

PG&E's 2019 Request Window Proposals

CAISO 2019-2020 Transmission Planning Process

September 26, 2019

Seven Projects Seeking CAISO Approval:

Yosemite/Fresno

- Borden 230/70 kV Transformer Bank #1 Capacity Increase
- Wilson-Oro Loma 115 kV Line Reconductoring

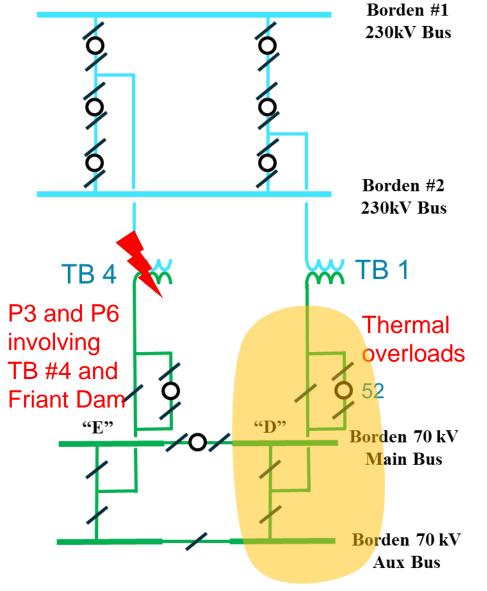
Stockton

• Bellota 230 kV Bus Upgrade

Greater Bay Area

- East Shore 230 kV Bus Terminals Reconfiguration
- Newark 230/115 kV Transformer Bank #7 Circuit Breaker Addition
- Northern Oakland Area Reinforcement

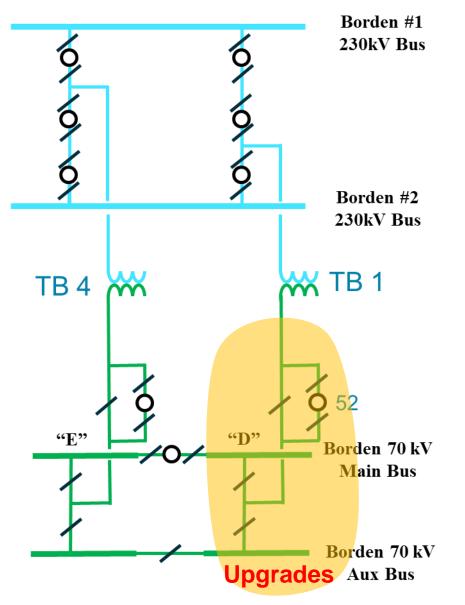
North Coast/North Bay


• Tulucay-Napa #2 60 kV Line Capacity Increase

BORDEN 230/70 KV TRANSFORMER BANK #1 CAPACITY INCREASE

Area Background

- Borden substation serves as the main source of power for City of Madera and its surrounding areas.
 Friant Dam Power Plant serves as another source for this area.
- 200 MVA (Normal) / 220 MVA (Emergency) for both Borden 230/70 kV transformers.
- Several limiting elements exist for TB #1, including section "D" of the 70 kV bus and bank breaker etc.
- TB #1 is currently rated as 114 MVA (Normal) /141 MVA (Emergency) in base line models.


Contingency Description:

- P3: Friant Dam Gen Unit 2 and Borden 230/70 kV TB4
- P6: Borden 230/70 kV TB4 and Friant-Coppermine 70 kV line

Fresno Peak			Pre-Project		Post-Project	Contingency		
Facility	Rating* (MVA)	2021	2024	2029	2029	Category	Contingency Name	
Borden 230/70 kV Transformer Bank 1	141	105.7%	110.9%	107.7%	69.0%	P3	Friant Dam 6.60kV Gen Unit 2 & Borden 230/70kV TB 4	
Borden 230/70 kV Transformer Bank 1	141	110.4%	115.6%	112.5%	72.1%	P6	Borden 230/70kV TB 4 & Friant - Coppermine 70kV	

Power Flow Results:

Preferred Scope

- Upgrade breaker CB 52 and associated switches to match the Transformer Bank 1's full capacity
- Upgrade Borden 70 kV bus section "D" to match the Transformer Bank 1's full capacity

Proposed In-Service Date

• Jan. 2025

Estimated Cost

• \$11.5 M - \$23 M*

Other Alternatives Considered

- Status Quo
- Energy storage

*AACE Level 5 quality estimates includes a +100% contingency



WILSON-ORO LOMA 115 KV LINE RECONDUCTORING

Area Background

- 120 MW in this pocket
- Panoche-Oro Loma 115 kV Line and Wilson-Oro Loma 115 kV Line serve as the sources.
- Panoche substation serves as the main source in base line cases.

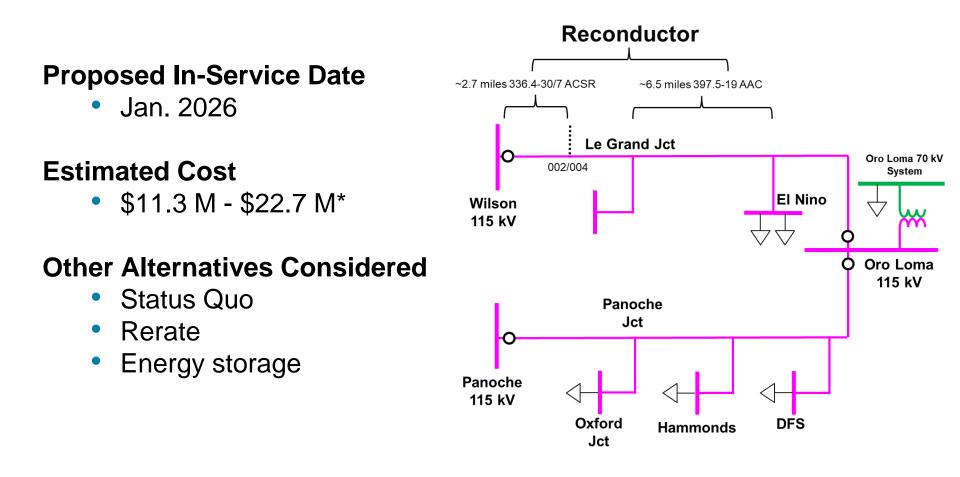
Assessment Results

Contingency Description:

• P2-1: Opening the Panoche end of Panoche-Oro Loma line without a fault such that all the loads are served by Wilson-Oro Loma 115 kV line from a single source point.

