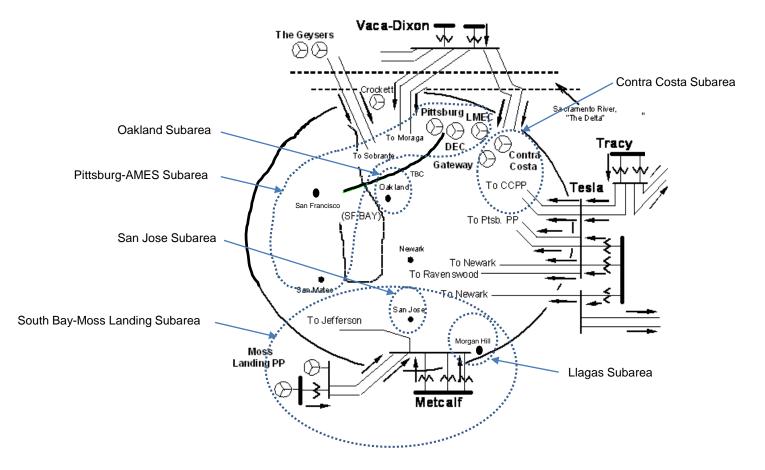
ISO Public

Hour

----- 2028 Spring off-peak net load

-2028 Winter peak net load

2028 Long-Term LCR Study Draft Results Greater Bay Area


Binaya Shrestha

Regional Transmission Engineer Lead

Stakeholder Meeting

September 20-21, 2018

Greater Bay Area Transmission System & LCR Subareas

ISO Public

New major transmission projects

Project Name	Expected ISD
Trimble-San Jose B 115 kV Line Limiting Facility Upgrade	Dec-18
Moss Landing–Panoche 230 kV Path Upgrade	Dec-18
Trimble-San Jose B 115 kV Series Reactor	Jan-19
South of San Mateo Capacity Increase (revised scope)	Feb-19 Mar-26
Metcalf-Evergreen 115 kV Line Reconductoring	May-19
East Shore-Oakland J 115 kV Reconductoring Project	Apr-21
Morgan Hill Area Reinforcement (revised scope)	May-21
Metcalf-Piercy & Swift and Newark-Dixon Landing 115 kV Upgrade	Apr-22
Oakland Clean Energy Initiative Project	Aug-22
Vaca Dixon-Lakeville 230 kV Corridor Series Compensation	Aug-22

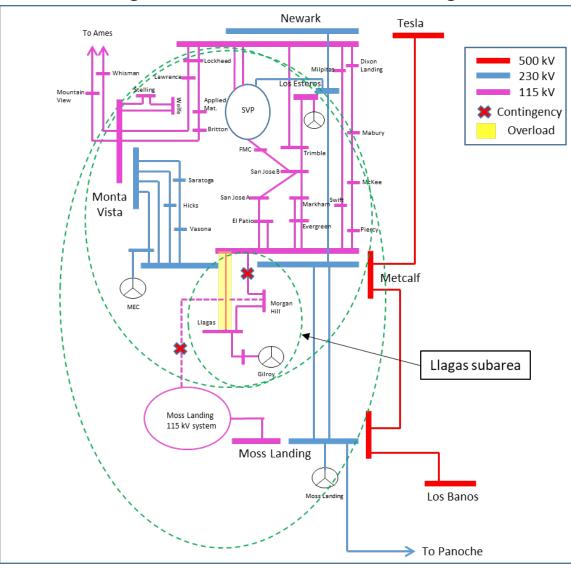
Power plant changes

Additions:

• No new resource addition

Retirements:

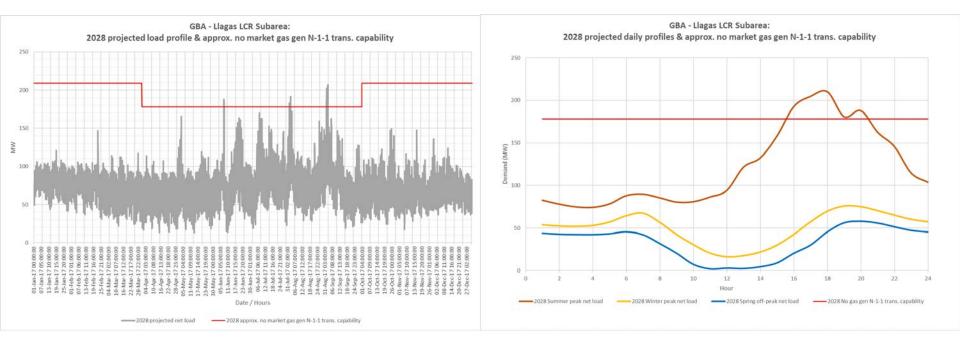
- No new retirements
- Oakland CTs considered offline



Load and Resources

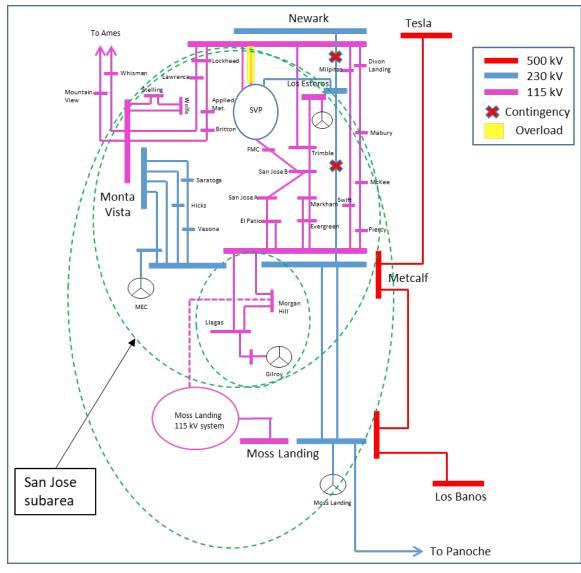
Load (MW)		Generation (MW)		
Gross Load	11,576	Market	6,312	
AAEE	-653	Wind	331	
Behind the meter DG	-309	Muni	276	
Net Load	10,614	QF	304	
Transmission Losses	268	Future preferred resource and energy storage	10	
Pumps	264	Total Qualifying Capacity	7,233	
Load + Losses + Pumps	11,146		.,200	

Llagas Subarea : One-line diagram


ISO Public

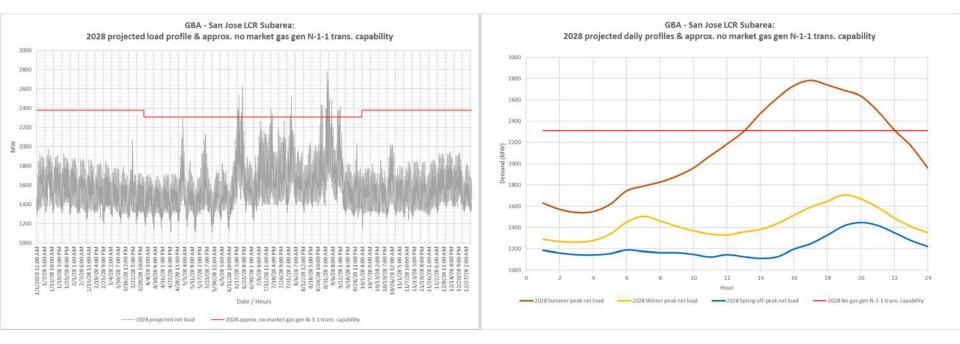
Llagas Subarea : Requirements

Yea	r Limit	Category	Limiting Facility	Contingency	LCR (MW) (Deficiency)
202	3 First limit	В	None	None	No requirement
202	3 First limit	С	Morgan Hill-Llagas 115 kV line	Metcalf-Morgan Hill and Morgan Hill-Green Valley 115 kV lines	26


Llagas Subarea : Load Profiles

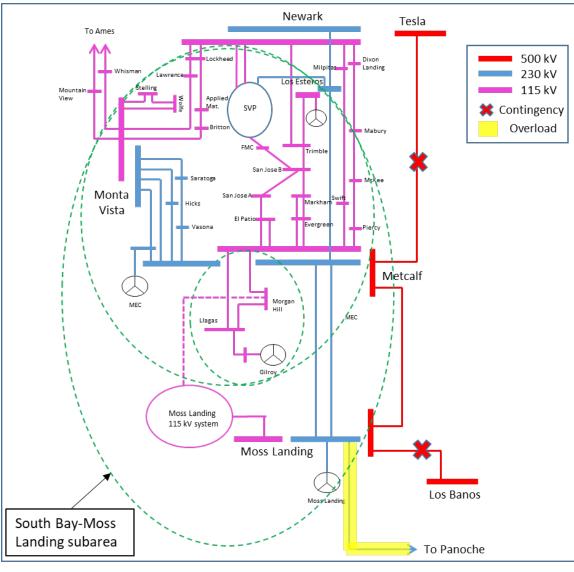
Slide 8

San Jose Subarea : One-line diagram


Slide 9

San Jose Subarea : Requirements

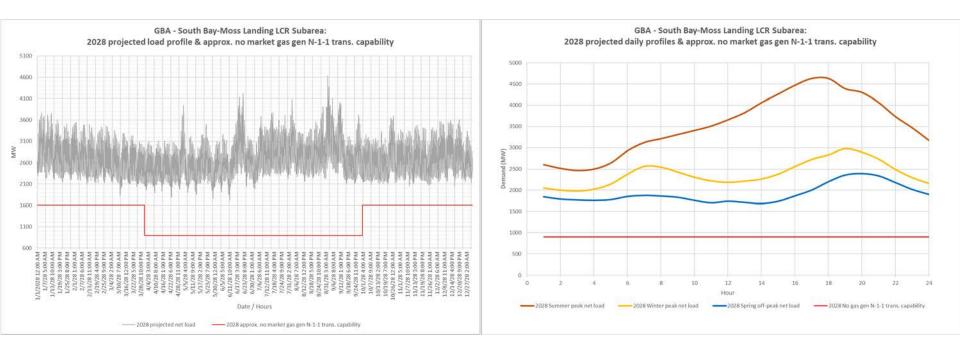
Year	Limit	Category	Limiting Facility	Contingency	LCR (MW) (Deficiency)
2028	First limit	В	El Patio-San Jose A 115 kV line	Newark-Los Esteros 230 kV line & DVR unit	868
2028	First limit	С	Newark-NRS #1 115 kV line	Newark-Los Esteros & Metcalf- Los Esteros 230 kV lines	1543 (204)
2028	Second limit	С	Newark-NRS #2 115 kV line	Newark-Los Esteros & Metcalf- Los Esteros 230 kV lines	1435 (156)


San Jose Subarea : Load Profiles

ISO Public

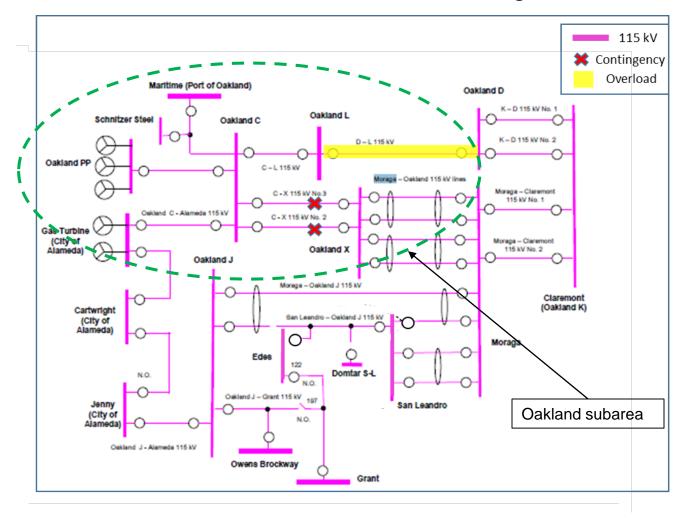
California ISO

South Bay-Moss Landing Subarea : One-line diagram


ISO Public

South Bay-Moss Landing Subarea : Requirements

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW) (Deficiency)
2028	First Limit	В	None	None	No requirement
2028	First Limit	С	Thermal overload of Moss Landing-Las Aguilas 230 kV	Tesla-Metcalf 500 kV and Moss Landing-Los Banos 500 kV	2100
2028	Second Limit	С	Thermal overload of Newark-NRS 115 kV	Tesla-Metcalf 500 kV and Moss Landing-Los Banos 500 kV	2010


South Bay-Moss Landing Subarea : Load Profiles

Slide 14

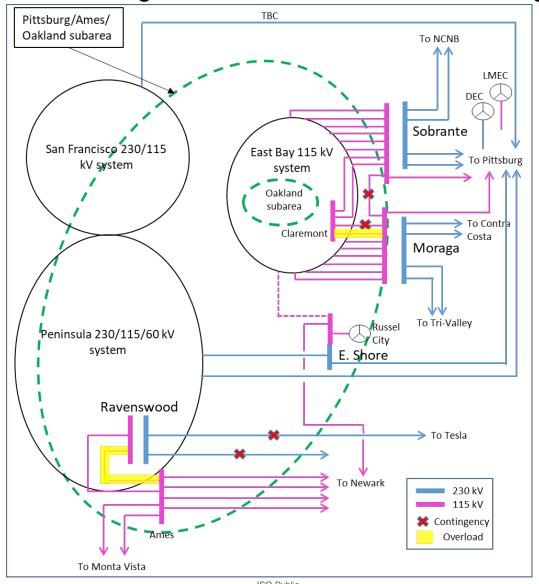
Oakland Subarea : One-line diagram

Ealifornia ISO

ISO Public

Oakland Subarea : Requirements

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW) (Deficiency)
2028	First limit	В	None	None	No requirement
2028	First limit	С	Oakland D-L 115 kV cable	Oakland C-X #2 & #3 115 kV cables	14
2028	Second limit	С	Oakland C-X #2 115 kV cable	Oakland D-L & C-X #3 115 kV cables	13



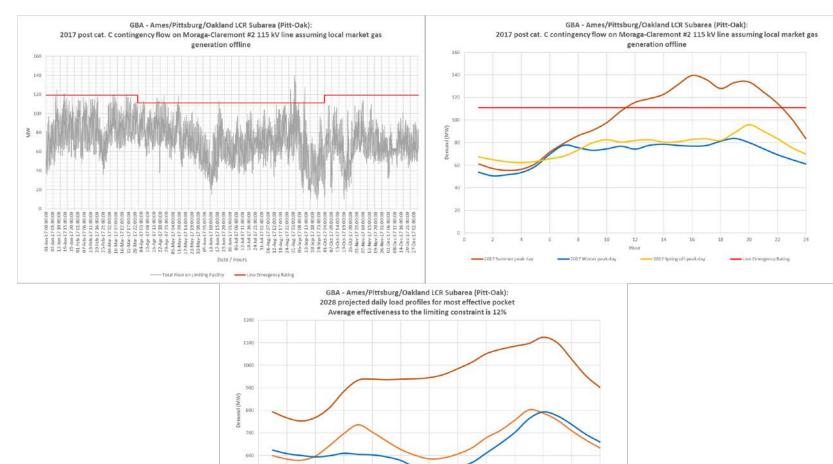
Oakland Subarea : Load Profiles

ISO Public

California ISO

Slide 18

Ames/Pittsburg/Oakland Subarea : Requirements


Year	Limit	Category	Limiting Facility	Contingency	LCR (MW) (Deficiency)
2028	First limit	В	None	None	No requirement
2028	First limit	С	Ames-Ravenswood #1 115 kV line Moraga-Claremont #2 115 kV	Newark-Ravenswood & Tesla- Ravenswood 230 kV lines Moraga-Sobrante & Moraga-	2022
			line	Claremont #1 115 kV lines	

Associated NCNB Area : Requirement

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW) (Deficiency)
2028	First limit	С	Thermal overload on Eagle Rock-Cortina 115 kV line	Fulton-Lakeville and Fulton- Ignacio 230 kV lines	751

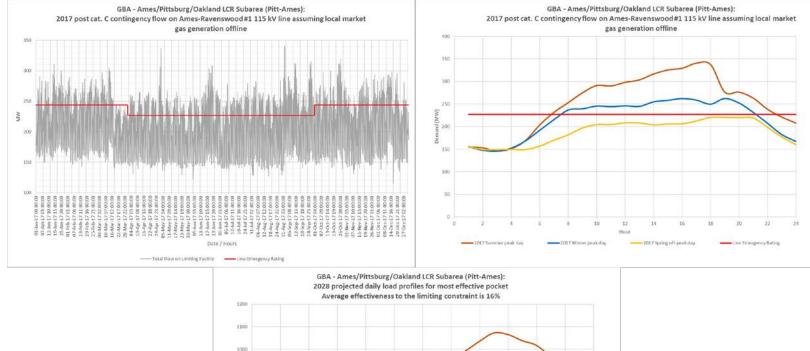
Ames/Pittsburg/Oakland Subarea (Pitts-Oak) : Flow Profiles

