

2009 LOCAL CAPACITY TECHNICAL ANALYSIS

DRAFT REPORT AND STUDY RESULTS

Updated April 2, 2008

Local Capacity Technical Study Overview and Results

I. Executive Summary

This Report documents the results and recommendations of the 2009 Local Capacity Technical (LCT) Study. The LCT Study assumptions, processes, and criteria were discussed and recommended through the 2009 Local Capacity Technical Study Criteria, Methodology and Assumptions Stakeholder Meeting held on October 11, 2007. On balance, the assumptions, processes, and criteria used for the 2009 LCR Study mirror those used in the 2007 and 2008 LCR Studies, which were previously discussed and recommended through the LCR Study Advisory Group ("LSAG")¹, an advisory group formed by the CAISO to assist the CAISO in its preparation for performing prior LCT Studies.

The 2009 LCR study results are provided to the CPUC for consideration in its 2009 resource adequacy requirements program. These results will also be used by the CAISO for identifying the minimum quantity of local capacity necessary to meet the FERC-approved Reliability Criteria used in the LCT Study (this may be referred to as "Local Capacity Requirements" or "LCR") and for assisting in the allocation of costs of any CAISO procurement of capacity needed to achieve the Reliability Criteria notwithstanding the resource adequacy procurement of Load Serving Entities (LSEs).² In this regard, the 2009 LCT Study also provides additional information on sub-area needs and effectiveness factors (where applicable) in order to allow LSEs to engage in more informed procurement.

-

¹ The LSAG consists of a representative cross-section of stakeholders, technically qualified to assess the issues related to the study assumptions, process and criteria of the existing LCT Study methodology and to recommend changes, where needed.

² For information regarding the conditions under which the CAISO may engage in procurement of local capacity and the allocation of the costs of such procurement, please see *California Independent System Operator Corporation*, FERC Docket Nos. ER08-556-000 (Interim Capacity Procurement Mechanism); ER08-____-000 (Temporary Capacity Procurement Mechanism); and ER07-1257 (Reliability Capacity Services Tariff).

Below is a comparison of the 2009 vs. 2008 total LCR:

2009 Local Capacity Requirements

	Qualifying Capacity				R Need Bas Category B	ed on	2009 LCR Need Based on Category C with operating procedure		
Local Area Name	QF/ Muni (MW)	Market (MW)	Total (MW)	Existing Capacity Needed	Deficiency	Total (MW)	Existing Capacity Needed	Deficiency	Total (MW)
Humboldt	48	135	183	177	0	177	177	0	177
North Coast / North Bay	217	728	945	766	0	766	766	0	766
Sierra	1012	768	1780	1453	226	1679	1617	703	2320
Stockton	276	265	541	491	34	525	541	185	726
Greater Bay	1111	5662	6773	4791	0	4791	4791	0	4791
Greater Fresno	510	2319	2829	2414	0	2414	2680	0	2680
Kern	646	31	677	208	0	208	417	5	422
LA Basin	3942	8222	12164	10225	0	10225	10225	0	10225
Big Creek/ Ventura	931	4201	5132	3178	0	3178	3178	0	3178
San Diego	201	3442	3663	3113	0	3113	3113	77	3190
Total	8894	25773	34687	26816	260	27076	27505	970	28475

2008 Local Capacity Requirements

	Qualifying Capacity				R Need Bas Category B	ed on	2008 LCR Need Based on Category C with operating procedure		
Local Area Name	QF/ Muni (MW)	Market (MW)	Total (MW)	Existing Capacity Needed	Deficiency	Total (MW)	Existing Capacity Needed	Deficiency	Total (MW)
Humboldt	45	135	180	175	0	175	175	0	175
North Coast / North Bay	262	621	883	676	0	676	676	0	676
Sierra	1014	766	1780	1780	89	1869	1780	312	2092
Stockton	272	264	536	460	15	475	536	250	786
Greater Bay	1116	5098	6214	4688	0	4688	4688	0	4688
Greater Fresno	496	2495	2991	2212	0	2212	2274	108	2382
Kern	615	31	646	259	0	259	463	23	486
LA Basin	3545	8545	12093	10130	0	10130	10130	0	10130
Big Creek/ Ventura	1463	3933	5396	3562	0	3562	3658	0	3658
San Diego	201	2718	2919	2919	114	3033	2919	114	3033
Total	9029	24606	33638	26861	218	27079	27299	807	28106

Overall, the LCR trended upward due to load growth. The three exceptions are (1) the Big Creek/Ventura Area, where the LCR was reduced due to the installation of the new Antelope Transmission Project Sections 1, 2 and 3, (2) Stockton, where the LCR deficiency was reduced due to updated models for the capacitors connected to the distribution banks at the banks at Stagg 230 kV bus; however the capacity level continues to require procurement of all units and (3) Kern where the load trend is downward. The Sierra area deficiency part of the LCR has increased because certain projects previously modeled in the 2008 base cases have been delayed past summer of 2009, however the procurement need has decreased due to the new South of Table Mountain Tower Raise and Upgrade project. The write-up for each Local Capacity Area lists important new projects included in the base cases as well as a description of reason for changes between 2009 and 2008 LCRs.

Table of Contents

I. I	Executive Summary	1
II.	Study Overview: Inputs, Outputs and Options	5
A.	Objectives	5
<i>B</i> .	Key Study Assumptions	
<i>C</i> .	Grid Reliability	7
D.	Application of N-1, N-1-1, and N-2 Criteria	8
E.	Performance Criteria	8
2	The Two Options Presented In This LCR Study	15 rational
III.	Assumption Details: How the Study was Conducted	16
2	System Planning Criteria 1. Power Flow Assessment: 2. Post Transient Load Flow Assessment: 3. Stability Assessment:	17 18
	Load Forecast	18
<i>C</i> .	Power Flow Program Used in the LCR analysis	20
IV.	Locational Capacity Requirement Study Results	21
A.	Summary of Study Results	21
В.	Summary of Zonal Needs	23
<i>C</i> .	Summary of Results by Local Area	
	1. Humboldt Area	
2	2. North Coast / North Bay Area	
3	3. Sierra Area	
	4. Stockton Area	
	5. Greater Bay Area	
	6. Greater Fresno Area	
	7. Kern Area 8. LA Basin Area	
	9. Big Creek/Ventura Area	
	10. San Diego Area	91

II. Study Overview: Inputs, Outputs and Options

A. Objectives

As was the objective of the 2006, 2007 and the 2008 LCT Studies, the intent of the 2009 LCT Study is to identify specific areas within the CAISO Balancing Authority Area that have limited import capability and determine the minimum generation capacity (MW) necessary to mitigate the local reliability problems in those areas.

B. Key Study Assumptions

1. Inputs and Methodology

The CAISO incorporated into its 2009 LCR study the same criteria, input assumptions and methodology that were incorporated into its previous years LCR studies. These inputs, assumptions and methodology were discussed and agreed to by stakeholders at the 2009 Local Capacity Technical Study Criteria, Methodology and Assumptions Stakeholder Meeting held on October 11, 2007.