Power Flow Results:

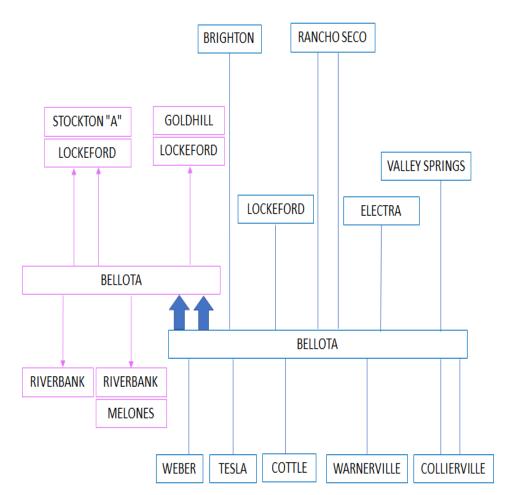
Fresno Pe		Pre-Project		Post-Project	Contingency		
Facility	Rating* (A)	2021	2024	2029	2029	Category	Contingency Name
Wilson – Oro Loma 115 kV Line (Wilson- 008/002)	512	107.7%	111.6%	123.6%	82.4%	P2-1	Panoche – Oro Loma 115 kV
Wilson – Oro Loma 115 kV Line (008/002-EL NIDO)	514	107.2%	111.2%	123.2%	82.4%	P2-1	Panoche – Oro Loma 115 kV
Wilson – Oro Loma 115 kV Line (Wilson- 008/002)	512	107.7%	111.6%	123.5%	82.3%	P2-2	Panoche 2 115kV Section 2D
Wilson – Oro Loma 115 kV Line (008/002-EL NIDO)	514	107.3%	111.1%	123.1%	82.3%	P2-2	Panoche 2 115kV Section 2D
Wilson – Oro Loma 115 kV Line (Wilson- 008/002)	512	107.6%	111.6%	124.3%	82.7%	P2-4	Panoche 1 Section 1D & Panoche 2 Section 2D 115kV
Wilson – Oro Loma 115 kV Line (008/002-EL NIDO)	514	107.2%	111.2%	123.9%	82.7%	P2-4	Panoche 1 Section 1D & Panoche 2 Section 2D 115kV


Proposed Project

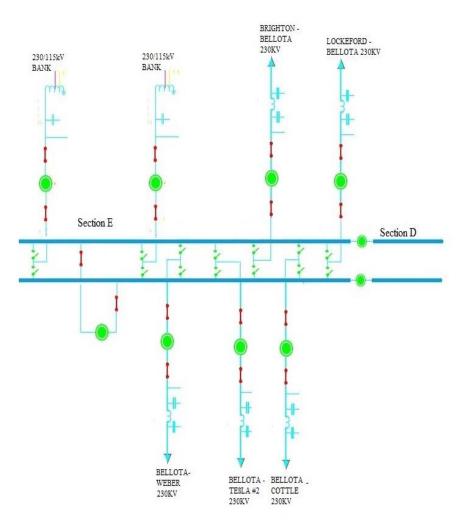
Preferred Scope

- Reconductor ~9 circuit miles between Wilson and El Nido Substation (Wilson-002/004 section and 008/002-El Nido section) on the Wilson-Oro Loma 115 kV Line with larger conductor to achieve at least 650 Amps of summer emergency rating (preferably 715.5-37 AAC conductor).
- Remove any other limiting elements

Begin Point	WILSON	002/004	008/002
End Point	002/004	008/002	EL NIDO
Conductor	336.4-30/7,ACSR	715.5-37,AAC	397.5-19,AAC
ET Conductor Grouping	SINGLE	SINGLE	SINGLE
Conductor Loading Zone	Ν	N	Ν
Normal Wind Speed	2	2	2
Emergency Wind Speed	2	2	2
Section Length (in Miles)	2.72	5.53	6.51

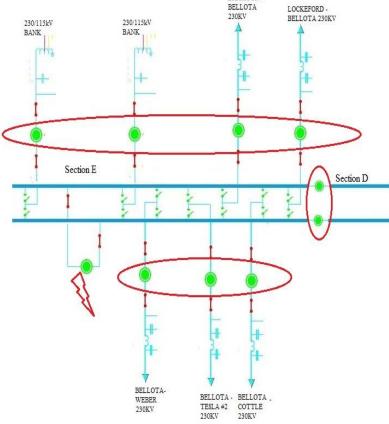


BELLOTA 230 KV BUS UPGRADE


- Bellota is located east of the city of Stockton in San Joaquin County.
- Bellota substation, Tesla substation and local generators are major sources to Stockton 115 kV Load pocket.
- Bellota Substation has 12 -230 kV transmission lines; two (2) 230-115 kV, 200 MVA transformer banks and five (5) 115 kV transmission lines

Bellota 230 kV Bus Configuration

- Bellota 230 kV Bus is a double bus, single breaker with two sections (Section D and Section E).
- Both transformer banks and Lockeford-Bellota 230 kV, Brighton-Bellota 230 kV, Bellota-Cottle 230 kV, Bellota-Weber 230 kV, Bellota-Tesla #2 230 kV Lines are connected to the section E

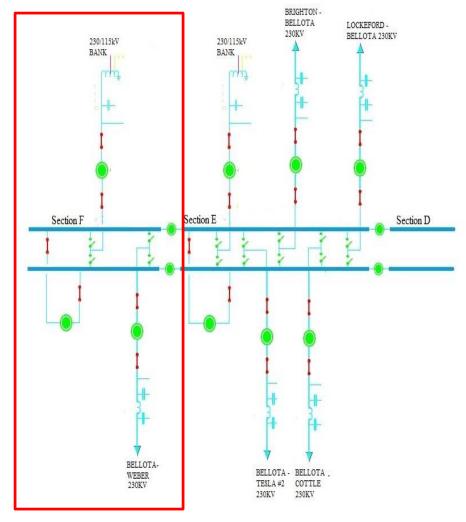


Contingency Description:

Simultaneous loss of transformer bank #1 & bank #2 due to fault at bus tie breaker of Bellota 230 kV section E will lead to loss of Bellota source to the area load pocket and local voltage collapse under summer peak condition.

		Pre Project			Post Project	Contingency		
Facility Name	Facility Rating (MVA)	2021	2024	2029	2029	Categor y	Contingency Name	
HAMMER - COUNTRY CLUB 60KV	62.4	NConv (DC 104.6%	NConv (DC 106.9%)	NConv (DC 91.9%)	96.2%	P2-4	BELLOTA 230KV - SECTION 1E & 2E	
STANISLS- MELONES- RIVRBKJT 115kV	64.9) NConv (DC 115.6%)	NConv (DC 121.0%)	NConv (DC 124.4%)	<70.0%	P2-4	BELLOTA 230KV - SECTION 1E & 2E	
STANISLAUS- MELONES SW STA- MANTECA #1 115kV	64.9	, NConv (DC 103.5%)	NConv (DC 108.4%)	NConv (DC 111.8%)	<70.0%	P2-4	BELLOTA 230KV - SECTION 1E & 2E	
BELLOTA- RIVERBANK- MELONES SW STA 115KV	102.4	NConv (DC 166.0%)	NConv (DC 170.4%)	NConv (DC 173.4%)	<70.0%	P2-4	BELLOTA 230KV - SECTION 1E & 2E	

Power Flow Results:


Proposed Project

Project Objective:

 This project will mitigate the voltage collapse due to NERC category P2 internal breaker fault on Section E of Bellota 230 kV bus

Preferred Scope

- Expand and split Section E of Bellota 230 kV to separate into two sections
- Relocate the terminals of 230/115 kV Transformer bank #2 and Bellota-Weber 230 KV line to the new section
- Make protection system upgrades as required