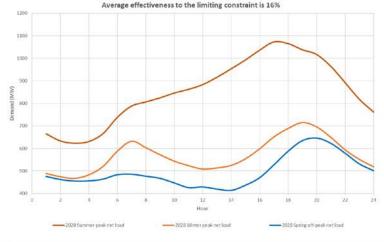
ISO Public

12

Hou

------ 2028 Winter peak net load

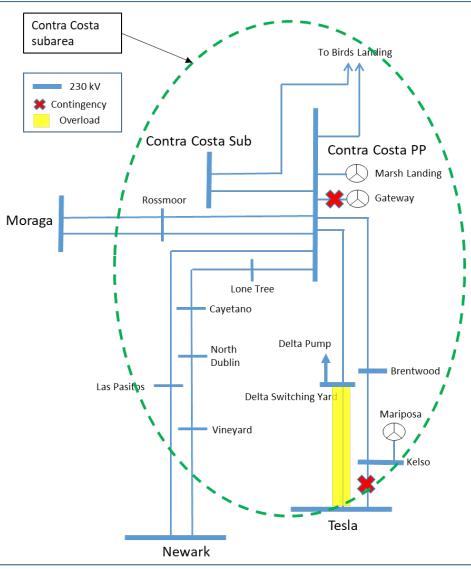

14


----- 2028 Spring off-peak net load

50

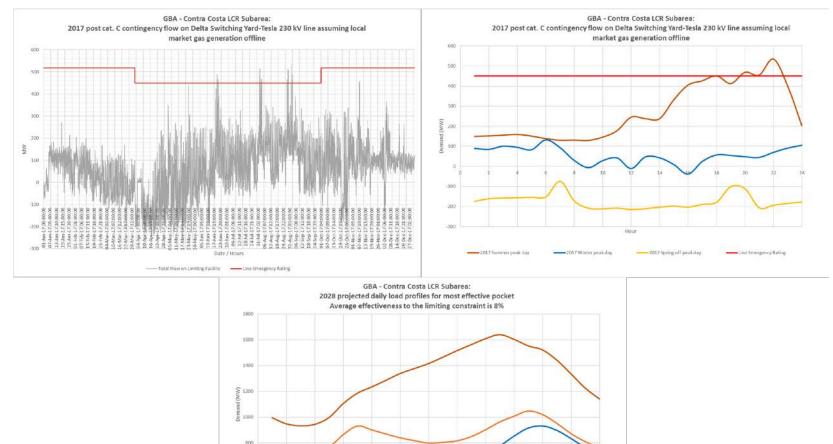
California ISO

Ames/Pittsburg/Oakland Subarea (Pitts-Ames) : Flow Profiles



ISO Public

Contra Costa Subarea : One-line diagram


ISO Public

Contra Costa Subarea : Requirements

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW) (Deficiency)	
2028	First limit	В	Delta Switching Yard-Tesla 230 kV line	Kelso-Tesla 230 kV line and Gateway unit	1274	
2028	First limit	С	Same as Category B			

Contra Costa Subarea : Flow Profiles

600

-2028 Summer peak net load

ISO Public

12

Hour

14

16

18

20

22

24

10

Greater Bay Area Overall: Requirements

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW) (Deficiency)
2028	First limit	В	Reactive margin	Tesla-Metcalf 500 kV line & DEC unit	4795
2028	First limit	С	Aggregate of subareas		6948 (204)

Greater Bay Area Total Generation & LCR Need

Generation	Market (MW)	Wind (MW)	Muni (MW)	QF (MW)	Total MW
	6312	331	276	304	7223

2028 LCR Need	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW Need
Category B (Single)	4795	0	4795
Category C (Multiple)	6744	204	6948

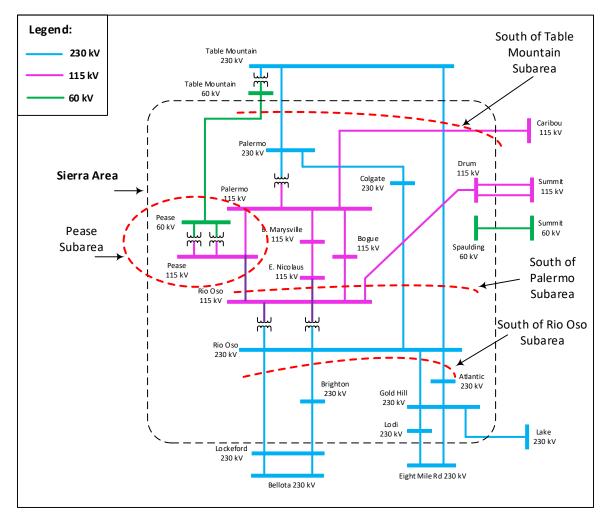
Changes Compared to Previous LCR Requirements

Subarea	2019		2023		2028	
	Load	LCR	Load	LCR	Load	LCR
Llagas	179	77	181	13	191	26
San Jose	2374	177	2517	293	2926	1543
South Bay – Moss Landing	3977	1653	4192	1977	4555	2100
Oakland	177	20	175	0	188	14
Pittsburg – Ames – Oakland	NA*	2430	NA*	1630	NA*	2022
Contra Costa	NA*	1067	NA*	1145	NA*	1274
Overall	10230	4461	10441	4752	11146	6948

Note: LCR increases from 2023 to 2028 are all mostly due to load increase

* Flow-through area. No defined load pocket.

2028 Long-Term LCR Study Draft Results Sierra Area


Ebrahim Rahimi

Lead Regional Transmission Engineer

Stakeholder Meeting

September 20-21, 2018

Sierra Area Transmission System & LCR Subareas

ISO Public

New major transmission projects

Project Name	Expected ISD
West Point-Valley Springs 60 kV Line Reinforcement	Nov-19
Mosher Transmission Project	Dec-19
Pease 115/60 kV Transformer Addition	Dec-19
South of Palermo 115 kV Reinforcement Project	Dec-21
Vaca-Davis Area Reinforcement	Dec-21
Rio Oso 230/115 kV Transformer Upgrades	Jun-22
Rio Oso Area 230 kV Voltage Support	Jun-22
Vierra 115 kV Looping Project	Jan-23
Atlantic – Placer 115 kV Line Project	On-hold

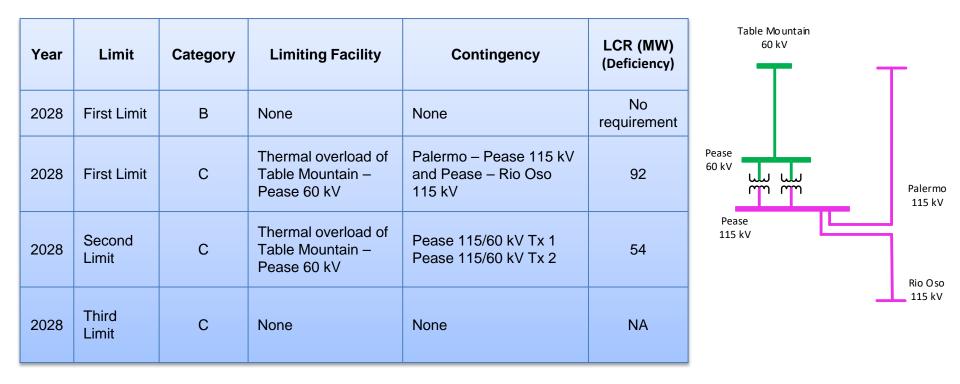
Power plant changes

Additions:

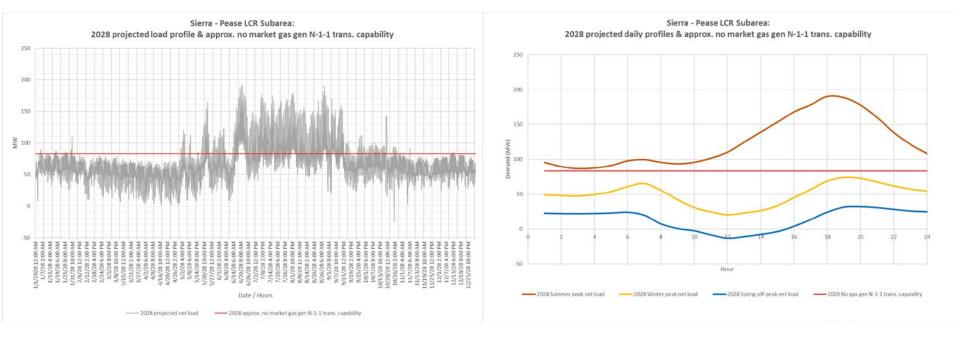
• No new resource addition

Retirements:

• No new retirements

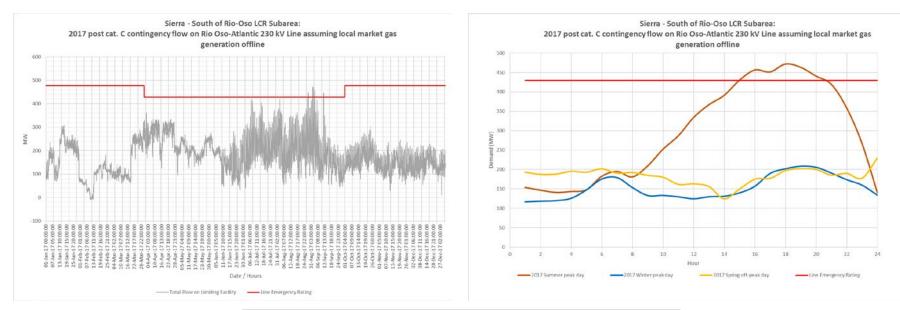


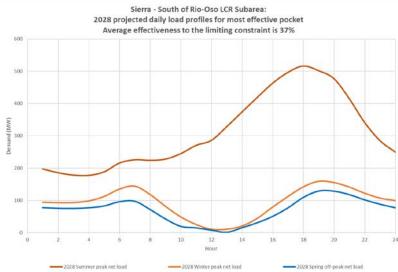
Load and Resources


Load (MW)		Generation (MW)		
Gross Load 1,974		Market	1,004	
AAEE	-117	Wind	0	
Behind the meter DG	0	Muni	1,108	
Net Load	1,856	QF	38	
Transmission Losses	84			
Pumps	0	Total Qualifying Capacity	2,150	
Load + Losses + Pumps	1,940			

Pease Sub Area : Requirements

Pease Sub Area : Load Profiles

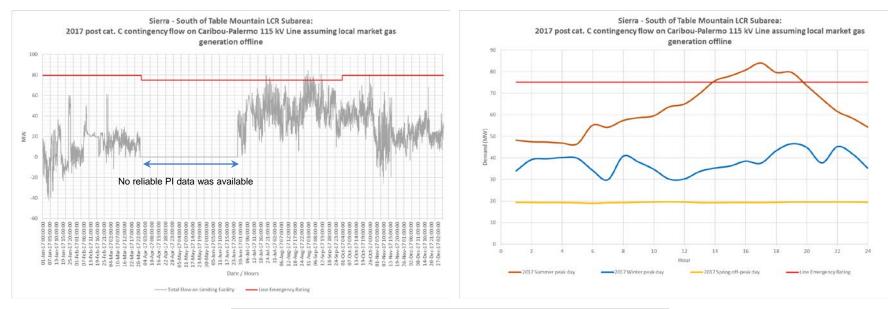

ISO Public

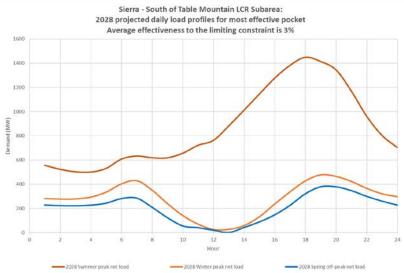

Slide 7

South of Rio Oso Sub Area : Requirements

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW) (Deficiency)		Rio Oso		
2028	First limit	В	Rio Oso – Atlantic 230 kV	Rio Oso – Gold Hill 230 kV	428		230 kV		—
2028	First limit	С	Rio Oso – Atlantic 230 kV	Rio Oso – Gold Hill 230 kV Rio Oso – Brighton 230 kV	532	Lockeford 230 kV	Brighton 230 kV Lodi	Gold Hill 230 kV 230 kV	Atlantic 230 kV
2028	Secon d limit	С	Rio Oso – Atlantic 230 kV	Rio Oso – Gold Hill 230 kV Rio Oso – Lockeford 230 kV	458		ellota 30 kV	Eight N	Viile Rd 0 kV
2028	Third limit	С	Rio Oso – Gold Hill 230 kV	Rio Oso – Atlantic 230 kV Rio Oso – Brighton 230 kV	300				

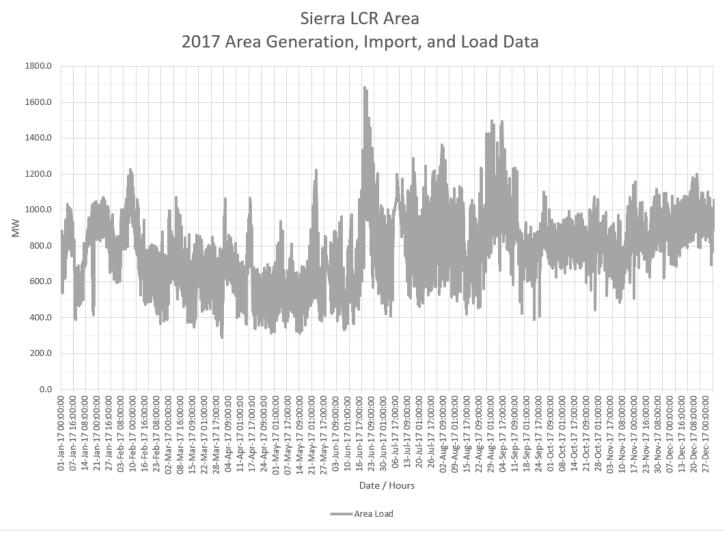
South of Rio Oso Sub Area : Flow Profiles





South of Table Mountain Sub Area : Requirements

Year	Limit	Cate gory	Limiting Facility	Contingency	LCR (MW) (Deficiency)	Table Mountain 230 kV	Caribou 115 kV
2028	First limit	В	Caribou – Palermo 115kV	Table Mountain – Palermo 230 kV	1053	Table Mountain ~~~~ 60 kV	
2028	Second limit	В	Table Mountain – Pease 60 kV	Table Mountain – Palermo 230 kV	963	Palermo 230 kV	Colgate
2028	Third limit	В	Table Mountain – Palermo 230 kV	Table Mountain – Rio Oso 230 kV	941	Pease Palermo m 60 kV 115 kV E. Marysville 115 kV	230 kV Bogue 115 kV
2028	First limit	С	Caribou – Palermo 115kV	Table Mountain – Palermo 230 kV Table Mountain – Rio Oso 230 kV	1510	Pease E. Nicolaus 115 kV 115 kV Rio Oso 115 kV	·I
2028	Second limit	С	Table Mountain – Pease 60 kV	Table Mountain – Palermo 230 kV Table Mountain – Rio Oso 230 kV	1450	Rio Oso 230 kV	


South of Table Mountain Sub Area : Flow Profiles

Sierra Area Overall : Load Profiles

ISO Public

Sierra Area Total LCR Need

2028 LCR Need	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW Need
Category B (Single)	998	0	1,053
Category C (Multiple)	1,510	0	1,510

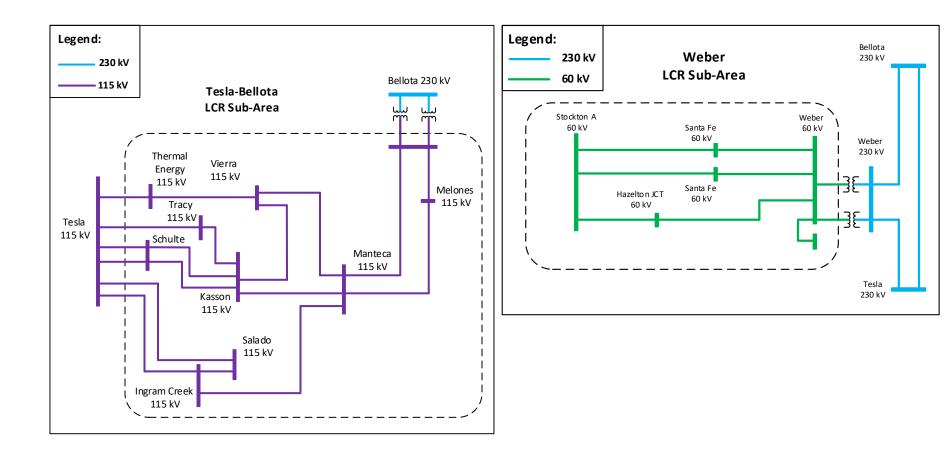
Changes Compared to Previous LCR Requirements

Subarea	2019		2023		2028	
Subarea	Load	LCR	Load	LCR	Load	LCR
South of Palermo	NA *	1702	NA *	<629	NA *	<624
Placer	168	77	174	89	180	0
Drum-Rio Oso	NA	506	NA	0	NA	0
Pease	150	92	157	75	169	92
South of Rio Oso	NA	831	NA	554	NA	532
South of Table Mountain	NA	1,964	NA	1,924	NA	1,510
Total	1,758	2,247	1,822	1,924	1,940	1,510

Note: LCR increases from 2023 to 2028 are all mostly due to load increase. The South of Palermo, Rio Oso Transformer upgrade, and Atlantic-Placer Projects remove the need for LCR in South of Palermo, Drum-Rio Oso, and Placer subareas, respectively.

* Flow-through area. No defined load pocket.

