

Deliverability Assessment Dispatch Methodology Update for Solar and Wind

Stakeholder Meeting June 26, 2024

Reminders

- Stakeholder calls and meetings related to Transmission Planning are not recorded.
 - Given the expectation that documentation from these calls will be referred to in subsequent regulatory proceedings, we address written questions through written comments, and enable more informal dialogue at the call itself.
 - Minutes are not generated from these calls, however,
 written responses are provided to all submitted comments.
- Calls are structured to stimulate an honest dialogue and engage different perspectives.
- Please keep comments professional and respectful.

Instructions for raising your hand to ask a question

 If you are connected to audio through your computer or used the "call me" option, select the raise hand icon blocated on the right, at the bottom of the participant panel.

Note: If you dialed into the phone-only line, press *3 to raise your hand

 Please remember to state your name and affiliation before making your comment

Deliverability Assessment Dispatch Methodology update for Solar and Wind – Agenda

Topic	Presenters
Agenda	Yelena Kopylov-Alford
Introduction / Overview	Robert Sparks
Results and Methodology	Andrew Rivera
Wrap-up	Yelena Kopylov-Alford

Background and Introduction

- The ISO performs deliverability assessments to ensure that the transmission system can reasonably deliver resources providing Resource Adequacy (RA) capacity to serve load during stressed system conditions
- The posted "On-Peak Deliverability Assessment Methodology" paper and the "Deliverability Assessment Methodology Revisions Final Proposal" paper describe the modeling of wind and solar resource outputs in the deliverability study
 - https://www.caiso.com/documents/on-peak-deliverability-assessment-methodology.pdf
 - https://stakeholdercenter.caiso.com/lnitiativeDocuments/Final-Proposal-Generation-Deliverability-Methodology-Review-Jan-04-2024.pdf
- Both papers state that the ISO will periodically review the latest available data to update the wind and solar modeling assumptions as needed

The On-Shore Wind and Solar Output Assumptions Were Established in 2020 and Need to be Updated

- The existing on-shore wind and solar assumptions are based on stochastic analysis output data
- For off-shore wind, stochastic analysis output data tended to produce erratic results, so a new methodology was developed
- This new methodology was then used to update the onshore wind and solar output assumptions because it is based on more readily available data and produces more stable results

Results and Calculation Method

Deliverability Assessment Dispatch Methodology update for Solar and Wind

June 26, 2024

Maximum Resource Output Assumptions

2020 Solar and In-State Wind Dispatch Values

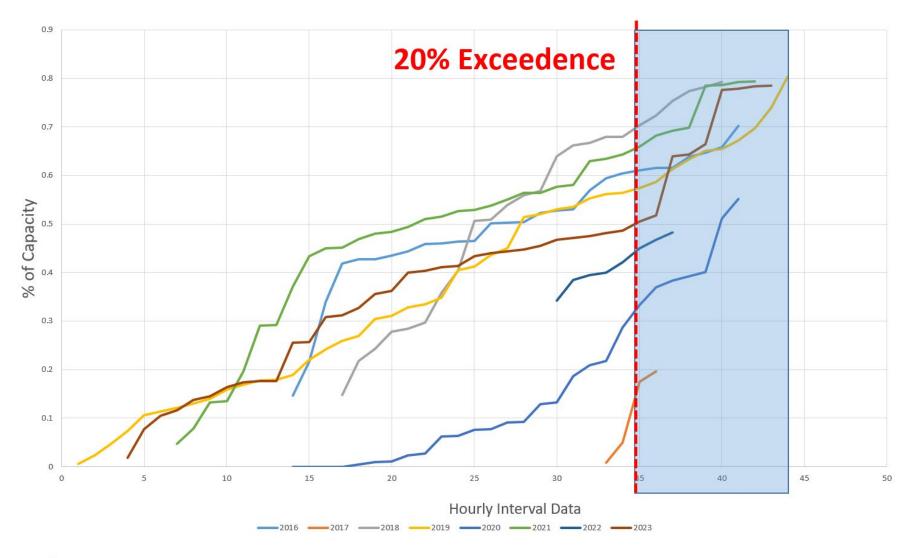
Area	HSN			SSN				
	PG&E	SCE	SDGE	VEA	PG&E	SCE	SDGE	VEA
Solar	10%	10.6%	3%	-	55.6%	42.7%	40.2%	-
In-State Wind	66.5%	55.7%	33.7%	-	16.3%	20.8%	11.2%	-

Updated Solar and In-State Wind Dispatch Values

Area	HSN				SSN			
	PG&E	SCE	SDGE	VEA	PG&E	SCE	SDGE	VEA
Solar	15%	13%	6%	8%	71%	80%	71%	66%
In-State Wind	50%	48%	35%	48%	19%	17%	10%	17%

Calculation Method Overview

- For each year included identify the days when the total system load goes above 95% of the peak annual load.
- Collect hourly interval data at the generator level.
- Calculate the percent of capacity of each generator type and separate by PTO area.
- With both the HSN and SSN hours data order by % of capacity and identify the 20% and 50% exceedance values respectively.
- Average across years included.



Parameters and Data Sources

Percentage of Peak Load Included	95%+			
HSN Hour End	19, 20, 21, 22			
HSN Exceedance	20%			
SSN Hour End	15, 16, 17, 18			
SSN Exceedance	50%			
Months included	June – September			
<u>Years</u>				
In-State Wind	2016 – 2023			
Solar	2016 - 2023 (VEA: 2019 - 2023)			
Data Sources				
ISO System and Generator Load	CAISO Historical Data			
Generator Information	CAISO Masterfile			

Visual Example of Method – PG&E Wind

Wrap-up Deliverability Assessment Dispatch Methodology update for Solar and Wind

Yelena Kopylov-Alford Stakeholder Engagement and Policy Specialist

June 26, 2024

Wrap-Up

- Comments
 - Due by end of day July 3, 2024
 - Submit comments via email to the Regional Transmission mailbox
 - regionaltransmission@caiso.com