New Section E

Proposed In-Service Date

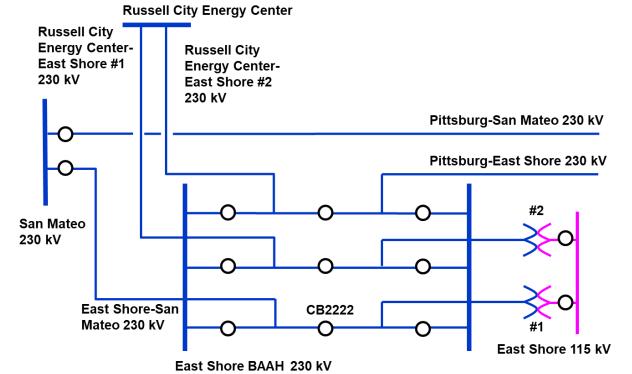
• January 2026

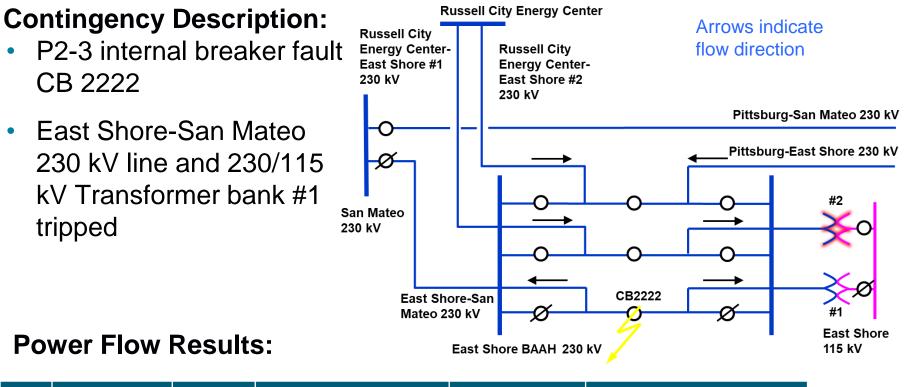
Estimated Cost

• \$20M to \$40M*

Other Alternatives Considered

- Convert Section E of Bellota 230kV bus to BAAH. this alternative is not recommended due to its higher cost.
- Connect Bellota 230/115 kV Bank #2 to section 2D using underground cable or relocating the transformer. This alternative is not recommended because it will create new NERC P2 violations


EAST SHORE 230 KV BUS TERMINALS RECONFIGURATION


Area Background

- East Shore Substation is located in the City of Hayward within the Mission division and serves as a 230 kV source for the local 115 kV system, including Grant, Mt. Eden, and Dumbarton Substations.
- East Shore Substation is connected with Pittsburg, San Mateo and Russell City Energy Center (RCEC) so that it can deliver the power to the Peninsula area via the East Shore-San Mateo 230 kV line and serve the local load via transformer bank #1 and #2

Assessment Results

		Facility	P	re Proje	ct	Post F	Project	Contingency	
#	Facility	Rating (MVA)	2021	2024	2029	2024	2029	Category	Contingency Name
1	EAST SHORE 230/115 kV TRANSFORME R NO. 2	462 MVA	105%	105%	111.4%	57.5%	71.5%	P2	P2-3: E. SHORE 230kV - Middle Breaker Bay 3

Proposed Project

Project Objective:

Pair one import line (power flowing into the bus) with one export line (power flowing out from the bus) in each bay

Preferred Scope

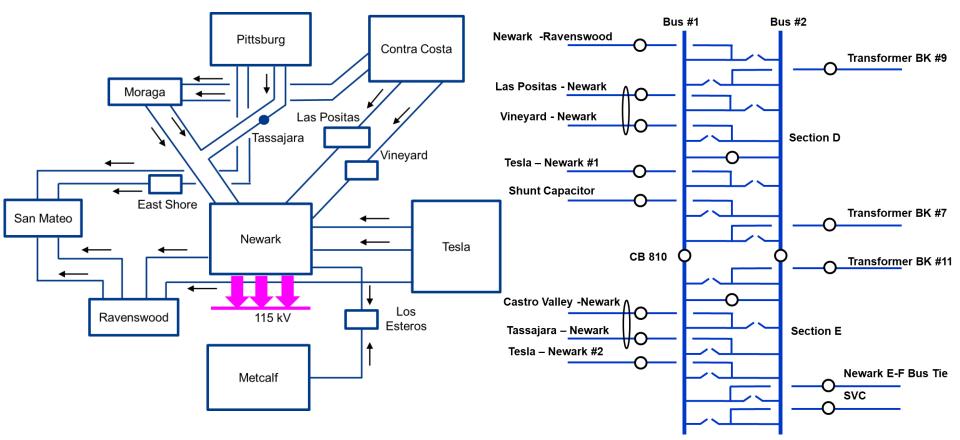
Swap East Shore - San Mateo 230 kV line and Russell City Energy Center- East Shore #2 line terminal positions at East Shore 230 kV **BAAH** Substation

Proposed In-Service Date Russell City Energy Center Arrows indicate January 2024 Russell City **Russell City** flow direction **Energy Center-Energy Center-**East Shore #1 East Shore #2 230 kV Estimated Cost 230 kV \$2M - \$4M* Pittsburg-San Mateo 230 kV Pittsburg-East Shore 230 kV East Shore-San Mateo 230 kV San Mateo 230 kV CB2222

*AACE Level 5 quality estimates includes a +100% contingency

Other Alternatives Considered

- Swap transformer BK1 and Russell City Energy Center East Shore #1 terminal positions
- Swap transformer BK1 and Russell City Energy Center East Shore #2 terminal positions


NEWARK 230/115 KV TRANSFORMER BANK #7 CIRCUIT BREAKER ADDITION

- Newark Substation is located in the City of Fremont (Mission division)
- It serves as a critical substation which transfers power from Pittsburg, Contra Costa and Tesla 230 kV substations to the South Bay, San Francisco and Peninsula areas.
- It has direct connections with Diablo, East Bay, Peninsula, South Bay, and Stockton areas with numerous 230 kV and 115 kV transmission lines.
- Newark Substation serves as a main source of power for the South Bay 115 kV system through three 230/115 kV transformer banks.

Newark Transmission System

Newark 230 kV System

Newark 230 kV Substation Section D & Section E

Assessment Results

Contingency Description:

- P2-4 bus sectionalizing breaker CB810 fault
- Bus section 1D and 1E out ۲
- Elements tripped
 - Newark Ravenswood 230 kV line
 - Las Positas Newark 230 kV line •
 - Tesla Newark 230 kV line •
 - Transformer Bank #7
 - Castro Valley Newark 230 kV line •

Pre Project

2024

2029

Newark F-F Bus Tie

Facility

Newark

MER NO. 11

230/115 kV

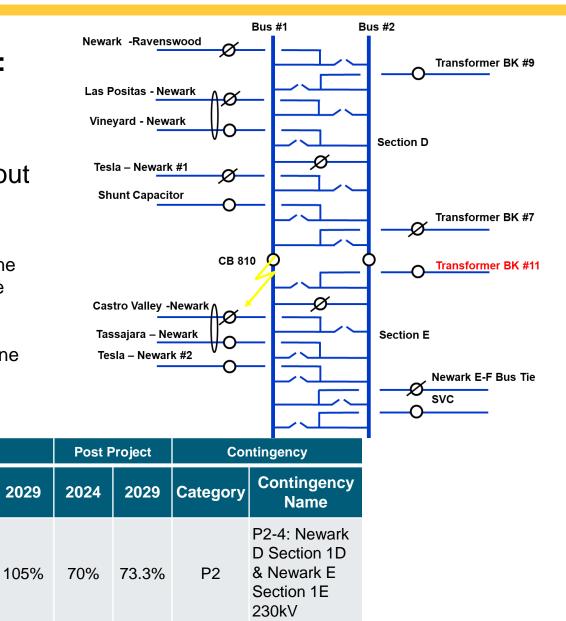
TRANSFOR MVA

#

1

Power Flow Results:

Facility


Rating

(MVA)

420

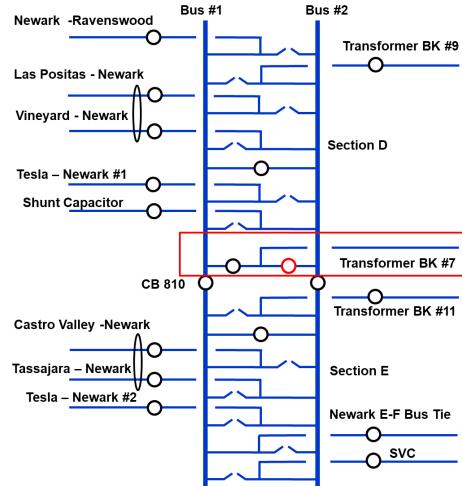
2021

103.2% 100%

Project Objective:

 To keep all three Newark 230/115 kV transformer banks in service to deliver power without causing any overloads on any banks during this contingency

Preferred Scope


- Add second high voltage side circuit breaker to NEWARK 230/115 kV transformer #7
- Change this transformer bank connection to Double Bus Double Breaker

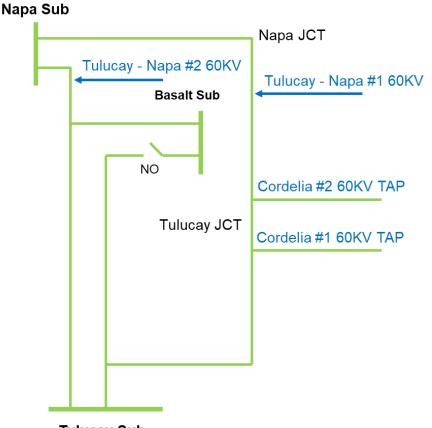
Proposed In-Service Date

• January 2024

Estimated Cost

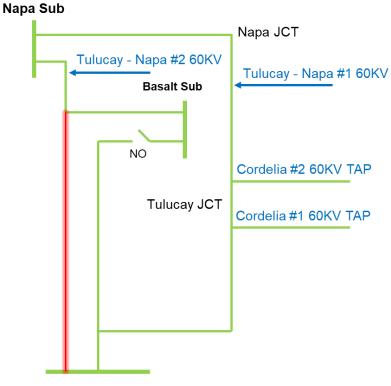
• \$3M - \$6M *

Other Alternatives Considered


 Install a 230/115 kV transformer bank connecting to Newark 230 kV bus section E. This alternative is not recommended because it would not be feasible due to the space issue and will not be cost effective.

TULUCAY-NAPA #2 60 KV LINE CAPACITY INCREASE

- Napa Tulucay No. 2 60 kV Line is in Napa County, within PG&E's North Bay Division
- Napa Tulucay No.1 and No. 2 lines provide service to Napa 60 kV substation with about 19500 electric customers
- Napa Tulucay No.2 is approximately 4 miles long and it also serves about 5600 customers at Basalt substation
- The 2019 projected summer peak load at Napa and Basalt substations is approximately 77 MW and it is forecasted to increase at a rate of 0.8 MW or 1.08 % per year


Tulucay Sub

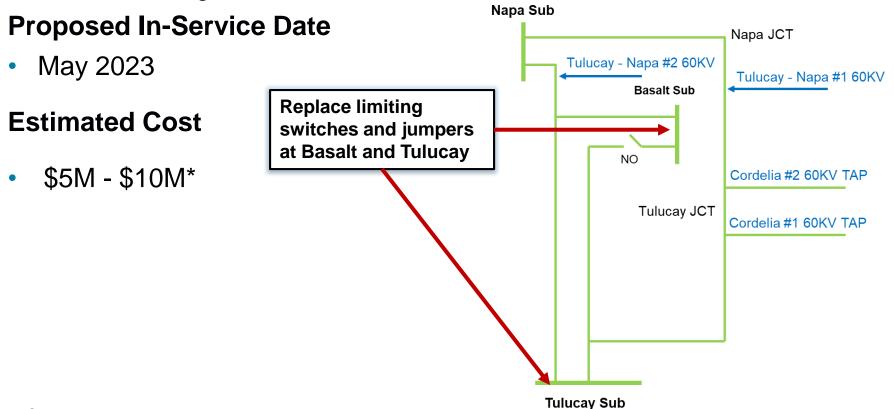
Assessment Results

Contingency Description:

- P0: Normal Operation (No Contingency)
- Napa Tulucay No. 2 60 kV line on the section from Tulucay to Basalt Tap could overload by 1.5% in 2024 and by 10.2% in 2029

Power Flow Results:

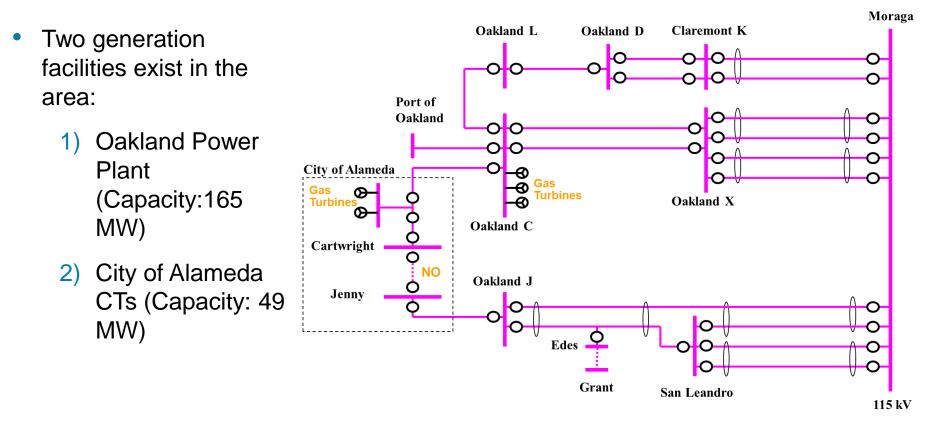
Tulucay Sub


	Facility			t Post-Project		Contingency		
Facility Name	Rating (Amps)	2021	2024	2029	2024	2029	Category	Contingency Name
Napa – Tulucay No. 2 60 kV	741	97.5	101.5	110.2	<70	<70	P0	No Contingency