2028 Long-Term LCR Study Draft Results Stockton Area


Ebrahim Rahimi

Lead Regional Transmission Engineer

Stakeholder Meeting

September 20-21, 2018

Stockton Area Transmission System & LCR Subareas

California ISO

New major transmission projects

Project Name	Expected ISD
Weber-Stockton A #1 & #2 60 kV lines Reconductor	Jun-19
Ripon 115 kV Line	Dec-18
Vierra 115 kV Looping Project	Jan-23
Lockeford-Lodi Area 230 kV Development	Dec-23

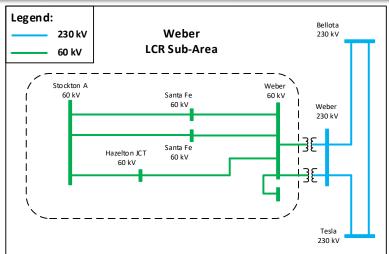
Power plant changes

Additions:

• No new resource addition

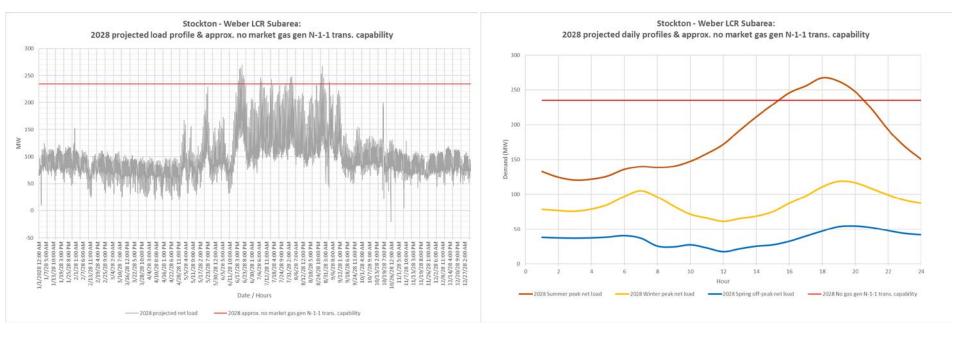
Retirements:

• No new retirements


Load and Resources

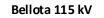
Load (MW)		Generation (MW)		
Gross Load 1,203		Market	543	
AAEE	-71	Wind	0	
Behind the meter DG	0	Muni	126	
Net Load	1,132	QF	18	
Transmission Losses	21			
Pumps	0	Total Qualifying Capacity	687	
Load + Losses + Pumps	1,153			

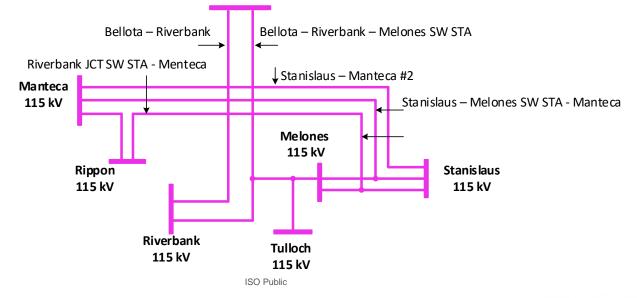
Weber Sub Area : Requirements


Year	Limit	Category	Limiting Facility	Contingency	LCR (MW) (Deficiency)
2028	First Limit	В	None	None	No requirement
2028	First Limit	С	Stockton A-Weber #3	Stockton A-Weber #1 and #2 60 kV lines	30
2028	Second Limit	С	None	None	NA

Slide 6

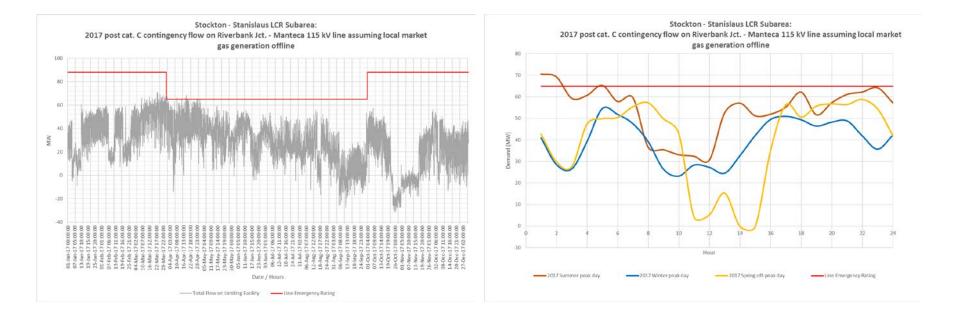
Weber Subarea : Load Profiles





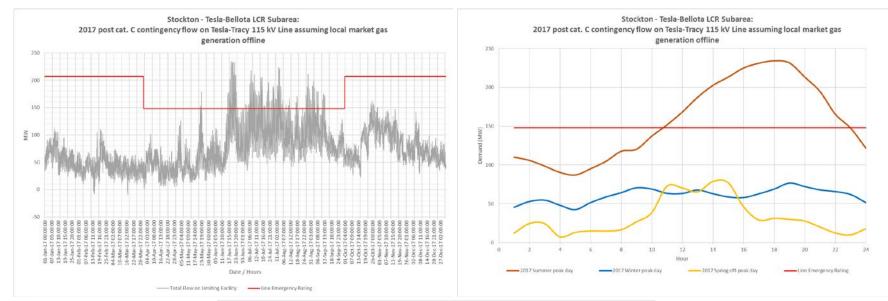
ISO Public

Stanislaus Sub Area : Requirements


Year	Limit	Category	Limiting Facility	Contingency	LCR (MW) (Deficiency)
2028	First limit	В	River Bank Jct. – Manteca 115 kV Line	Bellota-Riverbank-Melones 115 kV line and Stanislaus PH	174
2028	First limit	С	None	None	NA

Stanislaus Subarea : Flow Profiles

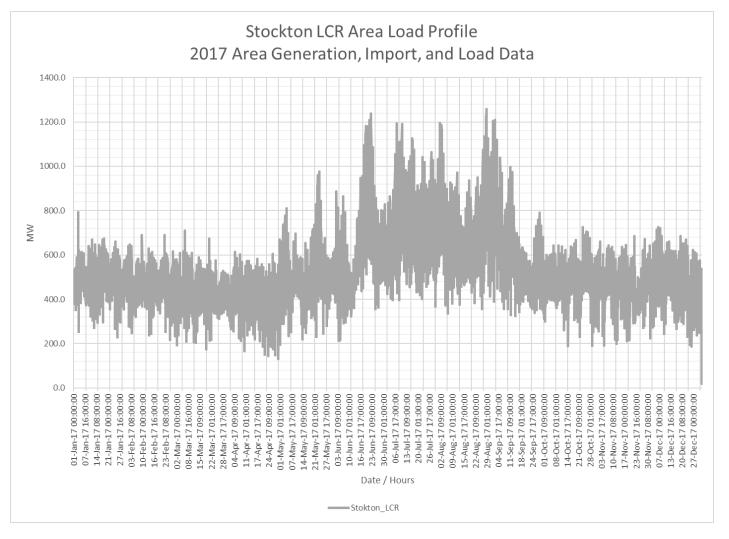
Slide 9


Tesla-Bellota Sub Area : Requirements

Year	Limit	Cat.	Limiting Facility	Contingency	LCR (MW) (Deficiency)	Legend: 230 kV
2028	First limit	В	Tesla – Tracy 115 kV	Tesla – Vierra 115 kV and GWF Tracy #3 unit	303	Tesla-Bellota LCR Sub-Area
2028	Second limit	В	Tesla – Vierra 115 kV	Tesla – Tracy 115 kV and GWF Tracy #3 unit	291	/ Thermal / Energy Vierra 115 kV
2028	Third limit	В	Tesla – Tracy 115 kV	Schulte - Lammers115 kV and GWF Tracy #3 unit	239	Tesla 115 kV 115 kV 115 kV Schulte
2028	First limit	С	Tesla – Tracy 115 kV	Schulte - Lammers115 kV and Schulte-Kasson- Manteca 115 kV	507 (213)	Kasson 115 kV
2028	Second limit	С	Tesla – Vierra 115 kV	Schulte - Lammers115 kV and Schulte-Kasson- Manteca 115 kV	460 (167)	Manteca Salado 115 kV
2028	Second limit	С	Tesla – Schulte #2 115 kV	Tesla – Vierra 115 kV and Tesla – Schulte #1 115 kV	247	Ingram Creek

ISO Public

California ISO


Tesla - Bellota Sub Area : Flow Profiles

Stockton - Tesla-Bellota LCR Subarea: 2028 projected daily load profiles for most effective pocket Average effectiveness to the limiting constraint is 40% 60 50 \$ 40 8 30 20 10 12 14 16 18 22 24 20 Hour

Stockton Area Overall : Load Profiles

🔮 California ISO

ISO Public

Stockton Area Total LCR Need

2028 LCR Need	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW Need
Category B (Single)	303	0	303
Category C (Multiple)	294	213	507

Changes Compared to Previous LCR Requirements

Subarea	2019		2023		2028	
	Load	LCR	Load	LCR	Load	LCR
Lockeford	184	83	198	103	226	0
Weber	229	21	219	17	256	30
Stanislaus	NA *	152	NA *	147	NA *	174
Tesla-Bellota	761	673	809	319	897	507
Overall	1,174	777	1,226	439	1,379	537

Note: LCR increases from 2023 to 2028 are all mostly due to load increase. The Lockeford Area 230 kV Development Project removes the need for LCR in Lockeford subarea.

* Flow-through area. No defined load pocket.

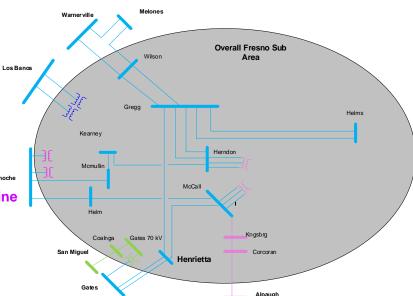
Slide 14

2028 Long-Term LCR Study Draft Results Greater Fresno Area

Vera Hart

Senior Regional Transmission Engineer

Stakeholder Meeting


September 20-21, 2018

Greater Fresno Area Electrical Boundaries and LCR Sub-Areas

LCR Sub-Areas:

Electrical Boundaries:

- Gates Mustang #1 230 kV line
- Gates Mustang #2 230 kV line
- Panoche Tranquility #1 230 kV line
- Panoche Tranquility #2 230 kV line
- Warnerville Wilson 230 kV line
- Melones Wilson 230 kV line
- Panoche 230/115 kV transformer #1
- Panoche 230/115 kV transformer #2 Panoche
- Smyrna Alpaugh Corcoran 115 kV line
- Los Banos #3 230/70 kV transformer
- Los Banos #4 230/70 kV transformer
- San Miguel Coalinga #1 70 kV line
- Gates 230/70 kV transformer #1

Slide 2

New major transmission projects

Project Name	Expected ISD
Borden 230 kV Voltage Support	19-Feb
Gregg-Herndon #2 230 kV Line Circuit Breaker Upgrade	18-May
Helm-Kerman 70 kV Line Reconductor	18-Mar
Lemoore 70 kV Disconnect Switches Replacement	18-Jun
Los Banos-Livingston Jct-Canal 70 kV Switch Replacement	18-Jun
Oro Loma 70 kV Area Reinforcement	20-May
Reedley 70 kV Reinforcement (Renamed to Reedley 70 kV Area Reinforcement Projects Include Battery at Dinuba)	21-Dec
Reedley 115/70 kV Transformer Capacity Increase	Completed
Wilson 115 kV Area Reinforcement	23-Dec
Wilson-Le Grand 115 kV line reconductoring	20-Dec
Panoche – Oro Loma 115 kV Line Reconductoring	20-Dec
Wilson 115 kV SVC	19-Dec
Gates #12 500/230 kV Transformer Addition	19-Dec
Kearney - Hearndon 230 kV Line Reconductoring	19-May
Northern Fresno 115 kV Area Reinforcement	20-Mar
Bellota-Warnerville 230kV line Reconductoring	23-Dec
Herndon-Bullard 230kV Reconductoring Project	21-Jan

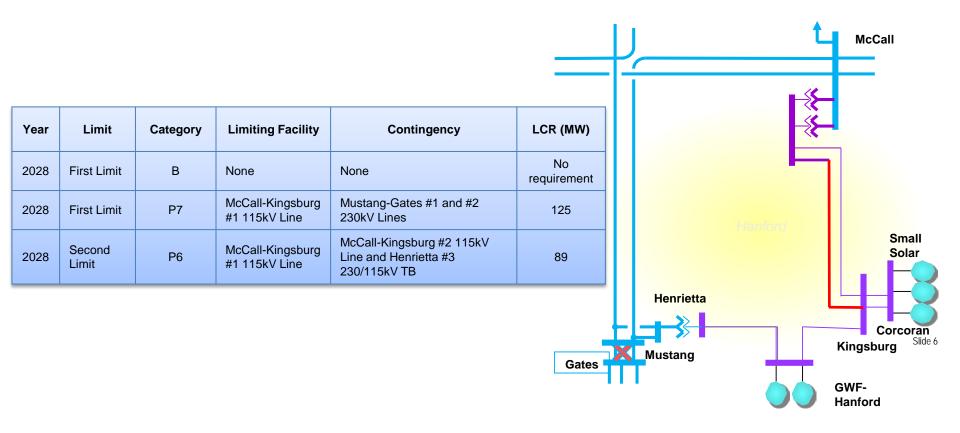
Power plant changes

Additions:

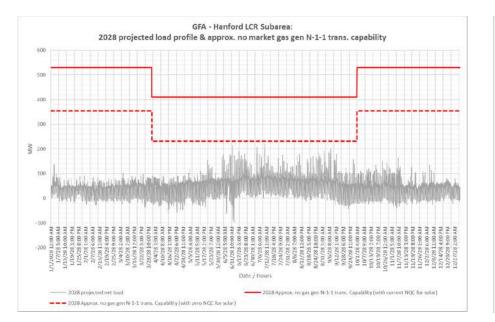
• Over 300MW New Solar Units

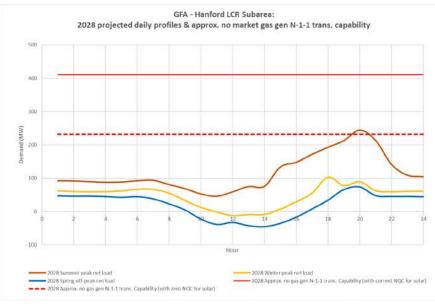
Retirements:

• None



Load and Resources

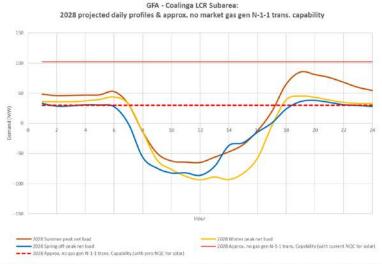

Load (MW)		Generation (MW)		
Gross Load	3,617	Market	4,362	
AAEE	-227	Wind	13	
Behind the meter DG	-2.8	Muni	311	
Net Load	3,387	QF	28	
Transmission Losses	109			
Pumps	0	Total Qualifying Capacity	4,701	
Load + Losses + Pumps	3,496			



Hanford Sub-Area Requirements

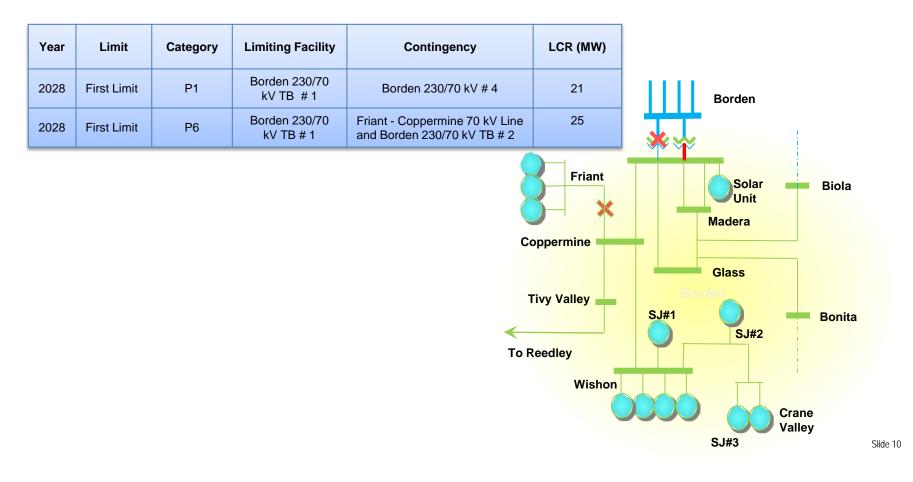
Hanford Sub-Area: Load Profiles

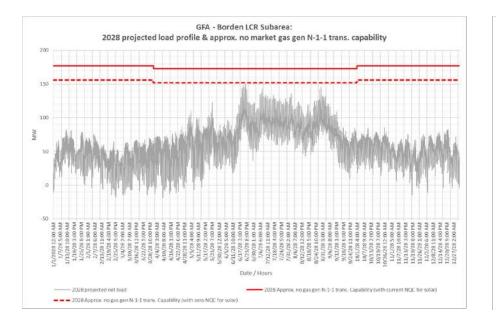

Slide 7

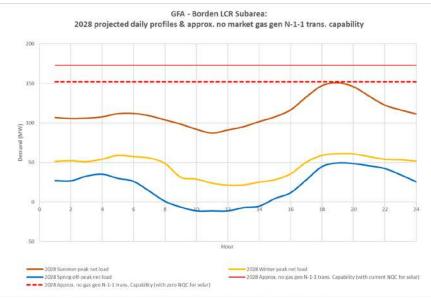

Coalinga Sub-Area Requirements

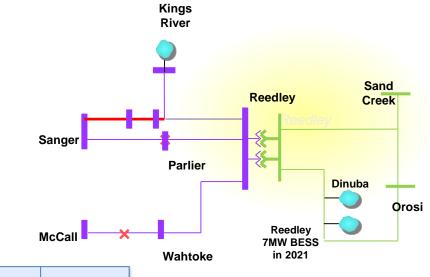
🍣 California ISO

Coalinga Sub-Area: Load Profiles

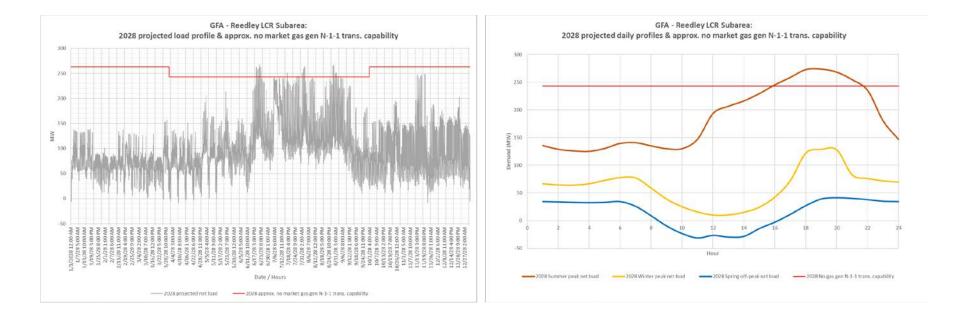



ISO Public


Borden Sub-Area Requirements

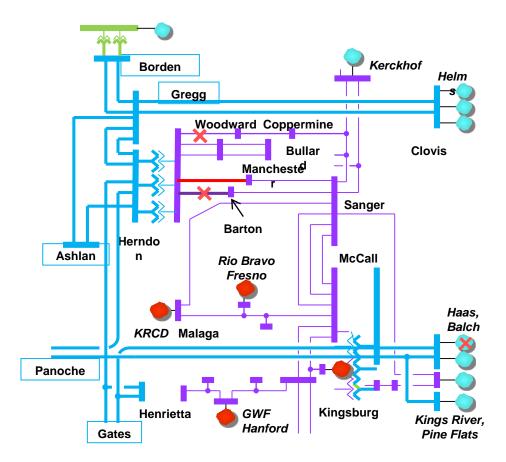

Borden Sub-Area: Load Profiles

Reedley Sub-Area Requirements



Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)
2028	First Limit	P6	Kings River- Sanger-Reedley 115kV line	McCall-Reedley 115kV Line & Sanger-Reedley 115kV line	39