The following table sets forth a summary of the approved inputs and methodology that have been used in the previous LCR studies as well as this 2009 LCR Study:

Summary Table of Inputs and Methodology Used in this LCR Study:

Issue:	HOW INCORPORATED INTO THIS LCR STUDY:
Input Assumptions:	
Transmission System Configuration	The existing transmission system has been modeled, including all projects operational on or before June 1, of the study year and all other feasible operational solutions brought forth by the PTOs and as agreed to by the CAISO.
Generation Modeled	The existing generation resources has been modeled and also includes all projects that will be on-line and commercial on or before June 1, of the study year
Load Forecast	Uses a 1-in-10 year summer peak load forecast
Methodology:	
Maximize Import Capability	Import capability into the load pocket has been maximized, thus minimizing the generation required in the load pocket to meet applicable reliability requirements.
QF/Nuclear/State/Federal Units	Regulatory Must-take and similarly situated units like QF/Nuclear/State/Federal resources have been modeled on-line at qualifying capacity output values for purposes of this LCR Study.
Maintaining Path Flows	Path flows have been maintained below all established path ratings into the load pockets, including the 500 kV. For clarification, given the existing transmission system configuration, the only 500 kV path that flows directly into a load pocket and will, therefore, be considered in this LCR Study is the South of Lugo transfer path flowing into the LA Basin.
Performance Criteria:	, , , , , , , , , , , , , , , , , , ,
Performance Level B & C, including incorporation of PTO operational solutions	This LCR Study is being published based on Performance Level B and Performance Level C criterion, yielding the low and high range LCR scenarios. In addition, the CAISO will incorporate all new projects and other feasible and CAISO-approved operational solutions brought forth by the PTOs that can be operational on or before June 1, of the study year. Any such solutions that can reduce the need for procurement to meet the Performance Level C criteria will be incorporated into the LCR Study.
Load Pocket:	
Fixed Boundary, including limited reference to published effectiveness factors	This LCR Study has been produced based on load pockets defined by a fixed boundary. The CAISO only publishes effectiveness factors where they are useful in facilitating procurement where excess capacity exists within a load pocket.

Further details regarding the 2009 LCR Study methodology and assumptions are provided in Section III, below.

C. **Grid Reliability**

Service reliability builds from grid reliability because grid reliability is reflected in the planning standards of the Western Electricity Coordinating Council ("WECC") that incorporate standards set by the North American Electric Reliability Council ("NERC") (collectively "NERC Planning Standards"). The NERC Planning Standards apply to the interconnected electric system in the United States and are intended to address the reality that within an integrated network, whatever one control area does can affect the reliability of other control areas. Consistent with the mandatory nature of the NERC Planning Standards, the CAISO is under a statutory obligation to ensure efficient use and reliable operation of the transmission grid consistent with achievement of the NERC Planning Standards.³ The CAISO is further under an obligation, pursuant to its FERCapproved Transmission Control Agreement, to secure compliance with all "Applicable Reliability Criteria." Applicable Reliability Criteria consists of the NERC Planning Standards as well as reliability criteria adopted by the CAISO, in consultation with the CAISO's Participating Transmission Owners ("PTOs"), which affect a PTO's individual system.

The NERC Planning Standards define reliability on interconnected electric systems using the terms "adequacy" and "security." "Adequacy" is the ability of the electric systems to supply the aggregate electrical demand and energy requirements of their customers at all times, taking into account physical characteristics of the transmission system such as transmission ratings and scheduled and reasonably expected unscheduled outages of system elements. "Security" is the ability of the electric systems to withstand sudden disturbances such as electric short circuits or unanticipated loss of system elements. The NERC Planning Standards are organized by Performance Categories. For instance, certain categories require that the grid operator not only ensure grid integrity is maintained under certain adverse system conditions, e.g., security, but also that all customers continue to receive electric supply

³ Pub. Utilities Code § 345

to meet demand, e.g., adequacy. In that case, grid reliability and service reliability would overlap. But there are other levels of performance where security can be maintained without ensuring adequacy.

D. Application of N-1, N-1-1, and N-2 Criteria

The CAISO will maintain the system in a safe operating mode at all times. This obligation translates into respecting the Reliability Criteria at all times, for example during normal operating conditions (N-0) the CAISO must protect for all single contingencies (N-1) and common mode (N-2) double line outages. Also, after a single contingency, the CAISO must re-adjust the system to support the loss of the next most stringent contingency. This is referred to as the N-1-1 condition.

The N-1-1 vs N-2 terminology was introduced only as a mere temporal differentiation between two existing NERC Category C events. N-1-1 represents NERC Category C3 ("category B contingency, manual system adjustment, followed by another category B contingency"). The N-2 represents NERC Category C5 ("any two circuits of a multiple circuit tower line") as well as WECC-S2 (for 500 kV only) ("any two circuits in the same right-of-way") with no manual system adjustment between the two contingencies.

E. Performance Criteria

As set forth on the Summary Table of Inputs and Methodology, this LCR Report is based on NERC Performance Level B and Performance Level C criterion. The NERC Standards refer mainly to thermal overloads. However, the CAISO also tests the electric system in regards to the dynamic and reactive margin compliance with the existing WECC standards for the same NERC performance levels. These Performance Levels can be described as follows:

a. <u>Performance Criteria- Category B</u>

Category B describes the system performance that is expected immediately following the loss of a single transmission element, such as a transmission circuit, a generator, or a transformer.

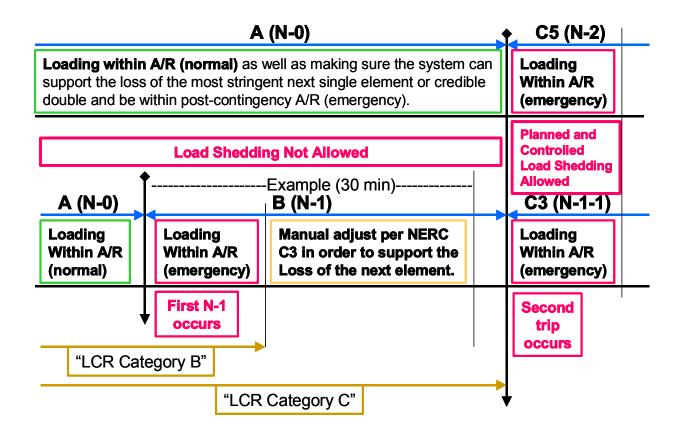
Category B system performance requires that all thermal and voltage limits must be within their "Applicable Rating," which, in this case, are the emergency ratings as generally determined by the PTO or facility owner. Applicable Rating includes a temporal element such that emergency ratings can only be maintained for certain duration. Under this category, load cannot be shed in order to assure the Applicable Ratings are met however there is no guarantee that facilities are returned to within normal ratings or to a state where it is safe to continue to operate the system in a reliable manner such that the next element out will not cause a violation of the Applicable Ratings.

b. <u>Performance Criteria- Category C</u>

The NERC Planning Standards require system operators to "look forward" to make sure they safely prepare for the "next" N-1 following the loss of the "first" N-1 (stay within Applicable Ratings after the "next" N-1). This is commonly referred to as N-1-1. Because it is assumed that some time exists between the "first" and "next" element losses, operating personnel may make any reasonable and feasible adjustments to the system to prepare for the loss of the second element, including, operating procedures, dispatching generation, moving load from one substation to another to reduce equipment loading, dispatching operating personnel to specific station locations to manually adjust load from the substation site, or installing a "Special Protection Scheme" that would remove pre-identified load from service upon the loss of the "next" element.⁴ All Category C requirements in this report refer to situations when in real time

⁴ A Special Protection Scheme is typically proposed as an operational solution that does not require additional generation and permits operators to effectively prepare for the next event as well as ensure security should the next event occur. However, these systems have their own risks, which limit the extent to which they could be deployed as a solution for grid reliability augmentation. While they provide the value of protecting against the next event without the need for pre-contingency load shedding, they add points of potential failure to the transmission network. This increases the potential for load interruptions

(N-0) or after the first contingency (N-1) the system requires additional readjustment in order to prepare for the next worst contingency. In this time frame, load drop is not allowed per existing planning criteria.


Generally, Category C describes system performance that is expected following the loss of two or more system elements. This loss of two elements is generally expected to happen simultaneously, referred to as N-2. It should be noted that once the "next" element is lost after the first contingency, as discussed above under the Performance Criteria B, N-1-1 scenario, the event is effectively a Category C. As noted above, depending on system design and expected system impacts, the **planned and controlled** interruption of supply to customers (load shedding), the removal from service of certain generators and curtailment of exports may be utilized to maintain grid "security."

c. CAISO Statutory Obligation Regarding Safe Operation

The CAISO will maintain the system in a safe operating mode at all times. This obligation translates into respecting the Reliability Criteria at all times, for example during normal operating conditions **A** (**N-0**) the CAISO must protect for all single contingencies **B** (**N-1**) and common mode **C5** (**N-2**) double line outages. As a further example, after a single contingency the CAISO must readjust the system in order to be able to support the loss of the next most stringent contingency **C3** (**N-1-1**).

because sometimes these systems will operate when not required and other times they will not operate when needed.