Proposed Project

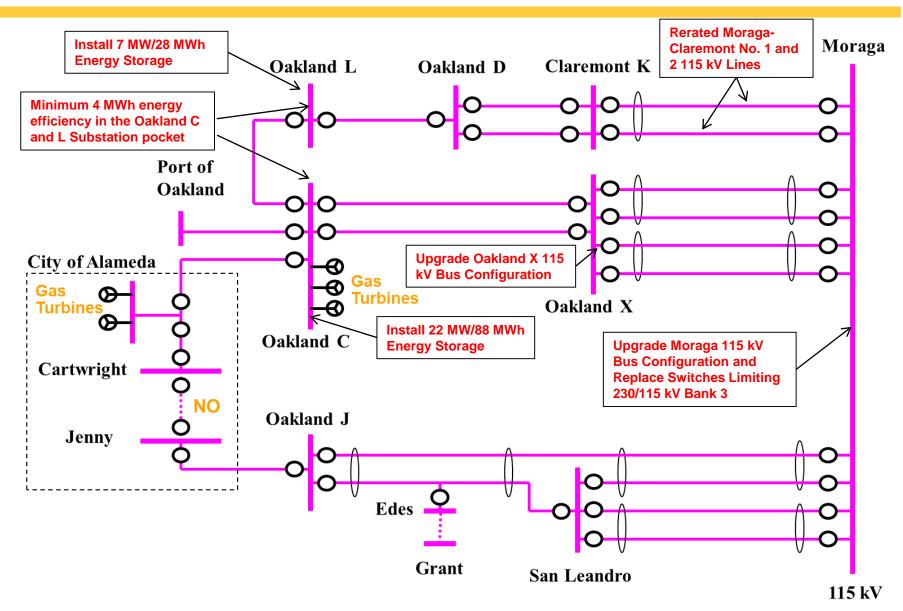
Preferred Scope

- Replace limiting switches and jumpers at Basalt and Tulucay 60 kV substations to match the conductor rating of 1126 Amps
- Upgrade any other associated terminal equipment to achieve the maximum conductor rating



NORTHERN OAKLAND AREA REINFORCEMENT PROJECT

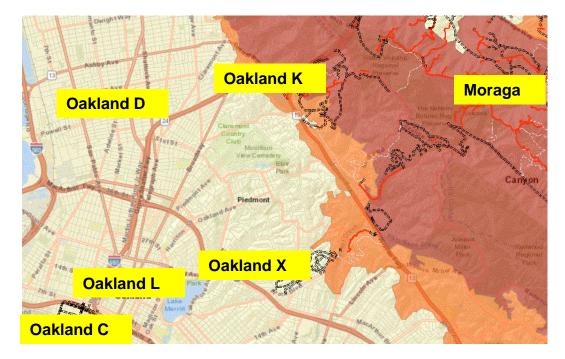
- Oakland area is served from Moraga Substation via 115 kV overhead transmission lines and underground cables
- The area consist of two separate load pockets: North and South Oakland. Port of Oakland receives PG&E wholesale contract service from the North, as does part of Alameda Municipal Power (under normal operations)



- Oakland Power Plant began commercial operations in 1978, and currently operates under an annual Reliability Must Run (RMR) Contract.
- CAISO identified the possible retirement of the Oakland Power Plant as a longterm reliability concern for the East Bay area.
- In the 2017-2018 TPP, CAISO approved the "Oakland Clean Energy Initiative (OCEI)" with in-service date of 2022.
- As approved, OCEI project proposes the following:
 - Substation upgrades at Moraga 115kV Bus and Oakland X, rerating of Moraga-Claremont 115 kV lines #1 and #2
 - Procurement of 22 MW (peak) and 88 MWh energy storage at Oakland C Substation
 - Procurement of 7 MW (peak) and 28 MWh energy storage at Oakland L Substation
 - Procurement of a minimum of 4 MWh over local peak energy efficiency in the Oakland C and L Substation pocket

Pacific Gas and Electric Company®

Oakland Clean Energy Initiative



Northern Oakland Area Challenges

Moraga – Oakland X 115kV Lines

- Four overhead lines, that traverses through undeveloped land and residential neighborhoods
- Lines cross Tier-2 and Tier-3 High-Fire Threat District (HFTD) areas
- Identified as needing lifecycle upgrade of transmission structures

• Addressing 2010 NERC recommendations to industry

2019-2020 Reliability Assessment

- A growth in the net load forecasts has been observed in the North Oakland pocket
- Need for additional transmission capacity to the meet long-term demand has already emerged in year-10 studies
- Due to known challenges involved in construction, permitting and clearances of transmission projects in the Oakland area, prolonged implementation periods (~7- 10 years) are expected
- OCEI is needed to ensure sustained reliability in the area until any long-term plan becomes operational
- Upgrades on Moraga 230 kV substation are identified to be required to mitigate NERC P2 category contingencies

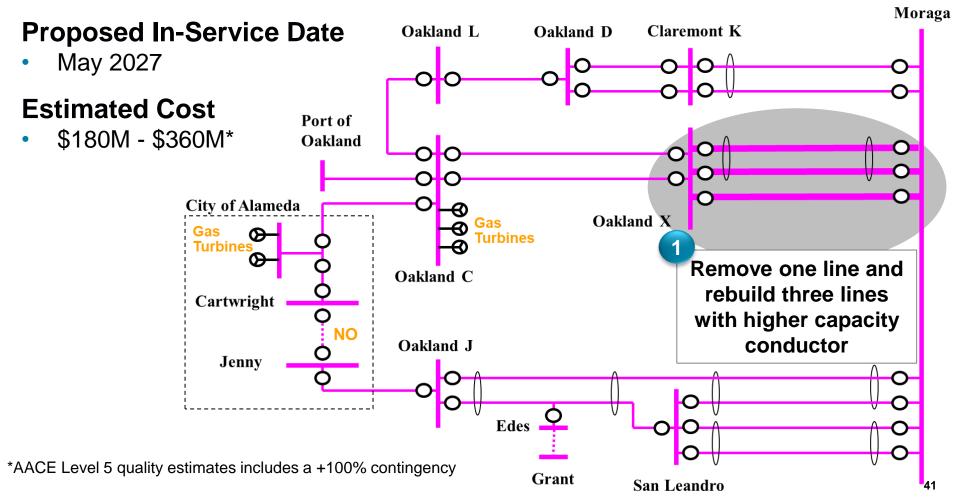
To address Northern Oakland area challenges, PG&E explored several alternatives, comparing feasibility, public safety, cost, wildfire risks and long-term reliability impacts.

Project Objectives:

- Improve public safety by reinforcing the transmission infrastructure, relocating portions of the lines from residential neighborhoods and decreasing the number of lines in high-fire risk areas
- Increase Northern Oakland load serving capability to address future reliability concerns in the area
- Addressing 2010 NERC recommendations to industry

Proposed Project Components:

- 1) Rebuild Moraga-Oakland X 115 kV Lines
- 2) Reconductor Moraga-Claremont #1& #2 115 kV Lines
- 3) Build a New 115 kV Line from Oakland X to Oakland L
- 4) Upgrade Moraga 230 kV Substation

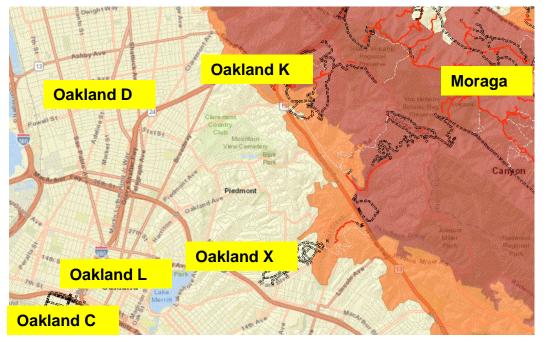


Preferred Scope

 Remove one line and rebuild three of the Moraga-Oakland X 115 kV lines with conductor rated for 1100 Amps or higher summer emergency rating