Slide 12

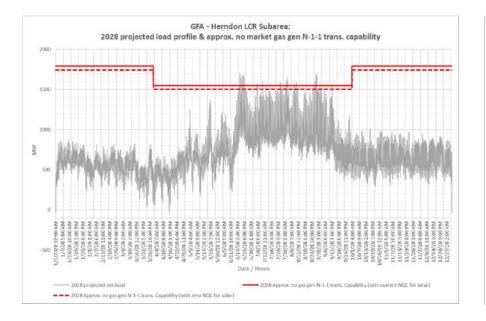

Reedley Sub Area : Load Profiles

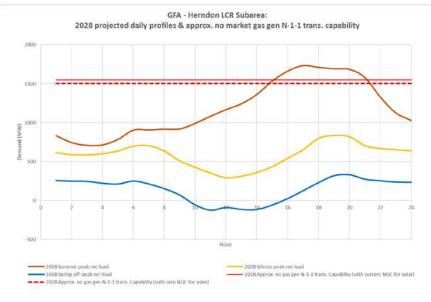
California ISO

Slide 13

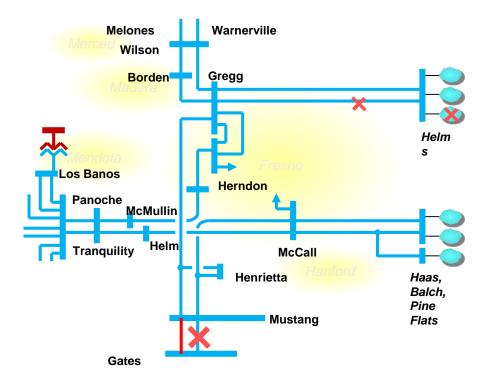
Herndon Sub-Area Requirements

Slide 14

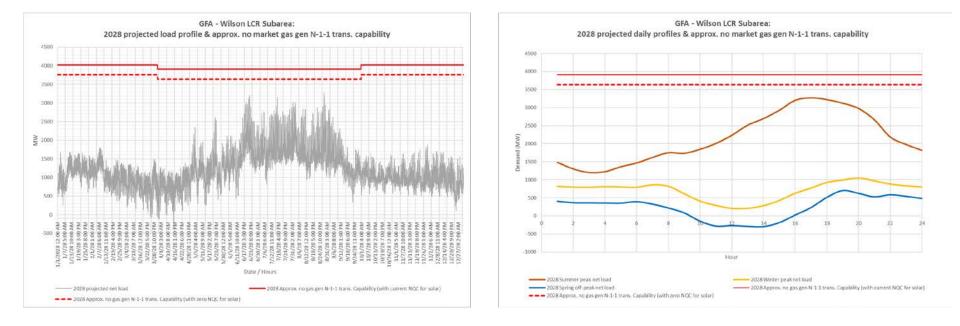



Herndon Fresno Sub Area : Requirements

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)
2028	First limit	P3	Herndon-Manchester 115kV line	Balch Unit 1 and Herndon- Barton 115kV line	326
2028	First limit	P6	Herndon-Manchester 115kV line	Herndon-Woodward 115kV line and Herndon-Barton 115kV line	830
2028	Second limit	P6	Herndon-Barton 115kV line	Herndon-Woodward 115kV line and Herndon- Manchester 115kV line	655


Herndon Sub Area : Load Profiles

Overall Sub-Area Requirements


🍣 California ISO

Overall Fresno Sub Area : Requirements

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)
2028	First limit	P3	Remaining Gates- Mustang 230kV line	Gates-Mustang 230kV #1 or #2 line and one Helms unit out	1628
2028	First limit	P6	Remaining Gates- Mustang 230kV line	Gates-Mustang 230kV #1 or #2 line and Helms-Gregg 230kV line	1728

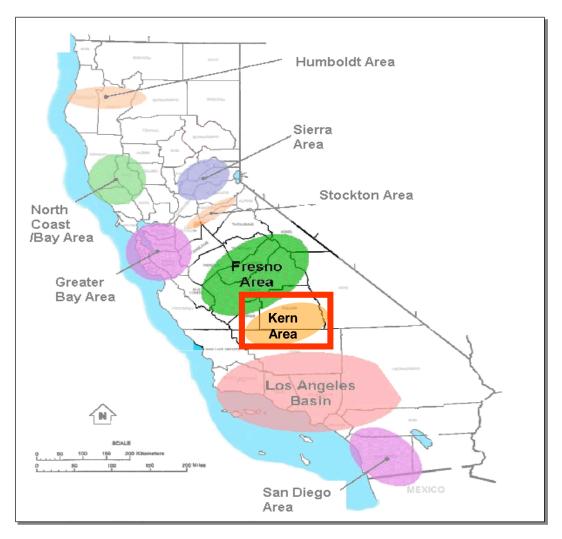
Overall Sub Area : Load Profiles

Changes Compared to Previous LCR Requirements

Subarea	2019		20	23	2028	
Subarea	Load	LCR	Load	LCR	Load	LCR
Hanford	170.5	56	186.3	107	242.5	125
Coalinga	86	19	85	16	85	17
Borden	132.6	1	137.1	8	152	25
Reedley	237	5	266	12	266	39
Herndon	1461	792	1529	821	1689	830
Overall	3070	1670	3231	1688	3496	1728

Note: LCR increases from 2023 to 2028 are all mostly due to load increase Load is Net Load+Losses

2028 Long-Term LCR Study Draft Results Kern Area


Abhishek Singh

Regional Transmission Engineer Lead

Stakeholder Meeting

September 20-21, 2018

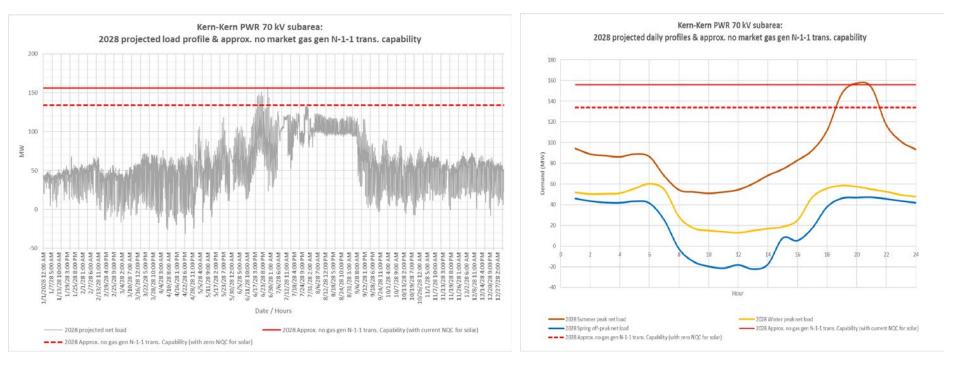
Kern LCR Area

Project Name	Expected ISD
Kern PP 115 kV Area Reinforcement Project	2028
Wheeler ridge Junction Station Project	2028

No new power plant additions or retirements as compared to 2023.

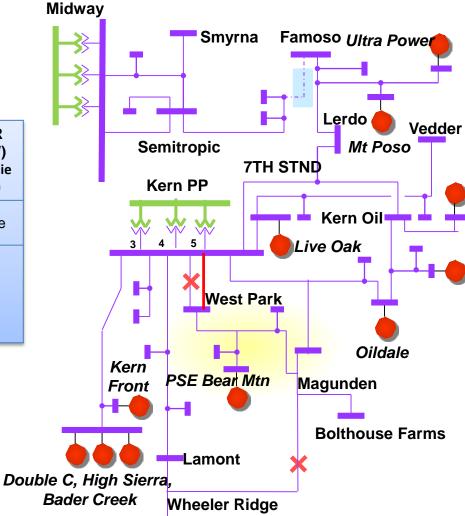
Load and Resources

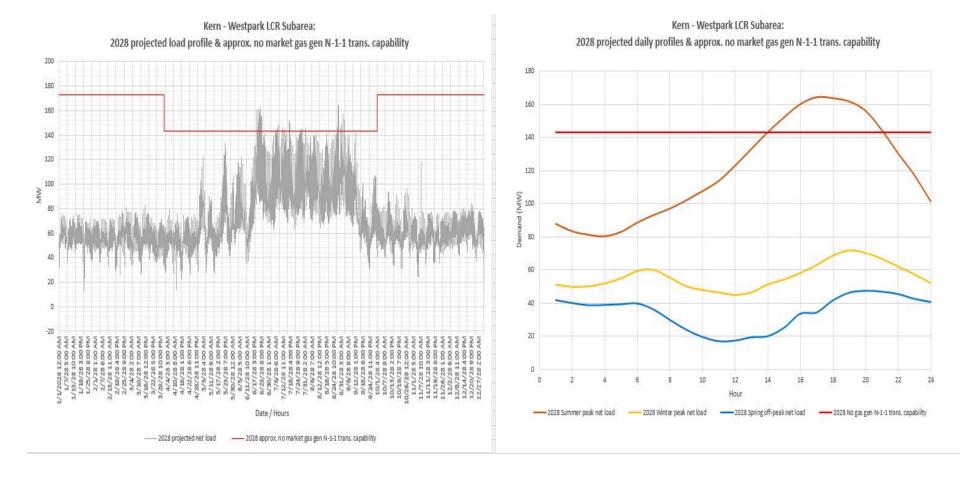
Load (MW)		Generation (MW)		
Gross Load	1011	Market	491	
AAEE	-60	Wind	0	
Behind the meter DG	0	Muni	0	
Net Load	951	QF	0	
Transmission Losses	9			
Pumps		Total Qualifying Capacity	491	
Load + Losses + Pumps	960			



Kern PP 70 kV Sub Area : Requirements

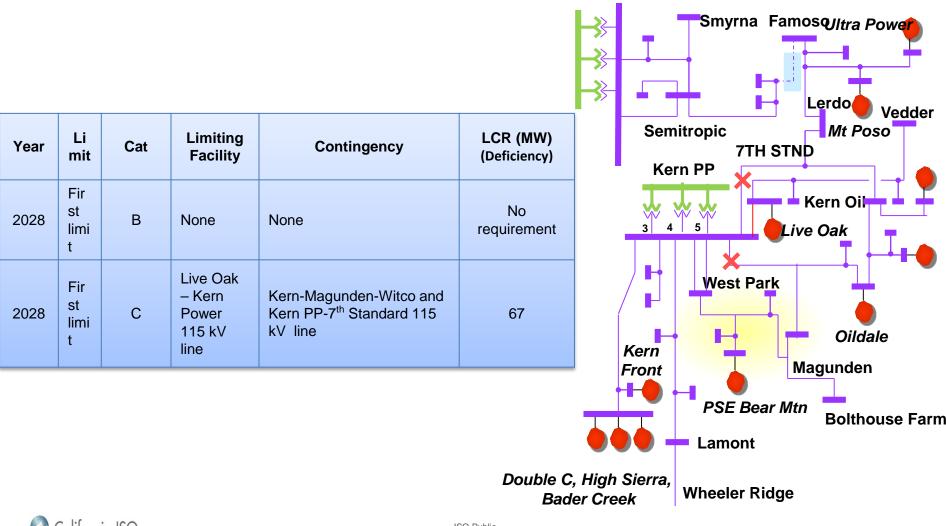
Year	Limit	Category	Limiting Facility Contingency		LCR (MW) (Deficiency)
2028	First Limit	В	None	None	None
2028	First Limit	С	Kern PW2 to Kern PW1 70 kV Bus Tie	Kern PW2 115/70 T/F # 1 & Kern-Old River 70 kV line	31(3)


Kern PP 70 kV Sub Area : Load Profile


WestPark Sub Area : Requirements

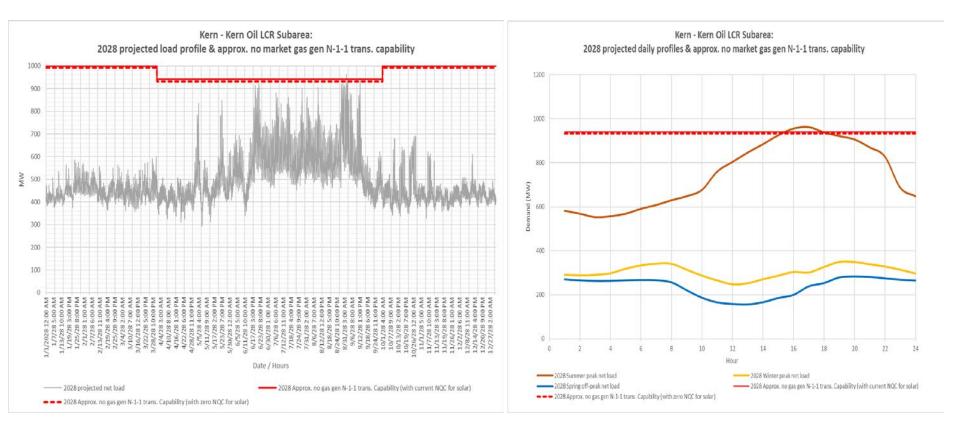
🍣 California ISO

West Park Sub Area : Load Profiles



California ISO

ISO Public


Slide 8

Kern Oil Sub Area : Requirements

California ISO

Kern Oil Sub Area : Load Profiles

Slide 10

Kern Total LCR Need

2028 LCR Need	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW Need
Category B (Single)	0	0	0
Category C (Multiple)	137	3	140

South Kern PP Sub Area has been eliminated. Kern Oil sub area drives the requirement for Kern LCR area.

Changes Compared to Previous LCR Requirements

Subaraa	2019		2023		2028	
Subarea	Load	LCR	Load	LCR	Load	LCR
Kern PP 70 kV	NA	NA	NA	NA	156	31*
West Park	151	51*	149	51*	173	42
Kern Oil	684	116	744	131*	787	67
South Kern	1088	472	1140	<131	1393	NA**
Kern Overall	1088	478	1140	182	960	140*

*Includes Deficiency

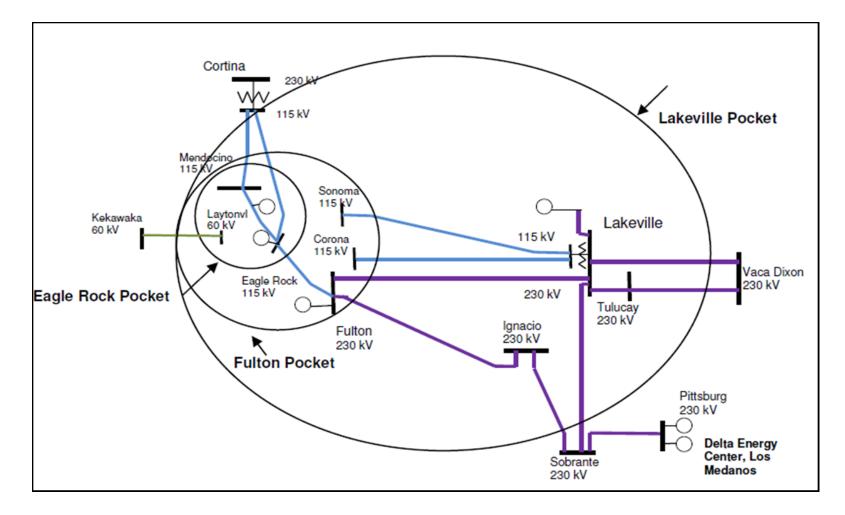
** South Kern sub-area not required in future due to approved transmission projects

Load is Net Load+Losses

Compared to 2023 long-term LCR (May 2018):

- Kern LCR area definition is smaller due to multiple transmission projects.
- LCR need (140 MW) has decreased by 42 MW vs. 2023 (182MW) due to multiple Kern Area Transmission projects.