10

Definition of Terms

Applicable Rating:

This represents the equipment rating that will be used under certain contingency conditions.

Normal rating is to be used under normal conditions.

<u>Long-term emergency ratings</u>, if available, will be used in all emergency conditions as long as "system readjustment" is provided in the amount of time given (specific to each element) to reduce the flow to within the normal ratings. If not available normal rating is to be used.

<u>Short-term emergency ratings</u>, if available, can be used as long as "system readjustment" is provided in the "short-time" available in order to reduce the flow to within the long-term emergency ratings where the element can be kept for another

length of time (specific to each element) before the flow needs to be reduced the below the normal ratings. If not available long-term emergency rating should be used.

<u>Temperature-adjusted ratings</u> shall not be used because this is a year-ahead study not a real-time tool, as such the worst-case scenario must be covered. In case temperature-adjusted ratings are the only ratings available then the minimum rating (highest temperature) given the study conditions shall be used.

<u>CAISO Transmission Register</u> is the only official keeper of all existing ratings mentioned above.

<u>Ratings for future projects</u> provided by PTO and agree upon by the CAISO shall be used.

<u>Other short-term ratings</u> not included in the CAISO Transmission Register may be used as long as they are engineered, studied and enforced through clear operating procedures that can be followed by real-time operators.

<u>Path Ratings</u> need to be maintained in order for these studies to comply with the Minimum Operating Reliability Criteria and assure that proper capacity is available in order to operate the system in real-time.

System Readjustment:

This represents the actions taken by operators in order to bring the system within a safe operating zone after any given contingency in the system.

Actions that can be taken as system readjustment after a single contingency (Category B):

- System configuration change based on validated and approved operating procedures
- 2. Generation re-dispatch
 - Decrease generation (up to 1150 MW) limit given by single contingency
 SPS as part of the CAISO Grid Planning standards (ISO G4)
 - b. Increase generation this generation will become part of the LCR need

Actions, which shall not be taken as system readjustment after a single contingency (Category B):

 Load drop – based on the intent of the CAISO/WECC and NERC criteria for category B contingencies.

This is one of the most controversial aspects of the interpretation of the existing NERC criteria because the NERC Planning Standards footnote mentions that load shedding can be done after a category B event in certain local areas in order to maintain compliance with performance criteria. However, the main body of the criteria spells out that no dropping of load should be done following a single contingency. All stakeholders and the CAISO agree that no involuntary interruption of load should be done immediately after a single contingency. Further, the CAISO and LSAG now appear to agree on the viability of dropping load as part of the system readjustment period – in order to protect for the next most limiting contingency. After a single contingency, it is understood that the system is in a Category B condition and the system should be planned based on the body of the criteria with no shedding of load regardless of whether it is done immediately or in 15-30 minute after the original contingency. Category C conditions only arrive after the second contingency has happened; at that point in time, shedding load is allowed in a planned and controlled manner.

A robust California transmission system should be, and under the LCT Study is being, planned based on the main body of the criteria, not the footnote regarding Category B contingencies. Therefore, if there are available resources in the area, they are looked to meet reliability needs (and included in the LCR requirement) before resorting to involuntary load curtailment. The footnote may be applied for criteria compliance issues only where there are no resources available in the area.

Time allowed for manual readjustment:

This is the amount of time required for the operator to take all actions necessary to prepare the system for the next contingency. This time should be less than 30 minutes, based on existing CAISO Planning Standards.

This is a somewhat controversial aspect of the interpretation of existing criteria. This item is very specific in the CAISO Planning Standards. However, some will argue that 30 minutes only allows generation re-dispatch and automated switching where remote control is possible. If remote capability does not exist, a person must be dispatched in the field to do switching and 30 minutes may not allow sufficient time. If approved, an exemption from the existing time requirements may be given for small local areas with very limited exposure and impact, clearly described in operating procedures, and only until remote controlled switching equipment can be installed.

Planned load drop:

Is achieved when the most limiting equipment has short-term emergency ratings AND the operators have an operating procedure that clearly describes the actions that need to be taken in order to shed load.

Controlled load drop:

Is achieved with the use of a Special Protection Scheme.

Special Protection Scheme:

All known SPS shall be assumed. New SPS must be verified and approved by the CAISO and must comply with the new SPS guideline described in the CAISO Planning Standards.

F. The Two Options Presented In This LCR Study

This LCR study sets forth different solution "options" with varying ranges of potential service reliability consistent with CAISO's Reliability Criteria. The CAISO applies Option 2 for its purposes of identifying necessary local capacity needs and the corresponding potential scope of its backstop authority. Nevertheless, the CAISO

continues to provide Option 1 as a point of reference for the CPUC and Local Regulatory Authorities in considering procurement targets for their jurisdictional LSEs.

1. Option 1- Meet Performance Criteria Category B

Option 1 is a service reliability level that reflects generation capacity that must be available to comply with reliability standards immediately after a NERC Category B given that load cannot be removed to meet this performance standard under Reliability Criteria. However, this capacity amount implicitly relies on load interruption as the **only means** of meeting any Reliability Criteria that is beyond the loss of a single transmission element (N-1). These situations will likely require substantial load interruptions in order to maintain system continuity and alleviate equipment overloads prior to the actual occurrence of the second contingency.⁵

2. Option 2- Meet Performance Criteria Category C and Incorporate Suitable Operational Solutions

Option 2 is a service reliability level that reflects generation capacity that is needed to readjust the system to prepare for the loss of a second transmission element (N-1-1) using generation capacity *after* considering all reasonable and feasible operating solutions (including those involving customer load interruption) developed and approved by the CAISO, in consultation with the PTOs. Under this option, there is no expected load interruption to end-use customers under normal or single contingency conditions as the CAISO operators prepare for the second contingency. However, the customer load may be interrupted in the event the second contingency occurs.

As noted, Option 2 is the local capacity level that the CAISO requires to reliably operate the grid per NERC, WECC and CAISO standards. As such, the CAISO recommends adoption of this Option to guide resource adequacy procurement.

15

-

⁵ This potential for pre-contingency load shedding also occurs because real time operators must prepare for the loss of a common mode N-2 at all times.

III. Assumption Details: How the Study was Conducted

A. System Planning Criteria

The following table provides a comparison of system planning criteria, based on the NERC performance standards, used in the study:

Table 4: Criteria Comparison

Contingency Component(s)	ISO Grid Planning Criteria	Existing RMR Criteria	Locational Capacity Criteria
A - No Contingencies	х	Х	x
B – Loss of a single element 1. Generator (G-1) 2. Transmission Circuit (L-1) 3. Transformer (T-1) 4. Single Pole (dc) Line 5. G-1 system readjusted L-1	X X X	X X X2 X	X1 X1 X1,2 X1 X
C – Loss of two or more elements 1. Bus Section 2. Breaker (failure or internal fault) 3. L-1 system readjusted G-1 3. G-1 system readjusted T-1 or T-1 system readjusted G-1 3. L-1 system readjusted L-1 4. Bipolar (dc) Line 5. Two circuits (Common Mode) L-2 6. SLG fault (stuck breaker or protection failure) for G-1 7. SLG fault (stuck breaker or protection failure) for L-1 8. SLG fault (stuck breaker or protection failure) for T-1 9. SLG fault (stuck breaker or protection failure) for Bus section WECC-S3. Two generators (Common Mode) G-2	X X X X X X X X X X X		X X X X
D – Extreme event – loss of two or more elements Any B1-4 system readjusted (Common Mode) L-2 All other extreme combinations D1-14.	X4 X4		χ3

- 1 System must be able to readjust to a safe operating zone in order to be able to support the loss of the next contingency.
- 2 A thermal or voltage criterion violation resulting from a transformer outage may not be cause for a local area reliability requirement if the violation is considered marginal (e.g. acceptable loss of facility life or low voltage), otherwise, such a violation will necessitate creation of a requirement.
- ³ Evaluate for risks and consequence, per NERC standards. No voltage collapse or dynamic instability allowed.
- 4 Evaluate for risks and consequence, per NERC standards.