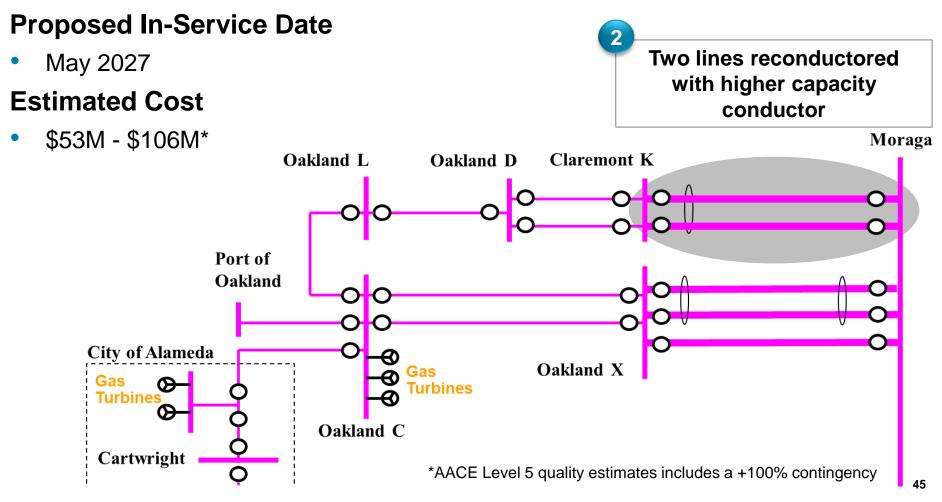
Pacific Gas and Electric Company[®] Power Flow Results after Moraga-X Lines Rebuild

Facility Name	Facility Rating	Pre- Post- Project Project		Contingency			
	(Amps)	2029	2029	Category	Contingency Name		
D-L #1	790	98.7	103.5	P2	MORAGA 230kV - Section 2D & 1D		
Moraga-Claremont #1 115kV	557	102.9	106.8	P2	SOBRANTE 230kV - Section 2D & 1D		
Moraga-Claremont #1 115kV	557	99 105.8		P2	CLARMNT - 2D 115kV & SOBRANTE- GRIZZLY-CLAREMONT #2 line		
Moraga-Claremont #1 115kV	557	99 105.8		P2	CLARMNT - 2D 115kV & SOBRANTE- GRIZZLY-CLAREMONT #1 line		
Moraga-Claremont #1 115kV	557	99 105.8		P2	CLARMNT 115kV Section 2D		
Moraga-Claremont #1 115kV	557	97.6	101.2	P6	MORAGA-CLAREMONT #2 115kV & DEC STG1 24.00kV & DEC CTG1 18.00kV & DEC CTG2 18.00kV & DEC CTG3 18.00kV Gen Units		
Moraga-Claremont #1 115kV	557	99.7	103.5	P6	SOBRANTE 230/115kV TB 1 & SOBRANTE 230/115kV TB 2		
Moraga-Claremont #2 115kV	557	103	107	P2	SOBRANTE 230kV - Section 2D & 1D		
Moraga-Claremont #2 115kV	557	97.7	101.3	P3	MORAGA-CLAREMONT #1 115kV & DEC STG1 24.00kV & DEC CTG1 18.00kV & DEC CTG2 18.00kV & DEC CTG3 18.00kV Gen Units		
Moraga-Claremont #2 115kV	557	99.9	103.7	P6	SOBRANTE 230/115kV TB 1 & SOBRANTE 230/115kV TB 2		



Project Background

- Moraga-Claremont #1& #2 115 kV lines are approximately 4.6 miles and currently rated at 94 MVA summer emergency rating
- These lines have been rerated as part of the OCEI project
- Even with the rerate, these lines identified to be overloaded for certain P6 contingencies in 2019-2020 TPP Assessment for year-10 summer peak condition



- Rebuilding Moraga-Oakland X lines as three higher capacity lines, will cause new violations on the Moraga-Claremont lines for some local P2 and P6 contingencies
- Moraga-Claremont lines reside in Tier-2 and Tier-3 High-Fire risk areas

Pacific Gas and Electric Company[®] Moraga-Claremont Lines Reconductoring

Preferred Scope

 Reconductor Moraga-Claremont #1& #2 115kV lines with conductor rated for 1100 Amps or higher summer emergency rating

Pacific Gas and Electric Company[®] Power Flow Results: Remaining Concerns

Facility Name	Facility Rating	Pre-Project Post-Proje		Contingency				
	(Amps)	2029	2029	Category	Contingency Name			
C-L #1	790	109	108.4	P2	CLARMNT 115kV - Section 2D & 1D			
C-L #1	790	109.3	108.7	P6	K-D #1 115kV & K-D #2 115kV			
C-X #2	790	121.3	120.7	P2	CLARMNT 115kV - Section 2D & 1D			
C-X #2	790	106.5	100.7	P6	C-X #3 115kV & DEC STG1 24.00kV & DEC CTG1 18.00kV & DEC CTG2 18.00kV & DEC CTG3 18.00kV Gen Units			
C-X #2	790	121.7	121.1	P6	K-D #1 115kV & K-D #2 115kV			
C-X #2	790	142	141.4	P6	D-L #1 115kV & C-X #3 115kV			
C-X #2	790	106.3	103.1	P6	C-X #3 115kV & MORAGA-CLAREMONT #2 115kV			
C-X #2	790	106.3	103.1	P6	C-X #3 115kV & MORAGA-CLAREMONT #1 115kV			
D-L #1	790	102.2	101.8	P2	OAK C115 115kV Section ME			
D-L #1	790	104.8	104.5	P2	OAK C115 - ME 115kV & OAKLAND C- MARITIME line			
D-L #1	790	98.7	104.6	P2	MORAGA 230kV - Section 2D & 1D			
D-L #1	790	142.4	142	P6	C-X #2 115kV & C-X #3 115kV			