2028 Long-Term LCR Study Draft Results North Coast & North Bay Area


Bryan Fong

Senior Regional Transmission Engineer

Stakeholder Meeting

September 20-21, 2018

North Coast & Bay Area Transmission System

New major transmission projects

Project Name	Expected ISD
Fulton-Fitch Mountain 60kV Line Reconductor (Fulton-Hopland 60kv Line) Project – Revised Scope	2019
Clear Lake 60kV System Reinforcement - Revised Scope	2023
Ignacio-Alto 60kV Line Conversion - Revised Scope	2023
Lakeville 60kV Area Reinforcement	2021
Vaca-Lakeville 230kV Corridor Series Compensation	2020

Power plant changes

Additions:

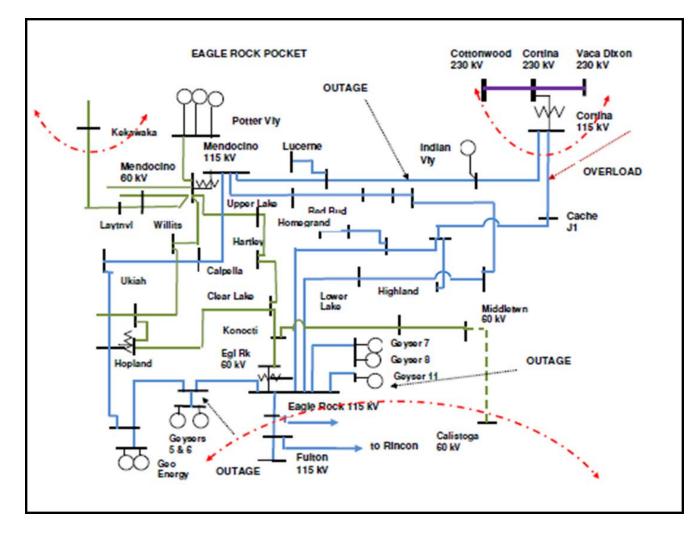
• No new resource addition

Retirements:

• None

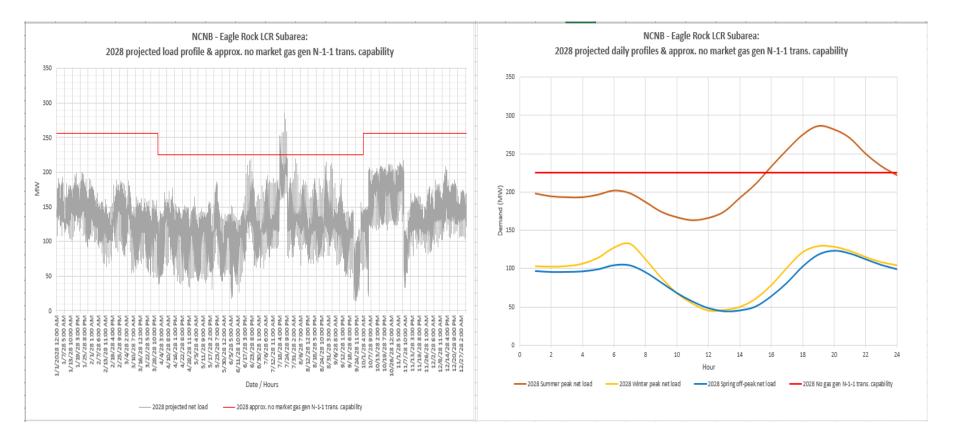
Load and Resources

Load (MW)		Generation (MW)	
Gross Load	1627	Market	736
AAEE	-89	Wind	0
Behind the meter DG	0	Muni	114
Net Load	1,538	QF	5
Transmission Losses	49		
Pumps	0	Total Qualifying Capacity	855
Load + Losses + Pumps	1,587		

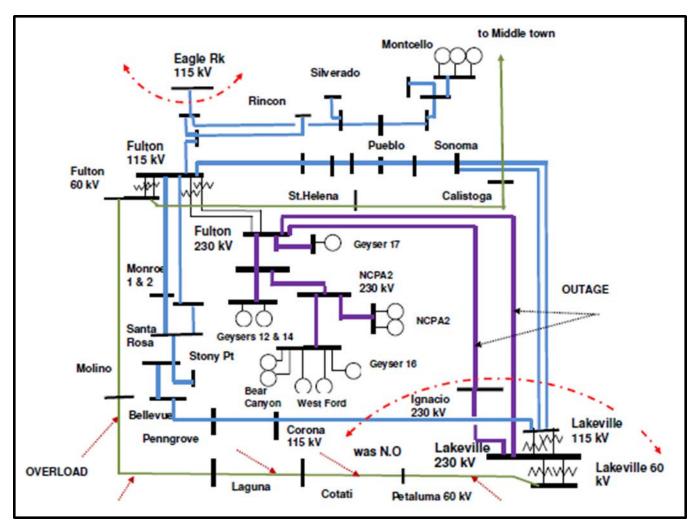

Eagle Rock Sub Area : Requirements

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW) (Deficiency)
2028	First Limit	В	Thermal overload on Eagle Rock-Cortina 115 kV line*	Cortina-Mendocino 115 kV line with Geyser #11 unit out of service	276 (26)
2028	First Limit	С	Thermal overload on Eagle Rock-Cortina 115 kV line*	Cortina-Mendocino and Geysers #3-Geysers #5 115 kV lines	278 (28)

*Note: With Vaca Dixon-Lakeville and Vaca Dixon-Tulucay 230 kV lines reactors bypassed



Eagle Rock Sub Area : Requirements


Eagle Rock Sub Area : Load Profiles

California ISO

Slide 8

Fulton Sub Area : Removed

Fulton Sub Area : Removed

Before

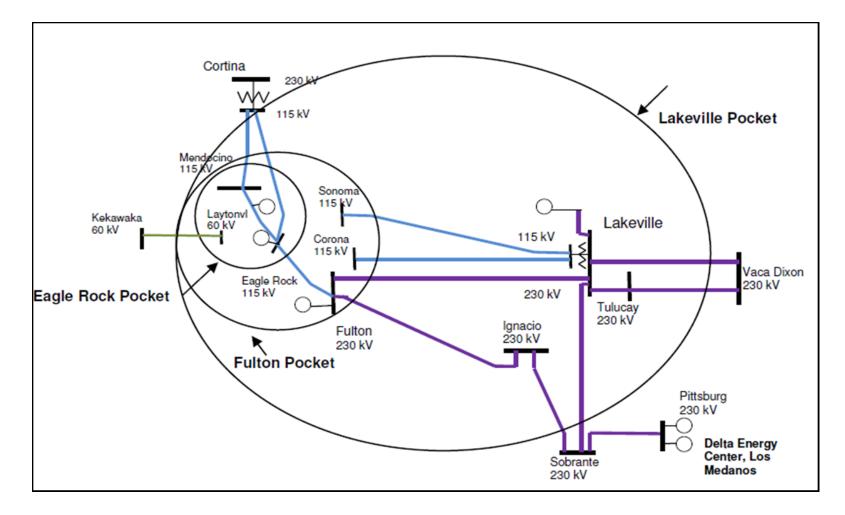
- Contingency: Fulton-Lakeville and Fulton-Ignacio 230 kV lines
- Limiting component: Thermal overload on Lakeville# 2 60 kV line (Lakeville-Petaluma-Cotati 60 kV)

Now - Lakeville# 2 60 kV line - Lakeville-Petaluma-Cotati 60 kV permanently open

- Contingency: Fulton-Lakeville and Fulton-Ignacio 230 kV lines
- Limiting component: Thermal overload on Eagle Rock-Cortina 115 kV line
- Same as Lakeville Pocket

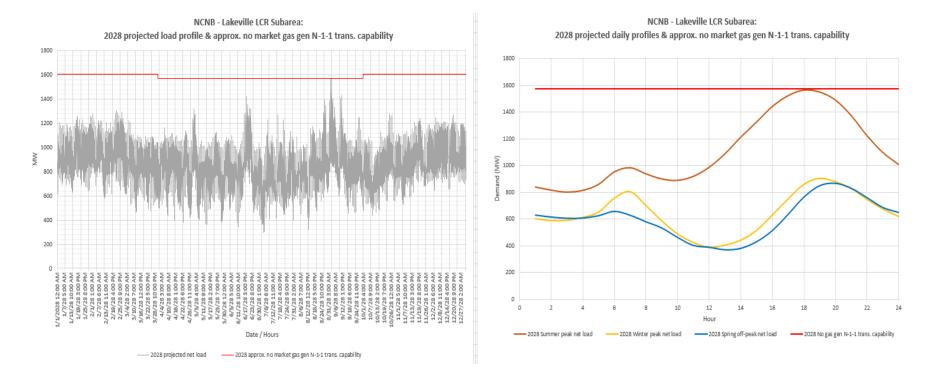
Lakeville Sub Area : Requirements

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW) (Deficiency)
2028	First Limit	В	Thermal overload on Eagle Rock-Cortina 115 kV line*	Cortina-Mendocino 115 kV line with Geyser #11 unit out of service	881 (26)
2028	First Limit	С	Thermal overload on Eagle Rock-Cortina 115 kV line*	Cortina-Mendocino and Geysers #3-Geysers #5 115 kV lines	883 (28)


Associated Ames/Pittsburg/Oakland Area : Requirement

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW) (Deficiency)	
2028	First limit	С	Ames-Ravenswood #1 115 kV line	Newark-Ravenswood & Tesla-Ravenswood 230 kV lines	2022	
			Moraga-Claremont #2 115 kV line	Moraga-Sobrante & Moraga- Claremont #1 115 kV lines		

*Note: With Vaca Dixon-Lakeville and Vaca Dixon-Tulucay 230 kV lines reactors bypassed



North Coast & Bay Area Transmission System

Lakeville Sub Area : Load Profiles

North Coast & North Bay Area Total LCR Need

2028 LCR Need	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW Need
Category B (Single)	855	26	881
Category C (Multiple)	855	28	883

Changes Compared to Previous LCR Requirements

Subarea	2019		20	23	2028	
Subarea	Load	LCR	Load	LCR	Load	LCR
Eagle Rock	256	228	262	257	313	278 (28)
Fulton	887	525	919	553	N/A	N/A
Overall	1465	689	1524	553	1587	883 (28)

2028 Long-Term LCR Study Draft Results Humboldt

Emily Hughes

Regional Transmission Engineer

Stakeholder Meeting

September 20-21, 2018

Humboldt Area

- Transmission tie lines into the area:
 - Bridgeville-Cottonwood 115 kV line
 - Humboldt-Trinity 115 kV line
 - Willits-Garberville 60 kV line
 - Trinity-Maple 60 kV line

New major transmission projects

Project Name	Expected ISD
Maple Creek Reactive Support (Install 10 Mvar SVC at Maple Creek Sub)	2022
Bridgeville – Garberville	On-hold

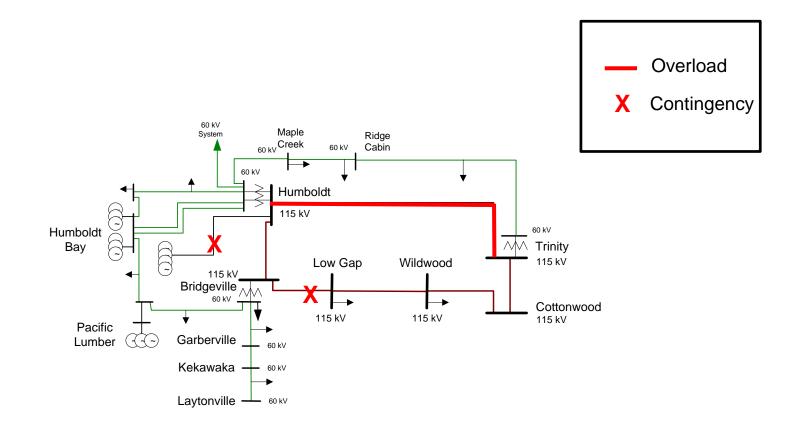
Power plant changes

Additions:

- Maple Creek Reactive Support
- Garberville Reactive Support
- Bridgeville 115/60 kV #1 transformer replacement

Retirements:

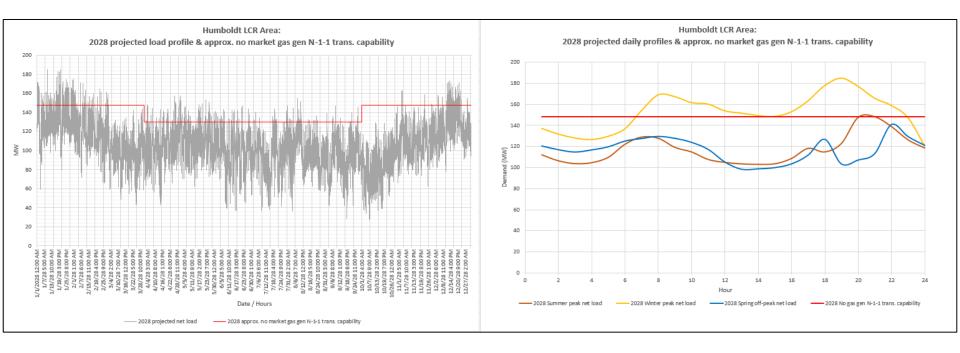
• Blue Lake



Load and Resources

Load (MW)		Generation (MW)		
Gross Load 183		Market	201	
AAEE	-9	Wind	0	
Behind the meter DG	0	Muni	0	
Net Load	174	QF	0	
Transmission Losses	11			
Pumps	0	Total Qualifying Capacity	201	
Load + Losses + Pumps	185			

Humboldt Area: One-line diagram


Slide 6

Humboldt: Requirements

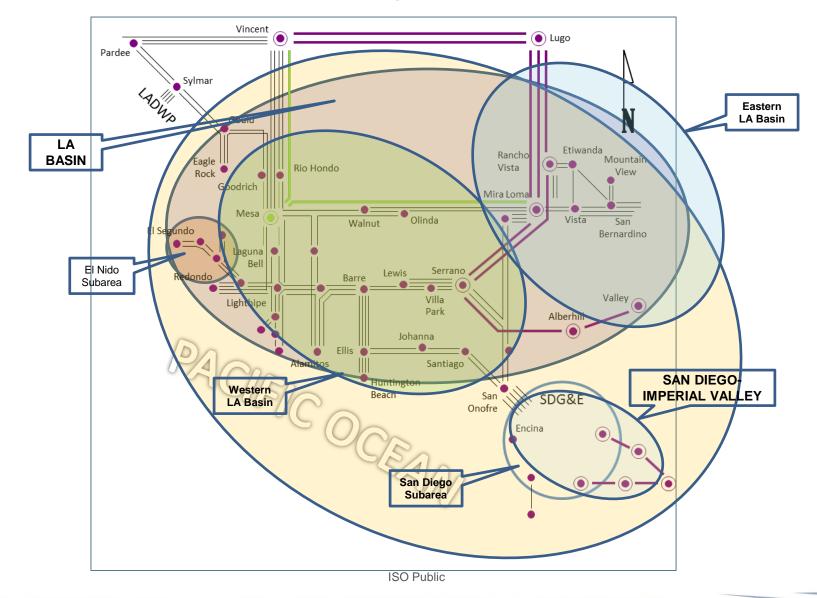
Year	Limit	Category	Limiting Facility	Contingency	LCR (MW) (Deficiency)
2028	First Limit	В	Thermal overload of Humboldt-Trinity 115 kV	Cottonwood-Bridgeville 115kV line with one of the Humboldt Bay units already out of service.	117
2028	First Limit	С	Thermal overload of Humboldt-Trinity 115 kV	Cottonwood-Bridgeville and Humboldt - Humboldt Bay 115kV line.	170

Humboldt: Load Profiles

Slide 8

Changes Compared to Previous LCR Requirements

Subaraa	2019		20	23	2028	
Subarea	Load	LCR	Load	LCR	Load	LCR
Humboldt	187	165	188	169	185	170


2028 Long-Term LCR Study Draft Results LA Basin and San Diego-Imperial Valley Areas

David Le

Senior Advisor - Regional Transmission Engineer

Stakeholder Meeting September 20 - 21, 2018

LA Basin and San Diego-Imperial Valley Areas

New Major Transmission Upgrade Assumptions

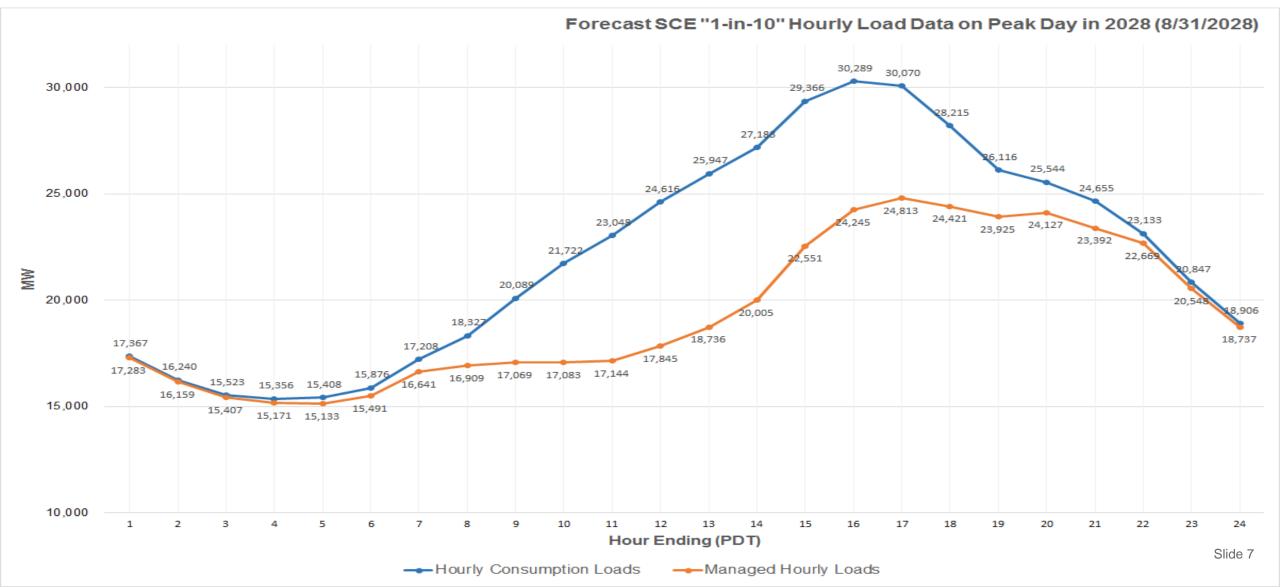
- Sycamore Penasquitos 230kV transmission line (August 2018)
- Bypassing series capacitors on the Imperial Valley North Gila 500kV line, Sunrise and Southwest Powerlinks
 - Bypassing series capacitors is not a transmission upgrade but rather a major operational procedure assumption for peak load conditions
- Synchronous condensers in southern Orange County and San Diego area (i.e., Santiago, San Onofre, Talega, San Luis Rey and Miguel Substations)
- Mesa 500/230kV loop-in project (currently anticipated March 2022 in-service date)
- Imperial Valley El Centro 230 kV ("S" line) upgrade (December 2021)