A significant number of simulations were run to determine the most critical contingencies within each Local Capacity Area. Using power flow, post-transient load flow, and stability assessment tools, the system performance results of all the contingencies that were studied were measured against the system performance requirements defined by the criteria shown in Table 4. Where the specific system performance requirements were not met, generation was adjusted such that the minimum amount of generation required to meet the criteria was determined in the Local Capacity Area. The following describes how the criteria were tested for the specific type of analysis performed.

1. Power Flow Assessment:

Contingencies	Thermal Criteria ³	Voltage Criteria ⁴
Generating unit 1,6	Applicable Rating	Applicable Rating
Transmission line 1,6	Applicable Rating_	Applicable Rating
Transformer 1,6	Applicable Rating ⁵	Applicable Rating ⁵
(G-1)(L-1) ^{2, 6}	Applicable Rating	Applicable Rating
Overlapping 6, 7	Applicable Rating	Applicable Rating

- All single contingency outages (i.e. generating unit, transmission line or transformer) will be simulated on Participating Transmission Owners' local area systems.
- Key generating unit out, system readjusted, followed by a line outage. This over-lapping outage is considered a single contingency within the ISO Grid Planning Criteria. Therefore, load dropping for an overlapping G-1, L-1 scenario is not permitted.
- Applicable Rating Based on ISO Transmission Register or facility upgrade plans including established Path ratings.
- Applicable Rating ISO Grid Planning Criteria or facility owner criteria as appropriate including established Path ratings.
- A thermal or voltage criterion violation resulting from a transformer outage may not be cause for a local area reliability requirement if the violation is considered

- marginal (e.g. acceptable loss of facility life or low voltage), otherwise, such a violation will necessitate creation of a requirement.
- Following the first contingency (N-1), the generation must be sufficient to allow the operators to bring the system back to within acceptable (normal) operating range (voltage and loading) and/or appropriate OTC following the studied outage conditions.
- During normal operation or following the first contingency (N-1), the generation must be sufficient to allow the operators to prepare for the next worst N-1 or common mode N-2 without pre-contingency interruptible or firm load shedding. SPS/RAS/Safety Nets may be utilized to satisfy the criteria after the second N-1 or common mode N-2 except if the problem is of a thermal nature such that short-term ratings could be utilized to provide the operators time to shed either interruptible or firm load. T-2s (two transformer bank outages) would be excluded from the criteria.

2. Post Transient Load Flow Assessment:

Contingencies Selected 1

Reactive Margin Criteria ² **Applicable Rating**

- If power flow results indicate significant low voltages for a given power flow contingency, simulate that outage using the post transient load flow program. The post-transient assessment will develop appropriate Q/V and/or P/V curves.
- Applicable Rating positive margin based on the higher of imports or load increase by 5% for N-1 contingencies, and 2.5% for N-2 contingencies.

3. Stability Assessment:

Contingencies Selected 1

Stability Criteria² **Applicable Rating**

- Base on historical information, engineering judgment and/or if power flow or post transient study results indicate significant low voltages or marginal reactive margin for a given contingency.
- Applicable Rating ISO Grid Planning Criteria or facility owner criteria as appropriate.

B. Load Forecast

1. System Forecast

The California Energy Commission (CEC) derives the load forecast at the system as well as PTO levels. This relevant CEC forecast is then distributed across the entire system, down to the local area, division and substation level. PTO's use an econometric

equation to forecast the system load. The predominant parameters affecting the system load are (1) number of households, (2) economic activity (gross metropolitan products, GMP), (3) temperature and (4) increased energy efficiency and distributed generation programs.

2. Base Case Load Development Method

The method used to develop the base case loads is a melding process that extracts, adjusts and modifies the information from the system, distribution and municipal utility forecasts. The melding process consists of two parts: Part 1 deals with the PTO load and Part 2 deals with the municipal utility load. There may be small differences between the methodologies used by each PTO to disaggregate the CEC load forecast to their level of local area as well as bar-bus model; please refer to each PTO expansion plan for additional details.

a. PTO Loads in Base Case

The methods used to determine the PTO loads are for the most part similar. One part of the method deals with the determination of the division loads that would meet the requirements of 1-in-5 or 1-in-10 system or area base cases and the other part deals with the allocation of the division load to the transmission buses.

i. Determination of division loads

The annual division load is determined by summing the previous year division load and the current division load growth. Thus, the key steps are the determination of the initial year division load and the annual load growth. The initial year for the base case development method is based heavily on recorded data. The division load growth in the system base case is determined in two steps. First, the total PTO load growth for the year is determined, as the product of the PTO load and the load growth rate from the system load forecast. Then this total PTO load growth is allocated to the division, based on the relative magnitude of the load growth projected for the divisions by the distribution planners. For example, for the 1-in-10 area base case, the division load growth determined for the system base case is adjusted to the 1-in-10 temperature

using the load temperature relation determined from the latest peak load and temperature data of the division.

ii. Allocation of division load to transmission bus level

Since the base case loads are modeled at the various transmission buses, the division loads developed must be allocated to those buses. The allocation process is different depending on the load types. For the most part, each PTO classifies its loads into four types: conforming, non-conforming, self-generation and generation-plant loads. Since the non-conforming and self-generation loads are assumed to not vary with temperature, their magnitude would be the same in the system or area base cases of the same year. The remaining load (the total division load developed above, less the quantity of non-conforming and self-generation load) is the conforming load. The remaining load is allocated to the transmission buses based on the relative magnitude of the distribution forecast. The summation of all base case loads is generally higher then the load forecast because some load, i.e., self-generation and generation-plant, are behind the meter and must be modeled in the base cases. However, for the most part, metered or aggregated data with telemetry is used to come up with the load forecast.

b. Municipal Loads in Base Case

The municipal utility forecasts that have been provided to the CEC and PTOs for the purposes of their base cases were also used for this study.

C. Power Flow Program Used in the LCR analysis

The technical studies were conducted using General Electric's Power System Load Flow (GE PSLF) program version 16.1. This GE PSLF program is available directly from GE or through the Western System Electricity Council (WECC) to any member.

To evaluate Local Capacity Areas, the starting base case was adjusted to reflect the latest generation and transmission projects as well as the one-in-ten-year peak load forecast for each Local Capacity Area as provided to the CAISO by the PTOs.

Electronic contingency files provided by the PTOs were utilized to perform the numerous contingencies required to identify the LCR. These contingency files include remedial action and special protection schemes that are expected to be in operation during the year of study. An CAISO created EPCL (a GE programming language contained within the GE PSLF package) routine was used to run the combination of contingencies; however, other routines are available from WECC with the GE PSFL package or can be developed by third parties to identify the most limiting combination of contingencies requiring the highest amount of generation within the local area to maintain power flows within applicable ratings.

IV. Locational Capacity Requirement Study Results

A. Summary of Study Results

LCR is defined as the amount of generating capacity that is needed within a Local Capacity Area to reliably serve the load located within this area. The results of the CAISO's analysis are summarized in the Executive Summary Tables.