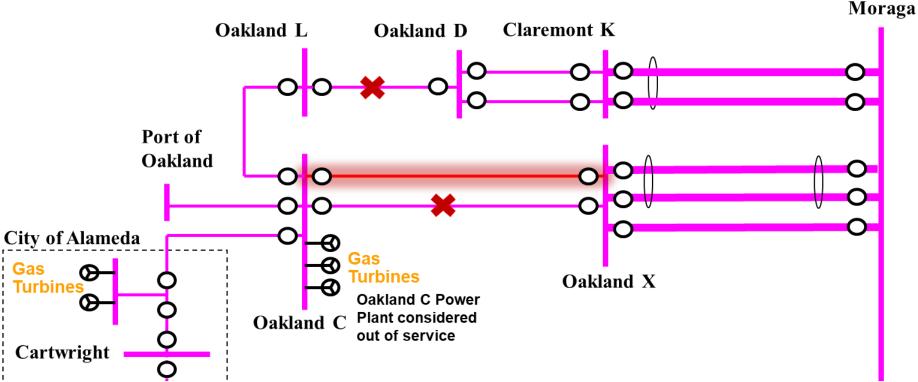

Worst Multiple Event P6 Concerns

Contingency Description

Multiple outage of Oakland C-X#2 and C-X#3

Overloaded Facility

Oakland D-L#1

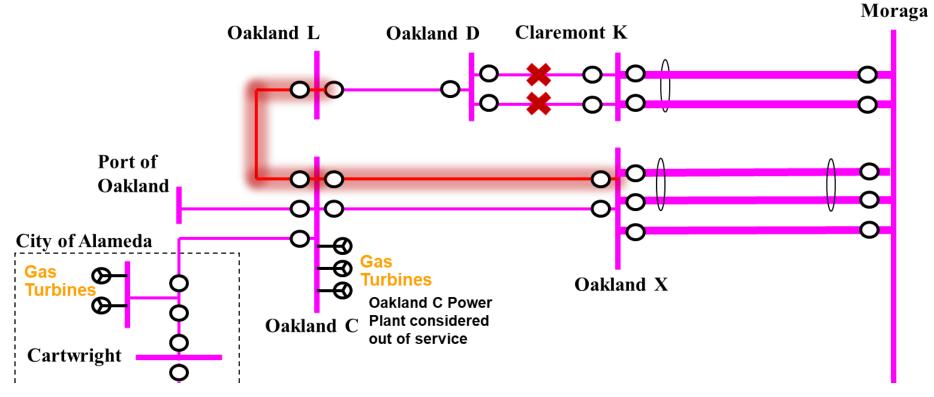

Worst Multiple Event P6 Concerns

Contingency Description

• Multiple outage of Oakland D-L#1 and C-X#3

Overloaded Facility

Oakland C-X#2


Worst Multiple Event P6 Concerns

Contingency Description

• Multiple outage of Oakland K-D#1 and K-D#2

Overloaded Facilities

Oakland C-X#2 and Oakland C-L#1

Load Forecast in Northern Oakland Area

- Oakland C, D and L substations net conforming load forecasts for year 10 has increased about 28 MW or 12% from past two TPP cycle
- Shift in the peak loading time and more precise modeling of the Distributed Generation (DG), significantly reduced the DG contribution at the peak time

Pacific Gas and

Electric Companv®

- Forecasted Energy Efficiency (EE) in the pocket also decreased by 11 MW
- PG&E also expects more load growth which has not yet been accounted for in the forecasts due to new distribution load addition like Oakland stadium and electrification plans

Year-10 Load Forecast	Year 2027(2017-2018 TPP)	Year2029(2019-2020 TPP)
Gross Load Forecast	272	270
Net Load Forecast	226	254
EE (Energy Efficiency)	27	16
DG (Distributed Generation)	17.91	0

Year-10 Conforming Load Forecast Changes for Oakland C, D and L

Why a long-term transmission capacity addition is proposed?

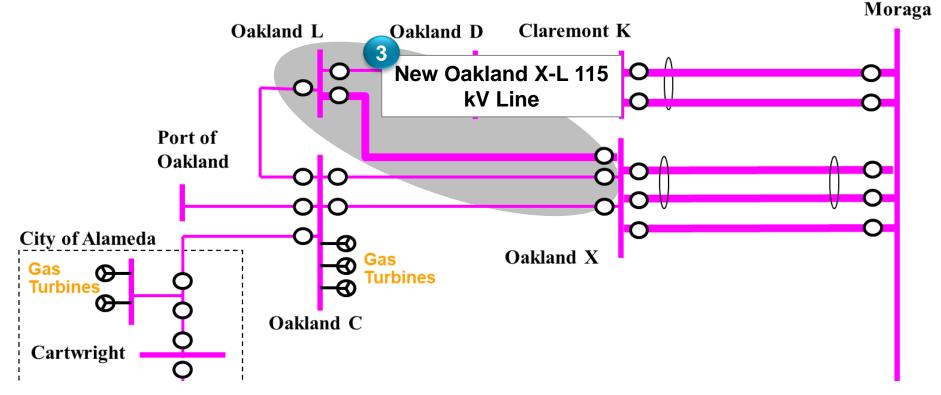
- Mitigate remaining P6 concerns in the area
- Meet the long-term forecasted load growth
- Prolonged implementation periods
- New alternatives made possible by Moraga-Oakland X lines reinforcement plans

Preferred Scope

 Build a new 115 kV line from Oakland X to Oakland L substation with conductor rated for 1100 Amps or higher summer emergency rating

Proposed In-Service Date

• May 2027


Estimated Cost

• \$114M - \$228M*

Other Alternatives Considered

- Looping Oakland C-X #3 Line into Oakland L
- New 115 kV Cable from Claremont K to Oakland L

Power Flow Results: Single Event P2 Concerns

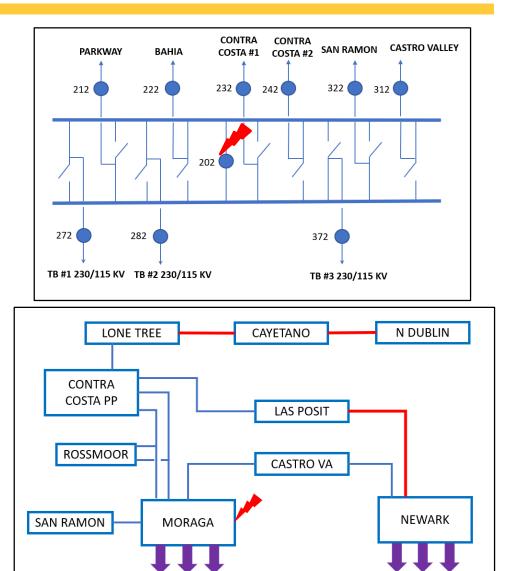
Facility Name	Facility Rating	Pre- Post- Project Project		Contingency			
	(Amps)	2029	2029	Category	Contingency Name		
C-L #1	790	109	<70	P2	CLARMNT 115kV - Section 2D & 1D		
C-X #2 [9962]	790	121.3	73.7	P2	CLARMNT 115kV - Section 2D & 1D		
D-L #1 [9963]	790	104.8 <70 P2		P2	OAK C115 - ME 115kV & OAKLAND C-MARITIME line		
D-L #1 [9963]	790	98.7	8.7 104.3 P2		MORAGA 230kV - Section 2D & 1D		
Moraga-Claremont #1 115kV	557	102.9 <70		P2	SOBRANTE 230kV - Section 2D & 1D		
Moraga-Claremont #2 115kV	557	103	<70	P2	SOBRANTE 230kV - Section 2D & 1D		
Moraga-Oakland X #1 115kV	406	114.1 <70		P2	CLARMNT 115kV - Section 2D & 1D		
Moraga-Oakland X #1 115kV	406	106.9	<70	P2 MORAGA.E 115kV - Section 2E & 1			
Moraga-Oakland X #2 115kV	406	114.1	<70	P2 CLARMNT 115kV - Section 2D &			
Moraga-Oakland X #2 115kV	406	106.9 <70		P2	MORAGA.E 115kV - Section 2E & 1E		
Moraga-Oakland X #3 115kV	406	113.4	<70	<70 P2 CLARMNT 115kV - Sec			
Moraga-Oakland X #4 115kV	406	113.4	<70	P2 CLARMNT 115kV - Section 2D & 1D			