Major Resource Assumptions

- Encina generation retirement (946 MW)
- Carlsbad Energy Center (500 MW) in-service by Q4 2018 (CPUC LTPP LCR resource procurement)
- Use of the existing 20-minute demand response in the LA Basin and San Diego areas
- Implementation of 432 MW of preferred resources (i.e., battery storage, demand response, energy efficiency) via the CPUC long-term procurement plan (LTPP) for the western LA Basin LCR need
- Battery energy storage projects in San Diego area (78 MW)
- Alamitos, Huntington Beach and Redondo Beach gas-fired generation retirement (total of 3,818 MW) to comply with the State Water Board's OTC Policy
- Alamitos and Huntington Beach repowering (1,284 MW) (CPUC LTPP LCR resource procurement)
- Stanton Energy Center (98 MW) with 10 MW battery energy storage system (CPUC LTPP LCR resource procurement)

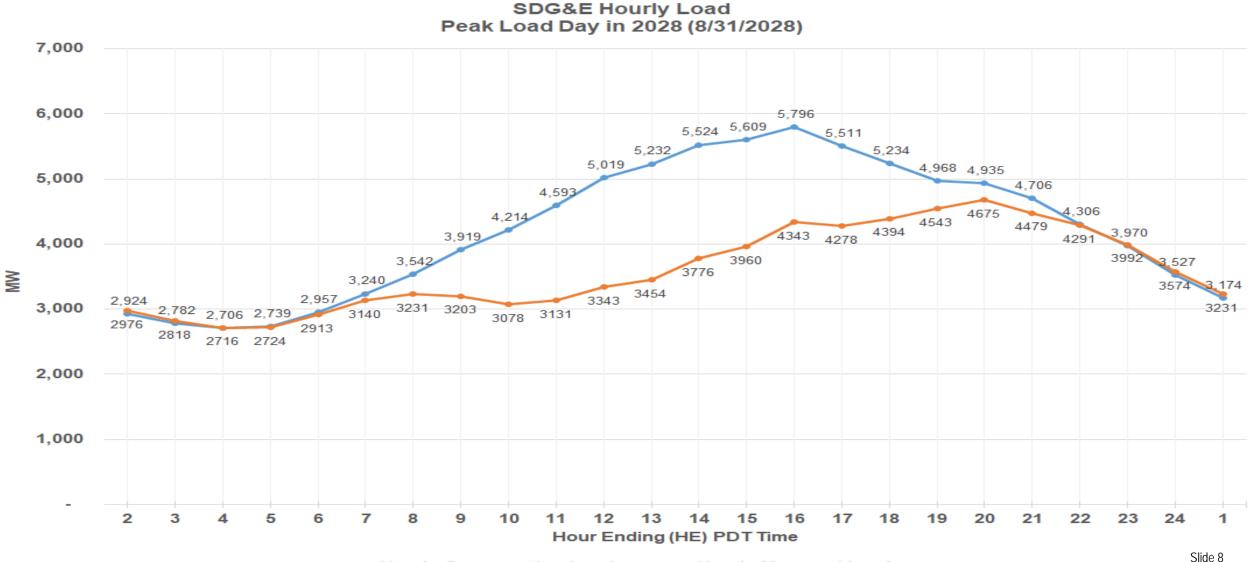
Loads and Resources LA Basin Area

	Resources (MW)		
Gross Load 23,604		5,556	
-2,145	Wind	124	
-2,207	Muni	1,164	
19,252	QF	279	
351	LTPP Preferred Resources	432	
22	Existing 20-minute Demand Response	294	
	Mothballed	435	
19,625	Total Qualifying Capacity	8,284	
	-2,145 -2,207 19,252 351 22	23,604Market-2,145Wind-2,207Muni19,252QF351LTPP Preferred Resources22Existing 20-minute Demand Response19,625Mothballed	



Loads and Resources San Diego-Imperial Valley Area

Loads (MW)		Resources (MW)	
Gross Load	5,752	Market (including solar generation)	4,299
AAEE + AAPV	-362	Wind	185
Behind the meter DG (production)	-853	Muni	0
Net Load	4,537	QF	106
Transmission Losses	134	Future preferred resource assumptions (EE, DR)	23.64
		Existing 20-Minute Demand Response	16
		Total battery energy storage procurement to date	117
Loads + Losses	4,671		
		Total Qualifying Capacity	4,747
ia ISO		ISO Public	


SCE Service Area Load Profile

Hourly demand forecast for SCE service area on the peak day in 2028 (projected 1-in-10 load based on CEC 1-in-2 load forecast profile for peak day)

SDG&E Load Profile

Hourly demand forecast for SDG&E service area on the peak day in 2028 (projected 1-in-10 load based on CEC 1-in-2 load forecast profile for peak day)

Hourly Consumption Loads Hourly Managed Loads

Estimated factors to calculate simultaneous loads between SCE and SDG&E at each other's respective peak load hours

	SCE peak demand		SDG&E @	SDG&E @ SCE peak demand		SDG&E peak demand			SCE @ SDG&E peak demand			
Year	Date/time (PDT)*	Hourly Managed Peak Demand (MW) from hourly plot	LSE/BA Table peak demand forecast (MW)**	Date/time (PDT)*	Hourly Managed Demand (MW) from hourly plot	% of own peak demand (from hourly managed demand plot)	, Date/time (PDT)*	Hourly Managed Peak Demand (MW) from hourly plot (MW)	LSE/BA Table peak demand forecast (MW)**	Date/time (PDT)*	Hourly Managed Demand from hourly plot (MW)	% of own peak demand (from hourly managed demand plot)
2028	8/31/2028 17:00 hr.	24813	24716	8/31/2028 17:00 hr.	4278	91.51%	8/31/2028 20:00 hr.	4675	4681	8/31/2028 20:00 hr.	24127	97.24%

Notes:

* All hour expressed in PDT hour ending (HE)

**Peak demand from the CEC posted 2017 CED Revised Forecast for LSE/BA Table for Mid Demand Level (1-in-10) with Low AAEE and AAPV

El Nido Subarea LCR

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)
2028	First Limit	С	Thermal loading on La Fresa-La Cienega 230kV line	La Fresa – El Nido #3 & 4 230kV lines	400 MW*^
2028	N/A	В	None	Various contingencies	No requirements
2023 (Informational)	First Limit	С	Thermal loading on La Fresa-La Cienega 230kV line	La Fresa – El Nido #3 & 4 230kV lines	439 MW**^

Notes:

*This includes LTPP-procured preferred resources (21.6 MW of behind-the-meter storage, 18.4 MW EE, 1 MW DR) and 10.4 MW of existing 20-minute DR.

**This is a corrected value which includes LTPP-procured preferred resources (21.6 MW of behind-the-meter storage, 18.4 MW EE, 1 MW DR) and 12.5 MW of existing 20-minute DR.

^All procured resources in the El Nido subarea are also used toward meeting the western LA Basin LCR need.

Western LA Basin Subarea LCR

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)
2028	First Limit		Thermal loading on the Mesa- Laguna Bell #1 230kV line	Mesa – Redondo #1 230 kV line, followed by Mesa - Lighthipe 230 kV line, or vice versa	3,912*
2028	N/A	В	None-binding	Multiple combinations possible	N/A
2023 (Informational)	First Limit	С	Thermal loading on the Mesa- Laguna Bell #1 230kV line	Mesa – Redondo #1 230 kV line, followed by Mesa - Lighthipe 230 kV line, or vice versa	3,970**

Notes:

*This includes 153.8 of existing 20-minute DR, 431.7 MW of CPUC-approved LTPP Track 4 preferred resources (i.e., DR, EE, BESS), 105 MW of PRP (DR and BESS) and 12 MW of existing BESS)

**This includes 162 MW of existing DR and 432 MW of CPUC-approved LTPP preferred resources for LCR need

Eastern LA Basin Subarea LCR

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)
2028	First Limit	С	Post-transient voltage stability	Serrano-Valley 500kV line, followed by Devers – Red Bluff 500kV #1 and 2 lines	2,678*
2028	N/A	В	None-binding	Multiple combinations possible	N/A
2023 (Informational)	First Limit	С	Post-transient voltage stability	Serrano-Valley 500kV line, followed by Devers – Red Bluff 500kV #1 and 2 lines	2,702**

Notes:

*This includes 140.6 MW of existing 20-minute demand response and 50 MW of existing BESS.

**This includes 159 MW of existing 20-minute demand response.

Combined Overall LA Basin and San Diego-Imperial Valley LCR Assessment

San Diego Subarea LCR

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)
2028	First Limit	С	Thermal loading concern on the remaining Sycamore- Suncrest 230 kV line	N-1/N-1 ECO-Miguel 500 kV line, system readjustment, followed by one of the Sycamore-Suncrest 230 kV lines	2,362*
2028	N/A	В	None-binding	Multiple combinations possible	N/A
2023 (Informational)	First Limit	С	Thermal loading concern on the remaining Sycamore- Suncrest 230 kV line	N-1/N-1 ECO-Miguel 500 kV line, system readjustment, followed by one of the Sycamore-Suncrest 230 kV lines	2,731**

Notes:

*This includes 79.5 MW of procured BESS, 16 MW existing DR MW existing DR, 4.6 MW future DR, 19 MW future EE (beyond AAEE), 77.5 MW of existing BESS

- The 2028 LCR need is projected to be lower due to curtailment of generation connected to Imperial Valley 230kV switchyard (part of the recently approved RAS for Sycamore-Suncrest 230kV lines).
- The new RAS includes curtailment of approximately total of 1,800 MW of gas-fired and renewable generation connecting to Imperial Valley and vicinity substations. This is needed to reduce loading on the identified 230kV line.

**This includes 77.5 MW of BESS

Overall San Diego – Imperial Valley Area

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)
2028	First Limit	B/C	El Centro 230/92 kV transformer thermal loading	G-1 of TDM generation, system readjustment, followed by Imperial Valley- North Gila 500kV line (N-1)	3,908 MW*
2023 (Informational)	First Limit	B/C	El Centro 230/92 kV transformer thermal loading	G-1 of TDM generation, system readjustment, followed by Imperial Valley- North Gila 500kV line (N-1)	4,132 MW**

Notes:

*This includes 79.5 MW of procured BESS, 16 MW of existing DR, 4.6 MW future DR, 19 MW future EE (beyond AAEE), 77.5 MW of existing BESS

- The 2018 ELCC/NQC for grid-connected solar generation is modeled due to unavailability of ELCC/NQC for long-term study
- Potential lower ELCC/NQC to reflect peak shift to later timeframe will affect the study results

**This includes 77.5 MW of existing BESS

Overall San Diego – Imperial Valley Total LCR

2028 LCR Need	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total LCR (MW)	
Category B (Single)	3,908	0	3,908	
Category C (Multiple)	3,908	0	3,908	

Notes:

- 2028 load forecast is higher by 127 MW compared to 2023 load forecast.
- However, LCR need is decreased by 224 MW due to addition of resources in the effective locations for the most limiting contingency.
- An important assumption is the continued use of the 2018 NQC (technology factor) for grid-connected solar generation due to unavailability of ELCC/NQC for long-term study. If this assumption changes, it will affect the LCR for the overall San Diego-Imperial Valley area.

Overall LA Basin LCR

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)
2028	First Limit	С	Mesa – Laguna Bell #1 230 kV line	N-1 of Mesa – Redondo 230 kV line, system readjustment, followed by N-1 of Mesa - Lighthipe 230 kV line out	6,590*
2028	First Limit	В	EI Centro 230/92 KV	G-1 of TDM generation, system readjustment, followed by Imperial Valley- North Gila 500kV line (N-1)	5,526 MW**
2028	Second Limit	В		G-1 of Huntington Beach CCGT, followed by N-1 of Mesa – Laguna Bell #2 230kV line	5,326 MW*
2023 (Informational)	First Limit	С	Mesa -1 aguna Rell #1 230 kV/	N-1 of Mesa – Redondo 230 kV line, system readjustment, followed by N-1 of Mesa - Lighthipe 230 kV line out	6,634***

Notes:

*This includes 294 MW of 20-minute DR, 432 MW of CPUC-approved LTPP LCR preferred resources, 62 MW of existing BESS, 45 MW PRP DR, 60 MW PRP BESS

The 2028 LCR need is lower than the need for 2023, primarily due to lower demand forecast

**This includes 294 MW of 20-minute DR, 432 MW of CPUC-approved LTPP LCR preferred resources, 62 MW of existing BESS, 45 MW PRP DR and 60 MW PRP BESS

ISO Public

***This includes 321 MW of 20-minute DR and 432 MW of CPUC-approved LTPP LCR preferred resources

Overall LA Basin LCR

2028 LCR Need	Existing Resource Capacity Needed (MW)	Deficiency (MW)	Total LCR (MW)	
Category B (Single)	5,526	0	5,526	
Category C (Multiple)	ory C (Multiple) 6,538		6,590	

Notes:

- 2028 load forecast is lower by 509 MW compared to 2023 load forecast
- LCR need has decreased by 44 MW due to lower demand forecast
- However, the LCR decrease is modest due to the following:
 - Lower LCR for the overall San Diego Imperial Valley area (achievable due to addition of resources in effective locations even with slightly higher load forecast for San Diego area)
 - Note that 2018 NQC for grid-connected solar is assumed for this study due to unavailability of ELCC/NQC for long-term study
- The available resources in the western LA Basin area are highly utilized to meet local capacity needs after retirements of oncethrough-cooled coastal gas-fired generation

Changes Compared to Previous LCR Requirements

	2019		2023		2028		
Subarea/Area	Loads + Losses (MW)	LCR* (MW)	Loads + Losses (MW)	LCR* (MW)	Loads + Losses (MW)	LCR* (MW)	Comments
El Nido Subarea	1,611	421	1,614	439	1,466	400	Lower LCR (2018) due to lower load forecast
Western LA Basin Subarea	11,635	3,993	11,681	3,970	11,141	3,912	Lower LCR due to lower load forecast; however, there are less resources dispatched in S/D area.
Eastern LA Basin Subarea	7,390	2,956	7,428	2,702	7,371	2,678	Lower LCR due to lower load forecast and implementation of new transmission project (Mesa loop-in project)
Overall LA Basin	20,075	8,116	20,072	6,793	19,625	6,590	See above comments
San Diego Subarea	4,412	2,417	4,535	2,731	4,671	2,362	Implementation of recently approved RAS
Overall San Diego-Imperial Valley Area	4,412	4,026**	4,535	4,132**	4,671	3,908**	More resources materialize in effective area

Notes:

California ISO

*Maximum value from Category C or B requirements. **Solar generation 2018 NQC values are modeled. Long-term NQC values are not yet available.

Sensitivity Assessment for the Absence of Solar Generation for Evening Peak Load Hour

Overall San Diego – Imperial Valley Area

Year	Limit	Category	Limiting Facility	Contingency	LCR	Deficiency
2028	First Limit (No Solar)	B/C	El Centro 230/92 kV transformer thermal loading	G-1 of TDM generation, system readjustment, followed by Imperial Valley-North Gila 500kV line (N-1)	4,110 MW*	-133 MW*
2028	First Limit (No Solar)	B/C	El Centro 230/92 kV transformer thermal loading	G-1 of TDM generation, system readjustment, followed by Imperial Valley-North Gila 500kV line (N-1)	3,977 MW**	0 MW
2028	First Limit (Solar modeled at 2018 NQC)	B/C	EI Centro 230/92 kV transformer thermal loading	G-1 of TDM generation, system readjustment, followed by Imperial Valley-North Gila 500kV line (N-1)	3,908 MW*	0 MW

Notes:

*This includes 79.5 MW of procured BESS, 16 MW of existing DR, 4.6 MW future DR, 19 MW future EE (beyond AAEE), 77.5 MW of existing BESS and 133 MW of deficient resources at effective location in San Diego – Imperial Valley area

A total of 893 MW of preferred resources (i.e., DR, EE, BESS) in the LA Basin was also utilized for mitigating this thermal loading concern

**Additional LA Basin resources (284 MW), in addition to 893 MW of preferred resources, were dispatched to help mitigating resource deficiency for the San Diego-Imperial Valley area

Overall LA Basin LCR

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)
2028	First Limit (No Solar)	B/C	El Centro 230/92 kV transformer thermal loading	G-1 of TDM generation, system readjustment, followed by Imperial Valley- North Gila 500kV line (N-1)	6,874 MW*

Notes:

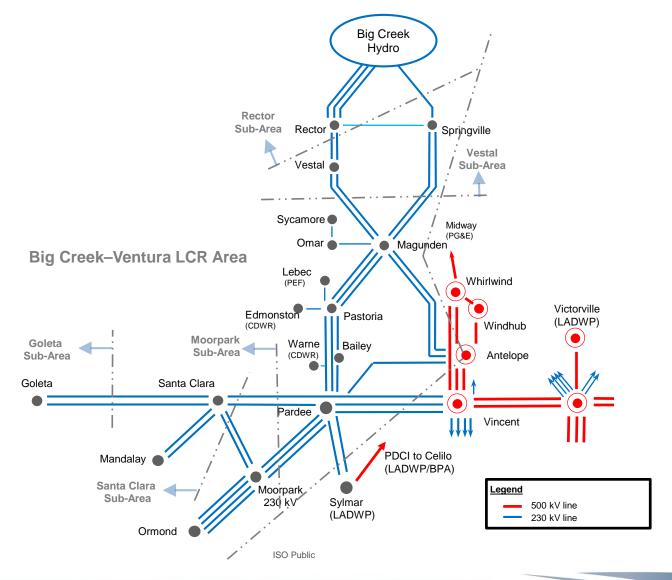
- *This includes 294 MW of 20-minute DR, 432 MW of CPUC-approved LTPP LCR preferred resources, 62 MW of existing BESS, 45 MW PRP DR, 60 MW PRP BESS.
- The additional resources in the LA Basin are dispatched to provide mitigation to cure deficiency for the San Diego-Imperial Valley area under the "No Solar" scenario for peak load shifting to evening timeframe (i.e., 8 p.m.).

THANK YOU

Your comments and questions are welcome.