Table 5: 2009 Local Capacity Needs vs. Peak Load and Local Area Generation

	2009 Total LCR (MW)	Peak Load (1 in10) (MW)	2009 LCR as % of Peak Load	Total Dependable Local Area Generation (MW)	2009 LCR as % of Total Area Generation
Humboldt	177	207	86%	183	97%
North Coast/North Bay	766	1596	48%	945	81%
Sierra	2320	2126	109%	1780	130%**
Stockton	726	1436	51%	541	134%**
Greater Bay	4791	10294	47%	6773	71%
Greater Fresno	2680	3381	79%	2829	95%
Kern	422	1316	32%	677	62%**
LA Basin	10225	19836	52%	12164	84%
Big Creek/Ventura	3178	4937	64%	5132	62%
San Diego	3190	5052	63%	3663	87%**
Total	28,475	50,181*	57%*	34,687	82%

Table 6: 2008 Local Capacity Needs vs. Peak Load and Local Area Generation

	2008 Total LCR (MW)	Peak Load (1 in10) (MW)	2008 LCR as % of Peak Load	Total Dependable Local Area Generation (MW)	2008 LCR as % of Total Area Generation
Humboldt	175	199	88%	180	97%
North Coast/North Bay	676	1495	45%	883	77%
Sierra	2092	2091	100%	1780	118%**
Stockton	786	1333	59%	536	147%**
Greater Bay	4688	9870	47%	6214	75%
Greater Fresno	2382	3260	73%	2991	80%**
Kern	486	1324	37%	646	75%**
LA Basin	10130	19648	52%	12093	84%
Big Creek/Ventura	3658	4911	74%	5396	68%
San Diego	3033	4992	61%	2919	104%**
Total	28,106	49,123*	57%*	33,638	84%

^{*} Value shown only illustrative, since each local area peaks at a different time.

Tables 5 and 6 shows how much of the Local Capacity Area load is dependent on local generation and how much local generation must be available in order to serve the load in those Local Capacity Areas in a manner consistent with the Reliability Criteria. These tables also indicate where new transmission projects, new generation additions or demand side management programs would be most useful in order to reduce the dependency on existing, generally older and less efficient local area generation.

The term "Qualifying Capacity" used in this report is the latest "Net Qualifying Capacity" ("NQC") posted on the CAISO web site at:

http://www.caiso.com/1796/179688b22c970.html

The NQC list includes the area (if applicable) where each resource is located for units already operational. Neither the NQC list nor this report incorporates Demand Side Management programs and their related NQC. Units scheduled to become operational before 6/1/2009 have been included in this 2009 LCR Report and added to the total NQC values for those respective areas (see detail write-up for each area).

^{**} Generation deficient LCA (or with sub-area that is deficient) – deficiency included in LCR. Generator deficient area implies that in order to comply with the criteria, at summer peak, load must be shed immediately after the first contingency.

The first column, "Qualifying Capacity," reflects two sets of generation. The first set is comprised of generation that would normally be expected to be on-line such as Municipal generation and Regulatory Must-take generation (state, federal, QFs, wind and nuclear units). The second set is "market" generation. The second column, "2009 LCR Requirement Based on Category B" identifies the local capacity requirements, and deficiencies that must be addressed, in order to achieve a service reliability level based on Performance Criteria- Category B. The third column, "2009 LCR Requirement Based on Category C with Operating Procedure", sets forth the local capacity requirements, and deficiencies that must be addressed, necessary to attain a service reliability level based on Performance Criteria-Category C with operational solutions.

B. Summary of Zonal Needs

Based on the existing import allocation methodology, the only major 500 kV constraint not accounted for is path 26 (Midway-Vincent). **The current method allocates capacity on path 26 similar to the way imports are allocated to LSEs.** The total resources needed (based on the latest CEC load forecast) in each the two relevant zones, SP26 and NP26 is:

Zone	Load Forecast (MW)	15% reserves (MW)	(-) Allocated imports (MW)	(-) Allocated Path 26 Flow (MW)	Total Zonal Resource Need (MW)
SP26	29079	4362	-7707	-3750	21984
NP26=NP15+ZP26	21954	3293	-5183	-2902	17162

Where:

<u>Load Forecast</u> is the most recent 1 in 2 CEC forecast for year 2009.

<u>Reserve Margin</u> is the minimum CPUC approved planning reserve margin of 15%.

<u>Allocated Imports</u> are the actual 2008 numbers that are not expected to change much by 2009 because there are no additional transmission additions to the grid between now and summer of 2009.

<u>Allocated Path 26 flow</u> The CAISO determines the amount of Path 26 transfer capacity available for RA counting purposes after accounting for (1) Existing

Transmission Contracts (ETCs) that serve load outside the CAISO control area⁶ and (2) loop flow⁷ from the maximum path 26 rating of 4000 MW (North-to-South) and 3000 MW (South-to-North).

The SP 26 load forecast, import allocation and zonal results refer to the CAISO control area only. The NP 26 load forecast, import allocation and zonal results include the load associated with embedded control areas within the CAISO footprint. This is done in order to be consistent with the import allocation methodology which also considers that same load embedded in other control areas within the CAISO footprint.

All resources that are counted as part of the Local Area Capacity Requirements fully count toward the Zonal Need. The local areas of San Diego, LA Basin and Big Creek/Ventura are all situated in SP26 and the remaining local areas are in NP26.

C. Summary of Results by Local Area

Each Local Capacity Area's overall requirement is determined by also achieving each sub-area requirement. Because these areas are a part of the interconnected electric system, the total for each Local Capacity Area is not simply a summation of the sub-area needs. For example, some sub-areas may overlap and therefore the same units may count for meeting the needs in both sub-areas.

1. Humboldt Area

Area Definition

The transmission tie lines into the area include:

- 1) Bridgeville-Cottonwood 115 kV line #1
- 2) Humboldt-Trinity 115 kV line #1
- 3) Willits-Garberville 60 kV line #1

⁶ The transfer capability on Path 26 must be derated to accommodate ETCs on Path 26 that are used to serve load outside of the CAISO control area. These particular ETCs represent physical transmission capacity that cannot be allocated to LSEs within the CAISO control area.

⁷ "Loop flow" is a phenomenon common to large electric power systems like the Western Electricity Coordinating Council. Power is scheduled to flow point-to-point on a Day-ahead and Hour-ahead basis through the CAISO. However, electric grid physics prevails and the actual power flow in real-time will differ from the pre-arranged scheduled flows. Loop flow is real, physical energy and it uses part of the available transfer capability on a path. If not accommodated, loop flow will cause overloading of lines, which can jeopardize the security and reliability of the grid.

4) Trinity-Maple Creek 60 kV line #1

The substations that delineate the Humboldt Area are:

- 1) Bridgeville is in Cottonwood and Low Gap are out
- 2) Humboldt is in Trinity is out
- 3) Willits and Kekawaka are out Garberville is in
- 4) Trinity and Ridge Cabin are out Maple Creek is in

Total 2009 busload within the defined area: 200 MW with 7 MW of losses resulting in total load + losses of 207 MW.

Total units and qualifying capacity available in this area:

MKT/SCHED	BUS	BUS NAME	kV	NQC	UNIT ID	NQC Comments	CAISO Tag
RESOURCE ID	#						_
BRDGVL_7_BAKER				0.00		Not modeled	QF/Selfgen
FAIRHV_6_UNIT	31150	FAIRHAVN	13.8	14.40	1		QF/Selfgen
FTSWRD_7_QFUNTS				0.60		Not modeled	QF/Selfgen
HUMBPP_1_MOBLE2	31154	${\sf HUMBOLDT}$	13.2	15.00	2		Market
HUMBPP_1_MOBLE3	31154	${\sf HUMBOLDT}$	13.2	15.00	1		Market
HUMBPP_7_UNIT 1	31170	HMBOLDT1	13.8	52.00	1		Market
HUMBPP 7 UNIT 2	31172	HMBOLDT2	13.8	53.00	1		Market
HUMBSB_1_QF				0.00		Not modeled - Monthly NQC - used August for LCR	QF/Selfgen
KEKAWK_6_UNIT	31166	KEKAWAK	9.1	0.00	1		QF/Selfgen
PACLUM_6_UNIT	31152	PAC.LUMB	13.8	8.17	1		QF/Selfgen
PACLUM_6_UNIT	31152	PAC.LUMB	13.8	8.16	2		QF/Selfgen
PACLUM_6_UNIT	31153	PAC.LUMB	2.4	4.90	3		QF/Selfgen
WLLWCR_6_CEDRFL				0.00		Not modeled - Monthly NQC - used August for LCR	QF/Selfgen
LAPAC_6_UNIT	31158	LP SAMOA	12.5	12.00	1	No NQC - historical data	QF/Selfgen
ULTPBL_6_UNIT 1	31156	ULTRAPWR	12.5	0.00	1	No NQC - historical data	Market

Major new projects modeled:

1. New Pacific Lumber (third unit)

Critical Contingency Analysis Summary

Humboldt overall:

The most critical contingency for the Humboldt area is the outage of the Bridgeville-Cottonwood 115 kV line over-lapping with an outage of one Humboldt Bay Power Plant. The local area limitation is low voltage and reactive power margin. This contingency establishes a LCR of 177 MW in 2009 (includes 48 MW of QF/Selfgen generation) as the minimum capacity necessary for reliable load serving capability within this area.