Pacific Gas and Electric Company* Power Flow Results: Multiple Event P6 Concerns

Facility Name	Facility Rating	Pre- Project	Post- Project	Contingency		
	(Amps)	2029	2029	Category	Contingency Name	
C-L #1	790	109.3	<70	P6	K-D #1 115kV & K-D #2 115kV	
C-X #2	790	102.5	<70	P6	C-X #3 115kV & CRCKTCOG 18.00kV Gen Unit 1	
C-X #2	790	106.5	<70	P6	C-X #3 115kV & DEC STG1 24.00kV & DEC CTG1 18.00kV & DEC CTG2 18.00kV & DEC CTG3 18.00kV Gen Units	
C-X #2	790	104.2	<70	P6	C-X #3 115kV & LMECCT2 18.00kV & LMECCT1 18.00kV & LMECST1 18.00kV Gen Units	
C-X #2	790	102.6	<70	P6	IGNACIO-SOBRANTE 230kV & C-X #3 115kV	
C-X #2	790	102.2	<70	P6	C-X #3 115kV & SOBRANTE 230/115kV TB 1	
C-X #2	790	121.7	<70	P6	K-D #1 115kV & K-D #2 115kV	
C-X #2	790	102.1	<70	P6	K-D #1 115kV & C-X #3 115kV	
C-X #2	790	102	<70	P6	K-D #2 115kV & C-X #3 115kV	
C-X #2	790	142	<70	P6	D-L #1 115kV & C-X #3 115kV	
C-X #2	790	106.3	<70	P6	C-X #3 115kV & MORAGA-CLAREMONT #2 115kV	
C-X #2	790	106.3	<70	P6	C-X #3 115kV & MORAGA-CLAREMONT #1 115kV	
D-L #1	790	142.4	<70	P6	C-X #2 115kV & C-X #3 115kV	
Moraga-Claremont #1 115kV	557	104.1	<70	P6	C-X #2 115kV & C-X #3 115kV	
Moraga-Claremont #2 115kV	557	104.3	<70	P6	C-X #2 115kV & C-X #3 115kV	

Pacific Gas and Electric Company* Power Flow Results: Multiple Event P6 Concerns

Facility Name	Facility Rating (Amps)	Pre- Project	Post- Project	Contingency			
		2029	2029	Category	Contingency Name		
Moraga-Oakland X #1 115kV		114.4	<70	P6	K-D #1 115kV & K-D #2 115kV		
		110.2	<70	P6	MORAGA-OAKLAND #2 115kV & D-L #1 115kV		
	406	109.8	<70	P6	MORAGA-OAKLAND #4 115kV & D-L #1 115kV		
		109.8	<70	P6	MORAGA-OAKLAND #3 115kV & D-L #1 115kV		
	406	114.4	<70	P6	K-D #1 115kV & K-D #2 115kV		
Moraga-Oakland X #2 115kV		110.2	<70	P6	MORAGA-OAKLAND #1 115kV & D-L #1 115kV		
		109.8	<70	P6	MORAGA-OAKLAND #4 115kV & D-L #1 115kV		
		109.8	<70	P6	MORAGA-OAKLAND #3 115kV & D-L #1 115kV		
	406	113.7	<70	P6	K-D #1 115kV & K-D #2 115kV		
Marray Oakland X //2 445b)		109.5	<70	P6	MORAGA-OAKLAND #2 115kV & D-L #1 115kV		
Moraga-Oakland X #3 115kV		406	109.5	<70	P6	MORAGA-OAKLAND #1 115kV & D-L #1 115kV	
			109.5	<70	P6	MORAGA-OAKLAND #4 115kV & D-L #1 115kV	
Moraga-Oakland X #4 115kV	406		113.7	<70	P6	K-D #1 115kV [9966] & K-D #2 115kV	
		109.5	<70	P6	MORAGA-OAKLAND #2 115kV & D-L #1 115kV		
		109.5	<70	P6	MORAGA-OAKLAND #1 115kV & D-L #1 115kV		
		109.5	<70	P6	MORAGA-OAKLAND #3 115kV & D-L #1 115kV		



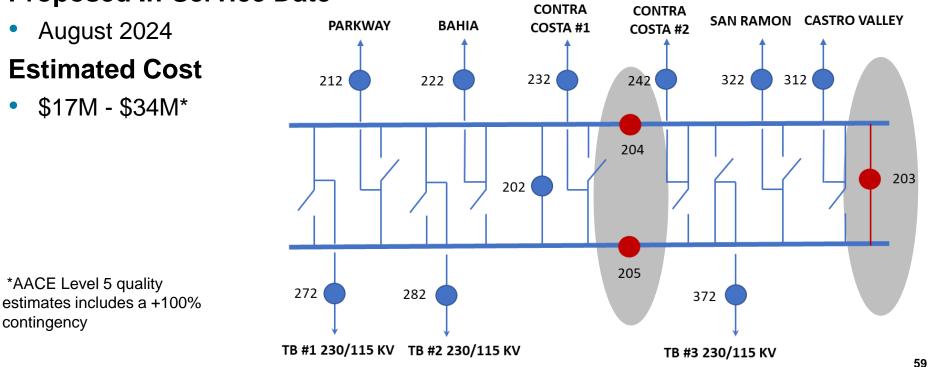
Project Background

- Moraga 230 kV substation transfers power flowing from Contra Costa PP (Marsh Landing, Birds Landing and Gateway Generation) and Vaca-Dixon to Oakland, San Ramon, Castro Valley and Newark Areas
- With current bus configuration, P2-4 internal breaker fault on CB 202 will result in loss of the entire 230 kV station
- Based on the 2019-2020 TPP assessment results, this contingency will cause overloads on
 - Lone Tree -Cayetano 230kV,
 - o North Dublin- Cayetano 230kV,
 - Las Positas-Newark 230kV and
 - Sobrante-Grizzly-Claremont #2 115kV

NEWARK

MORAGA

contingency


Preferred Scope

- Add two sectionalizing breakers and a bus tie breaker to Moraga 230 kV bus.
- Installation and modification of bus differential protection scheme

Proposed In-Service Date

Other Alternatives Considered

- Alternative 1: Convert Moraga 230 kV to BAAH
- Alternative 2: Reconductoring overloaded lines

Power Flow Results

Facility Name	Facility	Pre-Project			Post-Project		Contingency	
	Rating (Amps)	2021	2024	2029	2024	2029	Category	Contingency Name
LONE TREE-CAYETANO 230kV	1005	105.7	105	110.1	87.3	92.1	P2	
NORTH DUBLIN-CAYETANO 230kV	1004	100.8	100	104.4	82.2	86.3	P2	MORAGA 230kV -
LAS POSITAS-NEWARK 230kV	849	97.1	97.8	101.2	74.2	76.7	P2	Section 2D & 1D
SOBRANTE-GRIZZLY- CLAREMONT #2 115kV	801	<70	96.3	104.9	54.2	63.6	P2	
LONE TREE-CAYETANO 230kV	1005	N/A	N/A	N/A	81.8	95.4	P2	
NORTH DUBLIN-CAYETANO 230kV	1004	N/A	N/A	N/A	85.5	89.6	P2	MORAGA 230kV -
LAS POSITAS-NEWARK 230kV	849	N/A	N/A	N/A	78.5	81.1	P2	Section 2E & 1E
SOBRANTE-GRIZZLY- CLAREMONT #2 115kV	801	N/A	N/A	N/A	<70	<70	P2	

Solution Summary

Proposed Project

- 1) Rebuild Moraga- Oakland X 115 kV four-line path with three lines with conductor rated for 1100 Amps or higher summer emergency rating
- Reconductor Moraga-Claremont #1& #2 115kV lines with conductor rated for 1100 Amps or higher summer emergency rating
- 3) Build a new 115 kV line from Oakland X to Oakland L substation with conductor rated for 1100 Amps or higher summer emergency rating
- Upgrade Moraga 230 kV Bus (Add sectionalizing breakers and a bus tie breaker to Moraga 230 kV bus)

Proposed In-Service Date

• May 2027

Total Estimated Cost

• \$364M - \$728M*