For written comments, please send to: <u>RegionalTransmission@caiso.com</u>

2028 Long-Term LCR Study Draft Results Big Creek – Ventura Area


Nebiyu Yimer

Regional Transmission Engineer Lead

Stakeholder Meeting

September 20-21, 2018

Bic Creek - Ventura Area Transmission System

New major transmission projects

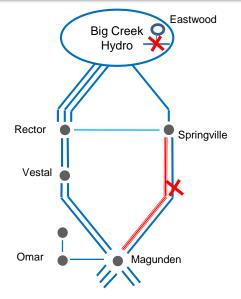
- Big Creek Corridor Rating Increase Project
- Pardee-Moorpark No. 4 230 kV Transmission Project

Resource Assumptions

- Mandalay, Ormond Beach and Ellwood retired (total of 2100 MW)
- The Las Flores Canyon Cogeneration Facility (EXGEN) has been OOS since 2015 and is assumed to be unavailable.

Load and Resources

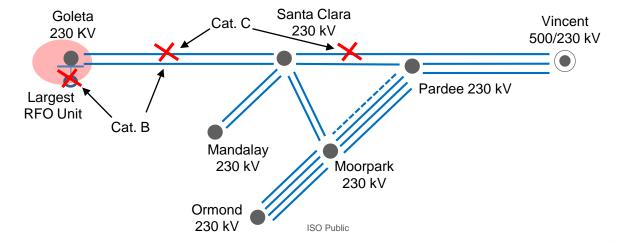
Load (MW)		Generation (MW)	
Gross Load	5456	Market	2975
AAEE	-301	Pref. Res & ES	112
Behind the meter DG	-609	Muni	372
Net Load	4547	QF	52
Transmission Losses	105		
Pumps	379	Total Qualifying Capacity	3511
Load + Losses + Pumps	5031		


Rector Sub-Area Requirements

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)		
2028	028 LCR for Rector is satisfied by the LCR of the larger Vestal sub-area						

Vestal Sub-Area Requirements

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)
2028	First Limit		#2 230 kV line	Magunden–Springville #1 230 kV line with Eastwood out of service	465
2028	Second Limit		μ =	One Magunden–Vestal 230 kV line with Eastwood out of service	453

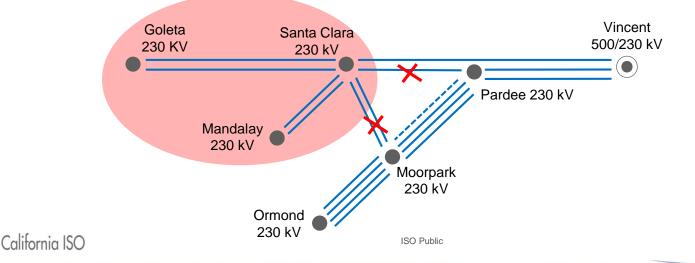


ISO Public

Goleta Sub-Area Requirements

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)
2028	First Limit	В	voltage)	Santa Clara–Goleta 230 kV line with largest resource at Goleta out of service	32 MW plus largest resource at Goleta ⁽¹⁾
2028	First Limit	С	Goleta 230 KV bus (LOW	Overlapping outage of Santa Clara–Goleta and Vincent– Santa Clara 230 kV lines ⁽²⁾	42 MW ⁽¹⁾

- (1) Generic resources with reactive capability are assumed at Goleta to meet the local capacity deficiency.
- (2) The worst TPL 001-4 (Category P6) contingency is overlapping outage of Santa Clara shunt capacitor and the Santa Clara–Goleta 230 kV line. This would require 67 MW of local capacity. However, this contingency is not an LCR criteria contingency.



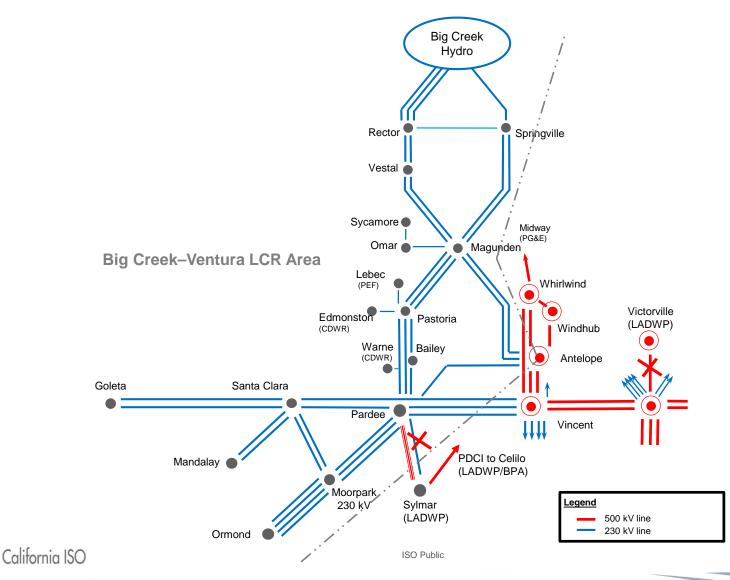
Santa Clara Sub-Area Requirements

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)
2028	First Limit	В	None	None	No requirement
2028	First Limit	D		Pardee–Santa Clara 230 kV line followed by Moorpark–Santa Clara #1 and #2 230 kV DCTL	318 ⁽¹⁾

(1) 120 MW of generic resources with reactive capability are assumed at Goleta to meet the local capacity deficiency. For locational and reactive power effectiveness information, see http://www.caiso.com/Documents/2023LocalCapacityTechnicalAnalysisfortheSantaClaraSub-Area.pdf

Moorpark Sub-Area Requirements

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)		
2028	No requ	No requirement due to the Pardee–Moorpark No. 4 230 kV Transmission Project					



Overall Big Creek-Ventura Area Requirements

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)
2028	First Limit	ĸ	3 Jimal-Paralee #1 of #2	One Sylmar–Pardee 230 kV line with Pastoria combined cycle module out of service.	2,095
2028	First Limit		Sylmar-Pardee #1 or #2	Overlapping outage of Lugo– Victorville 500 kV line and one Sylmar–Pardee 230 kV line	2,251

Overall Big Creek-Ventura Area Constraints

~


Slide 12

Big Creek Area Total LCR Need

2028 LCR Need	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW Need
Category B (Single)	2,095	0	2,095
Category C (Multiple)	2,131	120	2,251

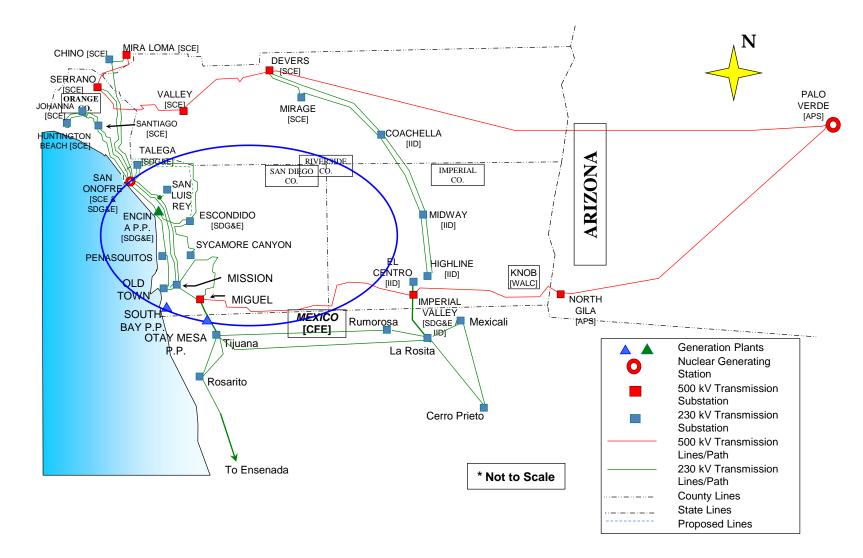
2028 SCE Area Load Profile (CEC)

2028 Peak LCA and Sub-Area Load, MW (includes losses)							
Rector Vestal Goleta Santa Clara Moorpark BCV							
834	1,352	308	875	1,754	5,031		

ISO Public

Changes Compared to Previous LCR Results

	20	19	202	23	2	028	Reason for LCR
Sub-Area	Load (MW)	LCR (MW)	Load (MW)	LCR (MW)	Load (MW)	LCR (MW)	Change
Rector	900	N/A	887	N/A	834	N/A	N/A
Vestal	1520	621	1481	621	1352	465	Load decrease
Goleta	360	N/A	346	N/A	308	Larger of 42 MW or 32 MW plus largest RFO unit	New sub-area
Santa Clara	864	237	927	295-316	875	318	Reactive power representation of generic DG resources
Moorpark	1740	433	1768	0	1754	0	Pardee–Moorpark Project
Overall Big Creek Ventura	5162	2,614	5169	2,690	5031	2251	Load decrease and other system changes


2028 Long-Term LCR Study Draft Results San Diego-Imperial Valley Non-Bulk Subareas

Meng Zhang Senior Regional Transmission Engineer

Stakeholder Meeting

September 20 - 21, 2018

San Diego-Imperial Valley LCR Area

California ISO

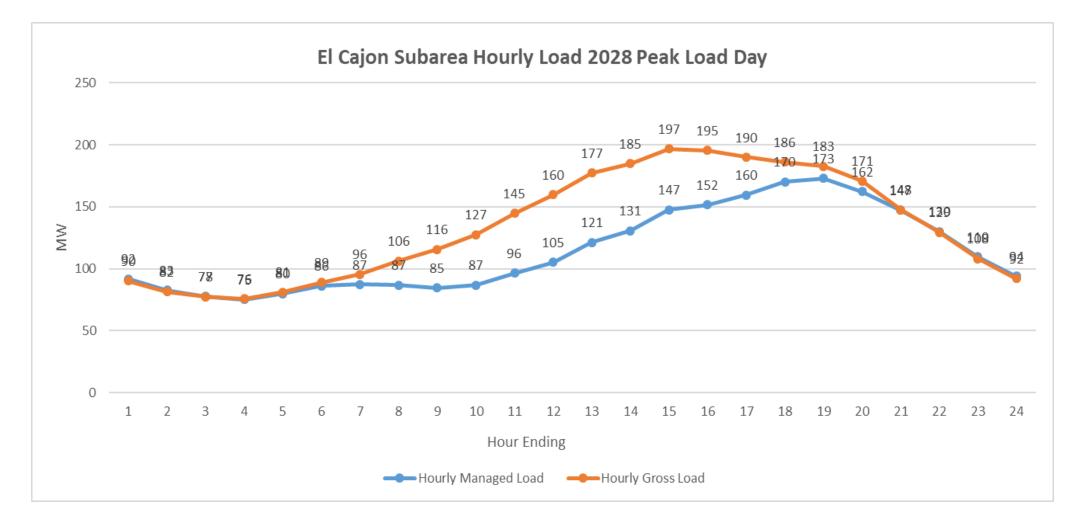
New Major Transmission Upgrade Assumptions

- 1. Ocean Ranch 69 kV substation
- 3. Mesa Height TL600 Loop-in
- 4. Re-conductor of Mission-Mesa Heights 69 kV
- 4. Re-conductor of Kearny-Mission 69 kV line
- 5. TL6906 Mesa Rim rearrangement
- 6. Upgrade Bernardo Rancho Carmel 69kV line
- 7. Re-conductor of Japanes Mesa–Basilone–Talega Tap 69 kV lines
- 8. 2nd Miguel–Bay Boulevard 230 kV line
- 9. Sycamore–Penasquitos 230kV line
- 10. 2nd Mission 230/69 kV bank
- 11. Suncrest SVC project
- 12. By-passing 500 kV series capacitor banks on SWPL and SPL
- 13. Encina generation retirement
- 14. Carlsbad Energy Center (5x100 MW)
- 15. Battery energy storage projects (total of 78 MW)

Continued...

- 16. TL632 Granite loop-in and TL6914 reconfiguration
- 17. 2nd San Marcos-Escondido 69kV line
- 18. Reconductor of Stuart Tap–Las Pulgas 69 kV line (TL690E)
- 19. 2nd Poway–Pomerado 69 kV line
- 20. Artesian 230 kV expansion with 69kV upgrade
- 21. South Orange County Reliability Enhancement
- 22. Imperial Valley bank #80 replacement

Subareas Studied:


El Cajon sub-area Esco sub-area Pala sub-area Border sub-area Mission sub-area Miramar sub-area

El Cajon Subarea Loads and Resources

Loads (MW)		Resources (MW)		
Gross Load	177	Market (including solar generation)	93.52	
AAEE + AAPV	-6	Wind	С	
Behind the meter DG (production)	0	Muni	(
Net Load	171	QF	(
Transmission Losses	2	Future preferred resource assumptions (EE, DR)	2.5	
		Existing 20-Minute Demand Response	4.28	
		Total battery energy storage procurement to date	7.	
Loads + Losses	173			
		Total Qualifying Capacity	107.8	
nia ISO		ISO Public		

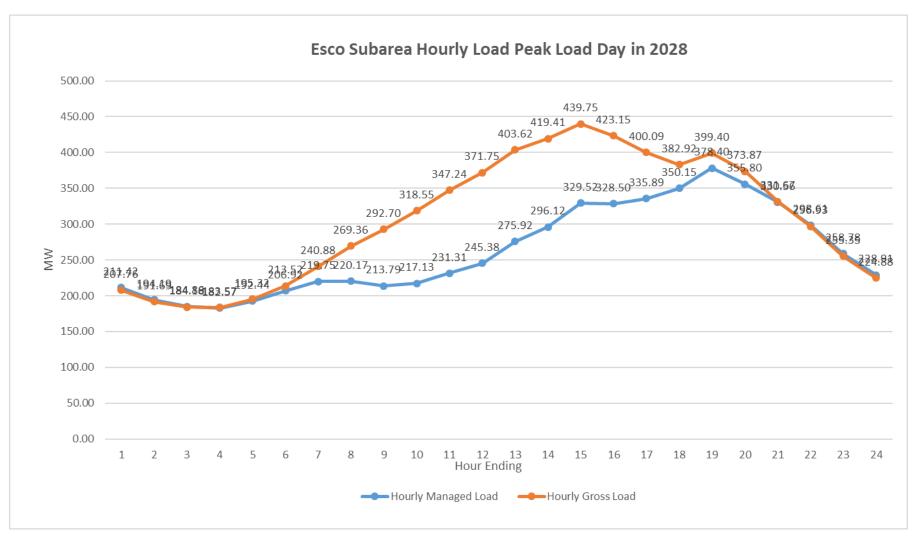
El Cajon Subarea Load Profile

California ISO

ISO Public

El Cajon Subarea LCR

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)
2028	First Limit		El Cajon-Los Coches 69kV line (TL631)	Granite-Los Coches 69kV Nos.1&2 lines	76MW
2023 (Informational)	First Limit		El Cajon-Los Coches 69kV line (TL631)	Granite-Los Coches 69kV Nos.1&2 lines	35MW



Esco Subarea Loads and Resources

Loads (MW)		Resources (MW)		
Gross Load	399.2	Market (including solar generation)	133.12	
AAEE + AAPV	-21.8	Wind	0	
Behind the meter DG (production)	0	Muni	0	
Net Load	377.4	QF	0	
Transmission Losses	1	Future preferred resource assumptions (EE, DR)	1.08	
		Existing 20-Minute Demand Response	2.14	
		Total battery energy storage procurement to date	70	
Loads + Losses	378.4	Total Qualifying Capacity	206.34	

Esco Subarea Load Profile

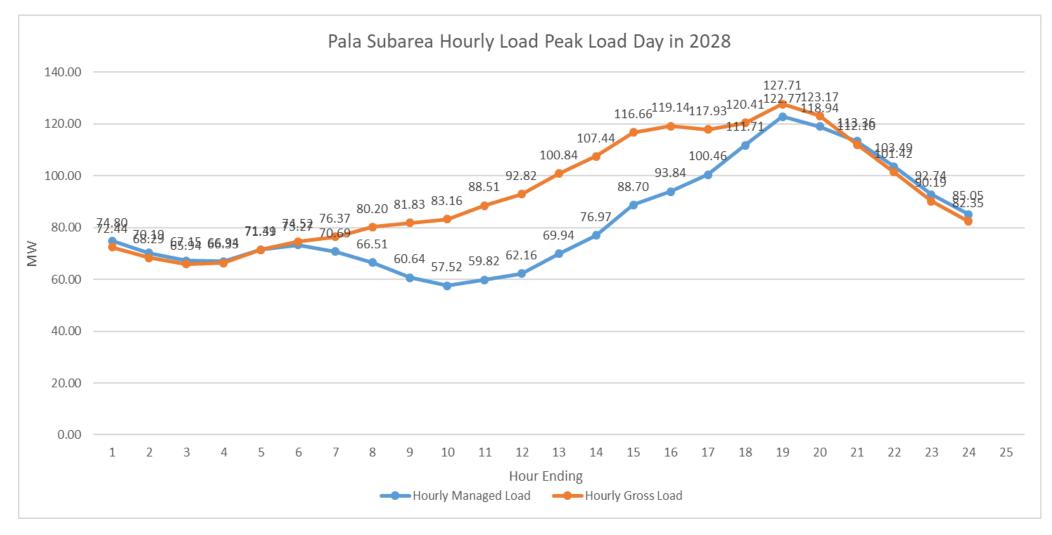
ISO Public

Esco Subarea LCR

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)
2028	None	N/A	None	None	0*
2023 (Informational)	First Limit	С	The remaining Sycamore- Pomerado 69kV line	One of the two Sycamore-Pomerado 69kV lines (TK6915 or TL6924) and Artesian 230/69kV bank	20MW

Notes:

* All three Palomar units are on-line in 2028 LCR case. If only one unit is on-line (same as assumption as 2023 LCR study), the LCR requirement would be 80MW.