Effectiveness factors:

All units within this area have the same effectiveness factor. Units outside of this area are not effective.

Changes compared to last year's results:

The load forecast went up by 8 MW and there was one new generator installed at Pacific Lumber. The load is driving the requirement higher and the new generator (with its associated VAR limits) is driving the requirements lower. The combination of the two results in an increase of the requirement by 2 MW.

Humboldt Overall Requirements:

2009	QF/Selfgen	Muni	Market	Max. Qualifying
	(MW)	(MW)	(MW)	Capacity (MW)
Available generation	48	0	135	183

2009	Existing Generation	Deficiency	Total MW
	Capacity Needed (MW)	(MW)	LCR Need
Category B (Single) ⁸	177	0	177
Category C (Multiple) ⁹	177	0	177

2. North Coast / North Bay Area

Area Definition

_

⁸ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other then load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

⁹ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

The North Coast/North Bay Area is composed of three sub-areas and the generation requirements within them.

The transmission tie facilities coming into the North Coast/North Bay area are:

- 1) Cortina-Mendocino 115 kV Line
- 2) Cortina-Eagle Rock 115 kV Line
- 3) Willits-Garberville 60 kV line #1
- 4) Vaca Dixon-Lakeville 230 kV line #1
- 5) Tulucay-Vaca Dixon 230 kV line #1
- 6) Lakeville-Sobrante 230 kV line #1
- 7) Ignacio-Sobrante 230 kV line #1

The substations that delineate the North Coast/North Bay area are:

- 1) Cortina is out Mendocino and Indian Valley are in
- 2) Cortina is out Eagle Rock, Highlands and Homestake are in
- 3) Willits and Kekawaka are in Garberville is out
- 4) Vaca Dixon is out Lakeville is in
- 5) Tulucay is in Vaca Dixon is out
- 6) Lakeville is in Sobrante is out
- 7) Ignacio is in Sobrante and Crocket are out

Total 2009 busload within the defined area: 1530 MW with 66 MW of losses resulting in total load + losses of 1596 MW.

Total units and qualifying capacity available in this area are shown in the following table:

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC	UNI T ID	LCR SUB-AREA NAME	NQC Comments	CAISO Tag
ADLIN_1_UNITS	31435	GEO.ENGY	9.1	7.34	1	Eagle Rock, Fulton, Lakeville		Market
ADLIN_1_UNITS	31435	GEO.ENGY	9.1	7.34	2	Eagle Rock, Fulton, Lakeville		Market
BEARCN_2_UNITS	31402	BEAR CAN	13.8	7.10	1	Fulton, Lakeville		Market
BEARCN_2_UNITS	31402	BEAR CAN	13.8	7.09	2	Fulton, Lakeville		Market
FULTON_1_QF				0.03		Fulton, Lakeville	Not modeled	QF/Selfgen
GEYS11_7_UNIT11	31412	GEYSER11	13.8	64.00	1	Eagle Rock, Fulton, Lakeville	Monthly NQC - used August for LCR	Market
GEYS12_7_UNIT12	31414	GEYSER12	13.8	52.00	1	Fulton, Lakeville	Monthly NQC - used August for LCR	Market
GEYS13_7_UNIT13	31416	GEYSER13	13.8	61.00	1	Lakeville	Monthly NQC - used August for LCR	Market

GEYS14_7_UNIT14 31	418 GEYSER14	13.8	49.00	1	Fulton, Lakeville	Monthly NQC - used August for LCR	Market
GEYS16_7_UNIT16 31	420 GEYSER16	13.8	56.00	1	Fulton, Lakeville	Monthly NQC - used August for LCR	Market
GEYS17_7_UNIT17 31	422 GEYSER17	13.8	52.00	1	Fulton, Lakeville	Monthly NQC - used August for LCR	Market
GEYS18_7_UNIT18 31	424 GEYSER18	13.8	47.00	1	Lakeville	Monthly NQC - used August for LCR	Market
GEYS20_7_UNIT20 31	426 GEYSER20	13.8	42.00	1	Lakeville	Monthly NQC - used August for LCR	Market
GYS5X6_7_UNITS 31	406 GEYSR5-6	13.8	40.00	1	Eagle Rock, Fulton, Lakeville	Monthly NQC - used August for LCR	Market
GYS5X6_7_UNITS 31	406 GEYSR5-6	13.8	40.00	2	Eagle Rock, Fulton, Lakeville	Monthly NQC - used August for LCR	Market
GYS7X8_7_UNITS 31	408 GEYSER78	13.8	34.00	1	Eagle Rock, Fulton, Lakeville	Monthly NQC - used August for LCR	Market
GYS7X8_7_UNITS 31	408 GEYSER78	13.8	34.00	2	Eagle Rock, Fulton, Lakeville	Monthly NQC - used August for LCR	Market
GYSRVL_7_WSPRN G			1.84		Fulton, Lakeville	Not modeled	QF/Selfgen
HIWAY_7_ACANYN			1.33		Lakeville	Not modeled	QF/Selfgen
IGNACO_1_QF			0.00		Lakeville	Not modeled	QF/Selfgen
INDVLY_1_UNITS 31	436 INDIAN V	9.1	1.61	1	Eagle Rock, Fulton, Lakeville		QF/Selfgen
MONTPH_7_UNITS 32	700 MONTICLO	9.1	2.50	1	Fulton, Lakeville	Monthly NQC - used August for LCR	QF/Selfgen
MONTPH_7_UNITS 32	700 MONTICLO	9.1	2.50	2	Fulton, Lakeville	Monthly NQC - used August for LCR	QF/Selfgen
MONTPH_7_UNITS 32	700 MONTICLO	9.1	0.59	3	Fulton, Lakeville	Monthly NQC - used August for LCR	QF/Selfgen
NAPA_2_UNIT			0.03		Lakeville	Not modeled	QF/Selfgen
NCPA_7_GP1UN1 38	106 NCPA1GY1	13.8	35.00	1	Lakeville		MUNI
NCPA_7_GP1UN2 38	108 NCPA1GY2	13.8	32.00	1	Lakeville		MUNI
NCPA_7_GP2UN3 38	110 NCPA2GY1	13.8	33.00	1	Fulton, Lakeville		MUNI
NCPA_7_GP2UN4 38	112 NCPA2GY2	13.8	29.00	1	Fulton, Lakeville		MUNI
POTTER_6_UNITS 31	433 POTTRVLY	2.4	4.70	1	Eagle Rock, Fulton, Lakeville		Market
POTTER_6_UNITS 31	433 POTTRVLY	2.4	2.25	3	Eagle Rock, Fulton, Lakeville		Market
POTTER_6_UNITS 31	433 POTTRVLY	2.4	2.25	4	Eagle Rock, Fulton, Lakeville		Market
POTTER_7_VECINO			0.01		Eagle Rock, Fulton, Lakeville	Not modeled	QF/Selfgen
SANTFG_7_UNITS 31	400 SANTA FE	13.8	33.58	1	Lakeville		QF/Selfgen