Pala Subarea Loads and Resources

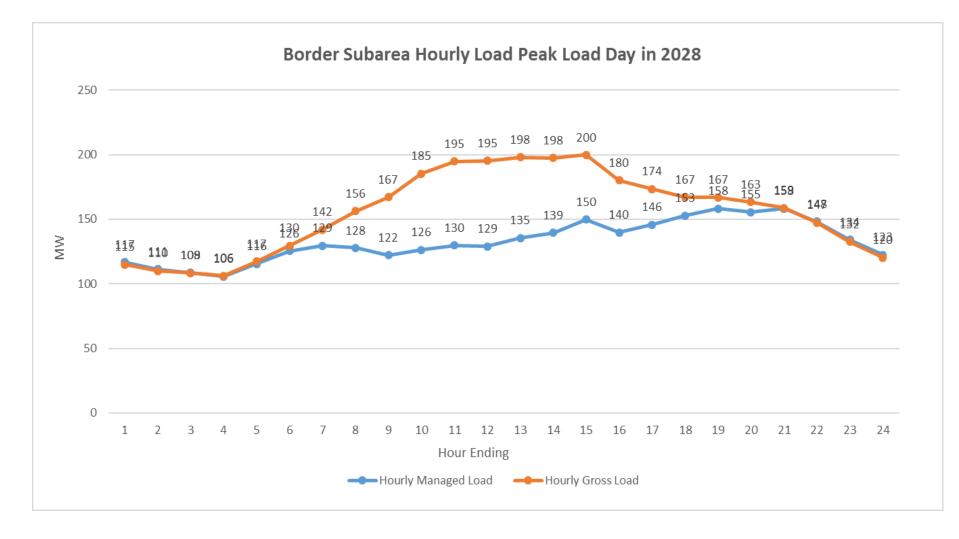
Loads (MW)		Resources (MW)		
Gross Load	128.92	128.92 Market (including solar generation)		
AAEE + AAPV	-7.84	Wind	0	
Behind the meter DG (production)	0	Muni	0	
Net Load	121.08	QF	0	
Transmission Losses	1.69	Future preferred resource assumptions (EE, DR)	0	
		Existing 20-Minute Demand Response	0	
		Total battery energy storage procurement to date	0	
Loads + Losses	122.77	Total Qualifying Capacity	100.04	

Pala Subarea Load Profile

ISO Public

Pala Subarea LCR

Year	Limit	Category Limiting Facility Contingency		Contingency	LCR (MW)
2028	First Limit	С	Melrose-Morro Hill Tap- Monstrate 69kV line (TL694)	Pendleton-San Luis Rey 69kV (TL6912) and Lilac-Pala 69kV (TL698) lines	26
2023 (Informational)	First Limit	С	Melrose-Morro Hill Tap 69kV line (TL694)	Pendleton-San Luis Rey 69kV (TL6912) and Lilac-Pala 69kV (TL6908) lines	10



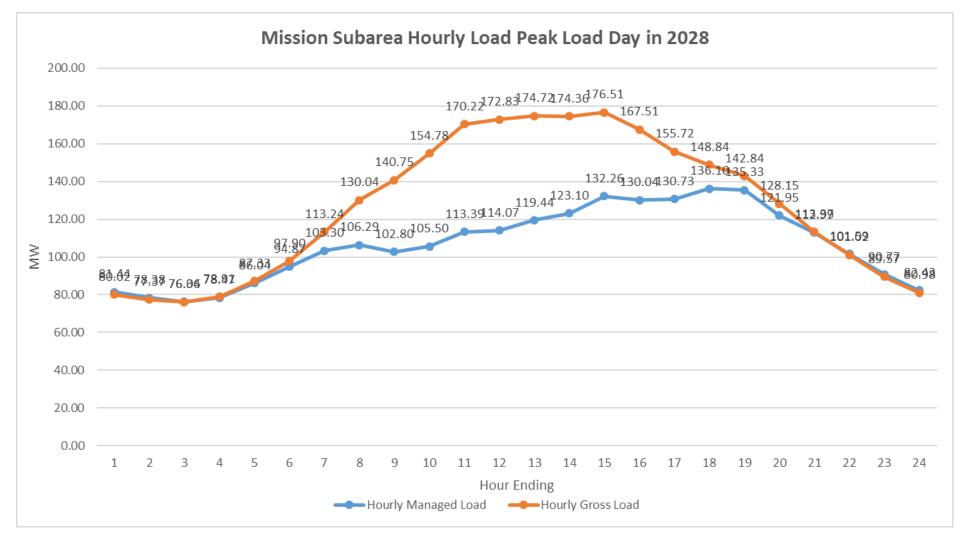
Border Subarea Loads and Resources

Loads (MW)		Resources (MW)		
Gross Load	175.14	Market (including solar generation)	177.66	
AAEE + AAPV	-17.3	Wind	0	
Behind the meter DG (production)	0	Muni	0	
Net Load	157.84	QF	1.78	
Transmission Losses	0.46	Future preferred resource assumptions (EE, DR)	0	
		Existing 20-Minute Demand Response	0	
		Total battery energy storage procurement to date	0	
Loads + Losses	158.3	Total Qualifying Capacity	179.44	

Border Subarea Load Profile

Border Subarea LCR

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)
2028	First Limit	С		Loss of Bay Boulevard-Otay 69kV Nos.1&2 lines (TL645 and TL646)	70
2028	First Limit	В	Otay-Otay Lake Tap 69kV line (TL649)	Miguel-Salt Creek 69kV line (TL6964)	14
2023 (Informational)	First Limit	С	· ·	Loss of Bay Boulevard-Otay 69kV Nos.1&2 lines (TL645 and TL646)	108



Mission Subarea Loads and Resources

Loads (MW)		Resources (MW)		
Gross Load	146.72	Market (including solar generation)	4.42	
AAEE + AAPV	-10.67	Wind	0	
Behind the meter DG (production)	0	Muni	0	
Net Load	136.05	QF	0	
Transmission Losses	0.05	Future preferred resource assumptions (EE, DR)	0	
		Existing 20-Minute Demand Response	0	
		Total battery energy storage procurement to date	0	
Loads + Losses	136.1			
		Total Qualifying Capacity	4.42	

California ISO

Mission Subarea Load Profile

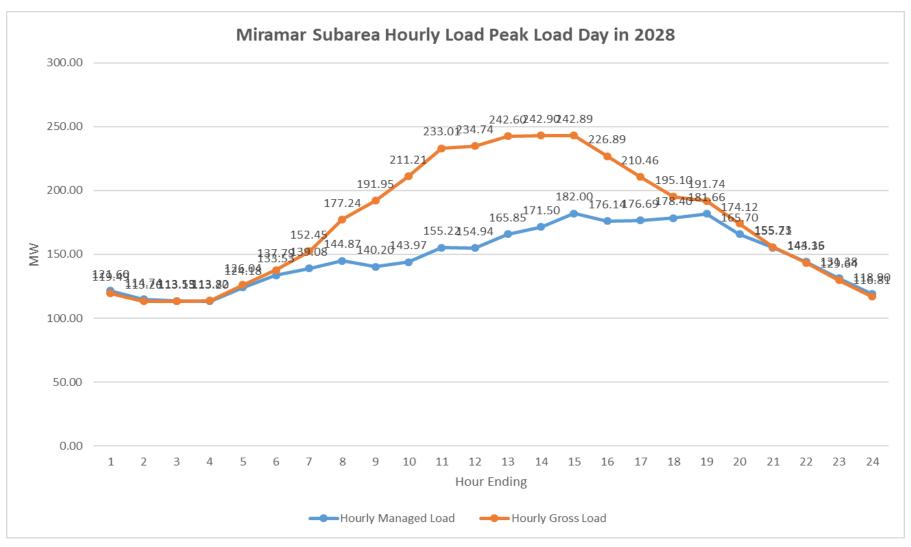
Slide 19

Mission Subarea LCR

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)
2028	None	N/A	None	None	0*
2023 (Informational)	None	N/A	None	None	0*

Notes:

*LCR need for the Mission subarea is eliminated with the completions of the TL600 Mesa Heights 69kV loop-in and the TL676 Mission-Mesa Heights 69kV reconductoring project



Miramar Subarea Loads and Resources

Loads (MW)		Resources (MW)		
Gross Load	196.4	Market (including solar generation)	95.9	
AAEE + AAPV	-15.1	Wind	0	
Behind the meter DG (production)	0	Muni	0	
Net Load	181.3	QF	0	
Transmission Losses	0.7	Future preferred resource assumptions (EE, DR)	1.08	
		Existing 20-Minute Demand Response	2.14	
		Total battery energy storage procurement to date	0	
Loads + Losses	182.0	Total Qualifying Capacity	99.12	

California ISO

Miramar Subarea Load Profile

ISO Public

Miramar Subarea LCR

Year	Limit	Category	Limiting Facility	Contingency	LCR (MW)
2028	None	N/A	None	None	0*
2023 (Informational)	None	N/A	None	None	0*

Notes:

*LCR need for the Miramar subarea is eliminated with the addition of the Sycamore-Penasquitos 230kV line

Changes Compared to Previous LCR Requirements

Subarea	2019		2023		2028	
Subarea	Load	LCR	Load	LCR	Load	LCR
El Cajon	158	88	158	35	173	76
Esco	324	0	360	20	378	0
Pala	101	10	103	10	123	26
Border	168	100	178	108	158	70
Mission	145	0	145	0	136	0
Miramar	179	0	183	0	182	0
Overall	1045	198	1127	173	1150	172

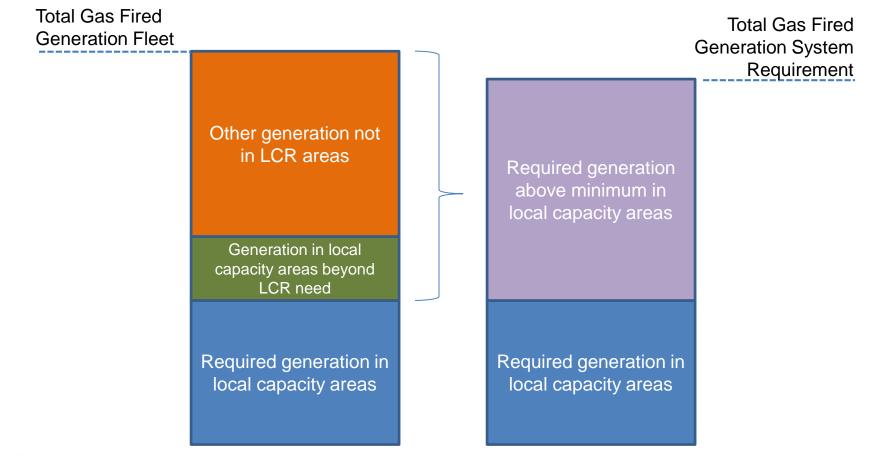
THANK YOU

Your comments and questions are welcome.

For written comments, please send to: <u>RegionalTransmission@caiso.com</u>

Economically valuing local resource adequacy capacity requirements in local capacity areas

Jeff Billinton Manager, Regional Transmission - North


2018-2019 Transmission Planning Process Stakeholder Meeting September 20-21, 2018

The ISO wants to revisit how to assess the capacity value of local capacity requirement reductions

- The ISO is reviewing potential alternatives as means to reduce or eliminate local capacity requirements as potential economic driven projects
 - Note that there is no specific policy framework driving these reductions at this time
- Given the role certain generation can play in providing system, flexible, and local capacity, careful consideration needs to be given to valuing – as an economic driver – a potential reduction in local capacity requirements, e.g.:
 - Does reducing local capacity requirements truly benefit ratepayers if the generation is required for system purposes in any event?
 - Is the "lowest cost" local capacity the best value if higher cost local capacity can also provide flexible capacity?

System requirements more than surpass local requirements, so is the generation providing the "best" value being retained if local requirements are reduced?

A number of concepts are being considered for the economic benefit of local capacity requirement reductions

- A price differential between system and local capacity may be the appropriate value to consider if the local capacity area has a surplus of resources in the area and there is a reasonable level of competition in selling local RA capacity
- The full cost of service of the resource may be the appropriate cost comparison if there is only one (newer) generator in the area, and essentially no competition for providing local RA capacity
- The CPM soft offer cap may be appropriate if there is only one older unit in the area that is heavily depreciated
- If there are a number of generators in an area, but they are ALL required to meet the local capacity requirement, the situation becomes even more complex. Sensitivities can help understand the situation, but not necessarily help inform a defensible decision

Other considerations

- Possible data sources:
 - Would the CPUC's weighted average price for local, non-CPM/RMR capacity
 - Known (filed) RMR and CPM costs?
- "Supply" curves in each area would require resource specific contract information could proxies suffice?
- Note the 2017-2018 planning decisions are not informative – the benefits in the two cases in that cycle were overwhelming, even if heavily discounted

At this time...for the 2018-2019 cycle:

- The ISO is looking for feedback on the methodologies to value local capacity reductions – input will be considered in preliminary results that will be discussed in November
- The evaluation of alternatives in this cycle is useful regardless of "economic driven" decision-making outcomes, to potentially inform future policy decisions or improve preparedness for generation retirements
- We will need to consider the other factors beyond local area cost/benefit comparisons
 - The ISO is updating its previous analysis regarding reliance on the existing gas-fired generation fleet for system and flexible needs

Informational Study: Increased Capabilities for Transfers of Low Carbon Electricity between the Pacific Northwest and California

Ebrahim Rahimi Lead Regional Transmission Engineer

2018-2019 Transmission Planning Process Stakeholder Meeting September 20-21, 2018 Background and Objective:

- CEC and CPUC issued a letter to CAISO^{*} requesting evaluation of options to increase transfer of low carbon electricity between the Pacific Northwest and California
- The request included an assessment of the role the AC and DC interties can play in displacing generation whose reliability is tied to Aliso Canyon
- An informational special study was included in the 2018-2019 transmission planning cycle

^{* &}lt;u>http://www.caiso.com/Documents/CPUCandCECLettertoISO-Feb152018.pdf</u>

Study Plan

- Draft Study Plan posted on April 12, 2018
- Stakeholder call on Draft Study ۲ Plan on April 18
- Stakeholder comments submitted by April 25
- Final Study Scope posted on ۲ May 23

http://www.caiso.com/Documents/FinalStudyScopeforTransfersbetw eenPacificNorthwestandCalifornia.pdf

2018-2019 Transmission Planning Process

Study Scope for

Increased Capabilities for Transfers of Low Carbon Electricity between the Pacific Northwest and California Informational Study

May 23, 2018

Final

ISO Market and Infrastructure Development Division

May 23, 2018

- To evaluate the impact of the following on Increased Capabilities for Transfers of Low Carbon Electricity between the Pacific Northwest and California:
 - Increase transfer capacity of AC and DC interties
 - Increase dynamic transfer limit (DTC) on COI
 - Implementing sub-hourly scheduling on PDCI
 - Assigning RA value to firm zero-carbon imports or transfers

Near-term and Long-term Assessments

- Near-term assessment (year 2023)
 - To assess the potential to maximize the utilization of existing system
 - Identify minor upgrades that may be required
- Longer-term assessment (year 2028)
 - To use production simulation to assess the potential benefits of increased transfer capabilities
 - If production simulation results determine that higher capacity on AC and DC interties are beneficial beyond existing path ratings, snapshots to test alternatives to increase the capability will be developed
 - Effective hydro modeling is critical to the study

Increase transfer capacity of AC and DC interties in Near-term

- In the North to South direction the objective is to test COI flow at 5,100 MW under favorable conditions in the following scenarios:
 - Energy transfer in Summer late afternoon
 - Resource shaping in Spring late afternoon
- In the South to North direction the objective is to test PDCI flow at 1,500 MW or higher. PDCI is currently operationally limited to around 1000 MW in the S-N direction.
 - Energy transfer in Fall late afternoon
 - Resource shaping in Spring mid-day

Increase transfer capacity of AC and DC interties Longer-Term Assessment

- Hydro Assumptions in Production Simulation Model
 - WECC Anchor Data Set (ADS) will be used for the production simulation analysis
 - ABB Gridview software
 - Hydro assumptions in ADS are based on historical hydro output from 2008/2009
 - Outreach with the Planning Regions and the hydro owners to review modeling and make updates as required
 - The ISO will receive information on typical, high, and low hydro scenarios from NWPCC and BPA
 - Gridview study with updated hydro assumptions will provide an insight to potential benefits of higher intertie capacity in the long term

Increase DTC on COI and Sub-hourly scheduling on PDCI

- The DTC on NWACI has increased from 400 MW to 600 MW effective 7/1/2018^{*}.
 - The CAISO will assess the benefits to California system of going beyond 600 MW and any potential requirements on the ISO controlled grid.
- The LADWP and BPA are evaluating the feasibility and requirements of implementing sub-hurly scheduling (15-minute scheduling) on PDCI
 - The CAISO will assess the benefits to California system of PDCI 15-minute scheduling and any potential requirements on the ISO controlled grid.

https://www.bpa.gov/transmission/Doing%20Business/bp/Redlines/Redline-DTC-Operating-Scheduling-Reqs-BP-V08.pdf

Assigning RA value to firm zero-carbon imports or transfers

- Historical Maximum Import Capability (MIC) allocation to COI and PDCI to be compared with historical monthly RA showings.
- Comparison of Real time flows on COI and PDCI with MIC allocation and RA showings.

Next Steps

- November 16 stakeholder meeting
 - Provide preliminary study results for near-term assessment
 - Provide preliminary production simulation results for longer-term assessment
- January 31, 2019 post draft Transmission Plan
 - Detailed analysis and potential alternatives
- February 7, 2019 stakeholder meeting on draft Transmission Plan

Day 2 - Wrap-up Reliability Assessment and Study Updates

Jody Cross Stakeholder Engagement and Policy Specialist

2018-2019 Transmission Planning Process Stakeholder Meeting September 20-21, 2018

Request Window Submissions for Reliability Assessment

- Request Window closes October 15
 - Request Window is for alternatives in the reliability assessment
 - Stakeholders requested to submit comments to: requestwindow@caiso.com
 - ISO will post Request Window submission on the market participant portal

Stakeholder Comments

- Stakeholder comments to be submitted by October 5
 - Stakeholder comments are to include potential alternatives for economic LCR assessment
 - Stakeholders requested to submit comments to: regionaltransmission@caiso.com
 - Stakeholder comments are to be submitted within two weeks after stakeholder meetings
 - ISO will post comments and responses on website