SANTFG_7_UNITS 31400 SANTA FE	13.8	33.57	2	Lakeville		QF/Selfgen
SMUDGO_7_UNIT 1 31430 SMUDGEO1	13.8	41.00	1	Lakeville	Monthly NQC - used August for LCR	Market
SNMALF_6_UNITS 31446 SONMA LF	9.1	7.70	1	Fulton, Lakeville		QF/Selfgen
UKIAH_7_LAKEMN		1.70		Eagle Rock, Fulton, Lakeville	Not modeled	MUNI
WDFRDF_2_UNITS 31404 WEST FOR	13.8	11.75	1	Fulton, Lakeville		Market
WDFRDF_2_UNITS 31404 WEST FOR	13.8	11.74	2	Fulton, Lakeville		Market
GEYS17_2_BOTRCK 31421 BOTTLERK	13.8	55.00	1	Fulton, Lakeville	No NQC - Pmax	Market

Major new projects modeled:

1. None

Critical Contingency Analysis Summary

Eagle Rock Sub-area

The most critical overlapping contingency is the outage of the Eagle Rock-Silverado-Fulton 115 kV line and the Cortina #4 230/115 kV bank. The sub-area area limitation is thermal overloading of Fulton-Hopland 60 kV. This limiting contingency establishes a LCR of 237 MW in 2009 (includes 2 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is the outage of the Cortina #4 230/115 kV bank. The sub-area area limitation is thermal overloading of Fulton-Hopland 60 kV. This limiting contingency establishes a LCR of 121 MW in 2009 (includes 2 MW of QF generation).

Effectiveness factors:

The units within the Eagle-Rock pocket have the same effectiveness to the abovementioned constraint. Units outside this area are not effective.

Fulton Sub-area

The most critical overlapping contingency is the outage of the Lakeville-Ignacio 230 kV line #1 and the Crocket-Sobrante 230 kV line #1. The sub-area area limitation is thermal overloading of Fulton-Lakeville 230 kV line #1. This limiting contingency establishes a LCR of 495 MW (includes 17 MW of QF and 62 MW of Muni generation) as the minimum capacity necessary for reliable load serving capability within this sub-area. All of the units needed to meet the Eagle Rock pocket count towards the Fulton LCR need.

Effectiveness factors:

The following table has units that are at least 5% effective to the above-mentioned constraint.

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
31404	WEST FOR	2	73
31402	BEAR CAN	1	73
31402	BEAR CAN	2	73
31404	WEST FOR	1	73
31414	GEYSER12	1	73
31418	GEYSER14	1	73
31420	GEYSER16	1	73
31422	GEYSER17	1	73
38110	NCPA2GY1	1	73
38112	NCPA2GY2	1	73
31421	BOTTLERK	1	72
31406	GEYSR5-6	1	38
31406	GEYSR5-6	2	38
31408	GEYSER78	1	38
31408	GEYSER78	2	38
31412	GEYSER11	1	38
31435	GEO.ENGY	1	38
31435	GEO.ENGY	2	38

Lakeville Sub-area

The most limiting contingency is the outage of Vaca Dixon-Lakeville 230 kV line with DEC power plant out of service. The sub-area limitation is thermal overloading of the Vaca Dixon-Tulucay 230 kV. This limiting contingency establishes a LCR of 766 MW (includes 86 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

The LCR for Eagle Rock and Fulton sub-area can be counted toward fulfilling the requirement of Lakeville sub-area.

Effectiveness factors:

The following table has units within the North Coast/North Bay area at least 5% effective to the above-mentioned constraint.

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
31400	SANTA FE	2	37
31430	SMUDGEO1	1	37
31400	SANTA FE	1	37
31416	GEYSER13	1	37
31424	GEYSER18	1	37
31426	GEYSER20	1	37
38106	NCPA1GY1	1	37
38108	NCPA1GY2	1	37
31421	BOTTLERK	1	35
31404	WEST FOR	2	35
31402	BEAR CAN	1	35
31402	BEAR CAN	2	35
31404	WEST FOR	1	35
31414	GEYSER12	1	35
31418	GEYSER14	1	35
31420	GEYSER16	1	35
31422	GEYSER17	1	35
38110	NCPA2GY1	1	35
38112	NCPA2GY2	1	35
31406	GEYSR5-6	1	19
31406	GEYSR5-6	2	19
31408	GEYSER78	1	19
31408	GEYSER78	2	19
31412	GEYSER11	1	19
31435	GEO.ENGY	1	19
31435	GEO.ENGY	2	19

Changes compared to last year's results:

Overall the load forecast went up by 101 MW and that drives the LCR need up by 90 MW. On a sub-area level all of the load growth in North Coast occurred in the Eagle Rock and Fulton sub-areas with a small decrease in load on the Lakeville sub-area that drives the LCR for Eagle Rock and especially Fulton up by as much as 120 MW.

North Coast/North Bay Overall Requirements:

2009	QF/Selfgen	Muni	Market	Max. Qualifying
	(MW)	(MW)	(MW)	Capacity (MW)
Available generation	86	131	728	945

2009	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) ¹⁰	766	0	766
Category C (Multiple) ¹¹	766	0	766

3. Sierra Area

Area Definition

The transmission tie lines into the Sierra Area are:

- 1) Table Mountain-Rio Oso 230 kV line
- 2) Table Mountain-Palermo 230 kV line
- 3) Table Mt-Pease 60 kV line
- 4) Caribou-Palermo 115 kV line
- 5) Drum-Summit 115 kV line #1
- 6) Drum-Summit 115 kV line #2
- 7) Spaulding-Summit 60 kV line
- 8) Brighton-Bellota 230 kV line
- 9) Rio Oso-Lockeford 230 kV line
- 10) Gold Hill-Eight Mile Road 230 kV line
- 11) Gold Hill-Lodi Stig 230 kV line
- 12) Gold Hill-Lake 230 kV line

The substations that delineate the Sierra Area are:

- 1) Table Mountain is out Rio Oso is in
- 2) Table Mountain is out Palermo is in
- 3) Table Mt is out Pease is in
- 4) Caribou is out Palermo is in
- 5) Drum is in Summit is out
- 6) Drum is in Summit is out
- 7) Spaulding is in Summit is out
- 8) Brighton is in Bellota is out
- 9) Rio Oso is in Lockeford is out

¹⁰ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other then load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

¹¹ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

- 10) Gold Hill is in Eight Mile is out
- 11) Gold Hill is in Lodi Stig is out
- 12) Gold Hill is in Lake is out

Total 2009 busload within the defined area: 2019 MW with 107 MW of losses resulting in total load + losses of 2126 MW.

Total units and qualifying capacity available in this area:

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC	UNIT ID	LCR SUB-AREA NAME	NQC Comments	CAISO Tag
BELDEN_7_UNIT 1	31784	BELDEN	13.8	115.00	1	South of Palermo, South of Table Mountain		Market
BIOMAS_1_UNIT 1	32156	WOODLAND	9.1	21.30	1	Drum-Rio Oso, South of Palermo, South of Table Mountain		QF/Selfg en
BNNIEN_7_ALTAPH	32376	BONNIE N	60	0.58		Placer, Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Not modeled - Monthly NQC - used August for LCR	Market
BOGUE_1_UNITA1	32451	FREC	13.8	45.00	1	Bogue, Drum-Rio Oso, South of Table Mountain		Market
BOWMN_6_UNIT	32480	BOWMAN	9.1	1.25	1	Drum-Rio Oso, South of Palermo, South of Table Mountain		MUNI
BUCKCK_7_OAKFLT				1.30		South of Palermo, South of Table Mountain	Not modeled	Market
BUCKCK_7_PL1X2	31820	BCKS CRK	11	29.00	1	South of Palermo, South of Table Mountain		Market
BUCKCK_7_PL1X2	31820	BCKS CRK	11	29.00	2	South of Palermo, South of Table Mountain		Market
CHICPK_7_UNIT 1	32462	CHI.PARK	11.5	38.00	1	Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain		MUNI
COLGAT_7_UNIT 1	32450	COLGATE1	13.8	165.80	1	South of Table Mountain	Monthly NQC -	MUNI
COLGAT_7_UNIT 2	32452	COLGATE2	13.8	161.68	1	South of Table Mountain	used August for LCR	MUNI
CRESTA_7_PL1X2	31812	CRESTA	11.5	35.00	1	South of Palermo, South of Table Mountain		Market
CRESTA_7_PL1X2	31812	CRESTA	11.5	35.00	2	South of Palermo, South of Table Mountain		Market
DEERCR_6_UNIT 1	32474	DEER CRK	9.1	5.70	1	Drum-Rio Oso, South of Palermo, South of Table Mountain		Market
DRUM_7_PL1X2	32504	DRUM 1-2	6.6	13.00	1	Drum-Rio Oso, South of Palermo, South of Table Mountain		Market

DRUM_7_PL1X2	32504	DRUM 1-2	6.6	13.00	2	Drum-Rio Oso, South of Palermo, South of Table Mountain		Market
DRUM_7_PL3X4	32506	DRUM 3-4	6.6	14.00	1	Drum-Rio Oso, South of Palermo, South of Table Mountain		Market
DRUM_7_PL3X4	32506	DRUM 3-4	6.6	14.00	2	Drum-Rio Oso, South of Palermo, South of Table Mountain		Market
DRUM_7_UNIT 5	32454	DRUM 5	13.8	49.50	1	Drum-Rio Oso, South of Palermo, South of Table Mountain		Market
DUTCH1_7_UNIT 1	32464	DTCHFLT1	11	22.00	1	Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain		Market
DUTCH2_7_UNIT 1	32502	DTCHFLT2	6.9	26.00	1	Drum-Rio Oso, South of Palermo, South of Table Mountain		MUNI
ELDORO_7_UNIT 1	32513	ELDRADO1	21.6	11.00	1	Placerville, South of Rio Oso, South of Palermo, South of Table Mountain		Market
ELDORO_7_UNIT 2	32514	ELDRADO2	21.6	11.00	1	Placerville, South of Rio Oso, South of Palermo, South of Table Mountain		Market
FMEADO_6_HELLHL	. 32486	HELLHOLE	9.1	0.32	1	South of Rio Oso, South of Palermo, South of Table Mountain		MUNI
FMEADO_7_UNIT	32508	FRNCH MD	4.2	16.01	1	South of Rio Oso, South of Palermo, South of Table Mountain	Monthly NQC - used August for LCR	MUNI
FORBST_7_UNIT 1	31814	FORBSTWN	11.5	39.00	1	Drum-Rio Oso, South of Table Mountain		MUNI
GOLDHL_1_QF				0.00		Placerville, South of Rio Oso, South of Palermo, South of Table Mountain	Not modeled	QF/Selfg en
GRNLF1_1_UNITS	32490	GRNLEAF1	13.8	7.74	1	Bogue, Drum-Rio Oso, South of Table Mountain		QF/Selfg en
GRNLF1_1_UNITS	32490	GRNLEAF1	13.8	39.55	2	Bogue, Drum-Rio Oso, South of Table Mountain		QF/Selfg en
GRNLF2_1_UNIT	32492	GRNLEAF2	13.8	47.82	1	Pease, Drum-Rio Oso, South of Table Mountain		QF/Selfg en
HALSEY_6_UNIT	32478	HALSEY F	9.1	11.00	1	Placer, Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain		Market
HAYPRS_6_QFUNTS	32488	HAYPRES+	9.1	0.00	1	Drum-Rio Oso, South of Palermo, South of Table Mountain		QF/Selfg en
HAYPRS_6_QFUNTS	32488	HAYPRES+	9.1	0.00	2	Drum-Rio Oso, South of Palermo, South of Table Mountain		QF/Selfg en

HIGGNS_7_QFUNTS		0.11		Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Not modeled	QF/Selfg en
KANAKA_1_UNIT		0.00		Drum-Rio Oso, South of Table Mountain	Not modeled	MUNI
KELYRG_6_UNIT 31834 KELLY	'RDG 9.1	10.00	1	Drum-Rio Oso, South of Table Mountain		MUNI
MDFKRL_2_PROJCT 32456 MIDLE	FORK 13.8	62.18	1	South of Rio Oso, South of Palermo, South of Table Mountain	Monthly NQC used August for LCR	MUNI
MDFKRL_2_PROJCT 32456 MIDLE	FORK 13.8	62.18	2	South of Rio Oso, South of Palermo, South of Table Mountain	Monthly NQC used August for LCR	MUNI
MDFKRL_2_PROJCT 32458 RALS	TON 13.8	84.32	1	South of Rio Oso, South of Palermo, South of Table Mountain	Monthly NQC used August for LCR	MUNI
NAROW1_2_UNIT 32466 NARRO	OWS1 9.1	0.00	1	Colgate, South of Table Mountain	Monthly NQC used August for LCR	- Market
NAROW2_2_UNIT 32468 NARRO	OWS2 9.1	34.88	1	Colgate, South of Table Mountain	Monthly NQC used August for LCR	MUNI
NWCSTL_7_UNIT 1 32460 NEWC	STLE 13.2	1.30	1	Placer, Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Monthly NQC used August for LCR	- Market
OROVIL_6_UNIT 31888 OROV	/LLE 9.1	6.44	1	Drum-Rio Oso, South of Table Mountain		QF/Selfg en
OXBOW_6_DRUM 32484 OXBO	W F 9.1	6.00	1	Drum-Rio Oso, South of Palermo, South of Table Mountain		MUNI
PACORO_6_UNIT 31890 PO PO	WER 9.1	8.35	1	Drum-Rio Oso, South of Table Mountain		QF/Selfg en
PACORO_6_UNIT 31890 PO PO	WER 9.1	8.35	2	Drum-Rio Oso, South of Table Mountain		QF/Selfg en
PLACVL_1_CHILIB 32510 CHILI	BAR 4.2	7.00	1	Placerville, South of Rio Oso, South of Palermo, South of Table Mountain		Market
PLACVL_1_RCKCRE		0.00		Placerville, South of Rio Oso, South of Palermo, South of Table Mountain	Not modeled - Monthly NQC - used August for LCR	
POEPH_7_UNIT 1 31790 POI	≣ 1 13.8	60.00	1	South of Palermo, South of Table Mountain		Market
POEPH_7_UNIT 2 31792 POI	E 2 13.8	60.00	1	South of Palermo, South of Table Mountain		Market
RCKCRK_7_UNIT 1 31786 ROCK	CK1 13.8	56.00	1	South of Palermo, South of Table Mountain		Market
RCKCRK_7_UNIT 2 31788 ROCK	CK2 13.8	56.00	1	South of Palermo, South of Table Mountain		Market
RIOOSO_1_QF		0.51		Drum-Rio Oso, South of Palermo, South of Table Mountain	Not modeled	QF/Selfg en

ROLLIN_6_UNIT	32476	ROLLINSF	9.1	11.70	1	Drum-Rio Oso, South of Palermo, South of Table Mountain		MUNI
SLYCRK_1_UNIT 1	31832	SLY.CR.	9.1	13.00	1	Drum-Rio Oso, South of Table Mountain		MUNI
SPAULD_6_UNIT 3	32472	SPAULDG	9.1	5.80	3	Drum-Rio Oso, South of Palermo, South of Table Mountain		Market
SPAULD_6_UNIT12	32472	SPAULDG	9.1	4.78	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Monthly NQC - used August for LCR	Market
SPAULD_6_UNIT12	32472	SPAULDG	9.1	4.78	2	Drum-Rio Oso, South of Palermo, South of Table Mountain	Monthly NQC - used August for LCR	Market
SPI LI_2_UNIT 1	32498	SPILINCF	12.5	6.60	1	Drum-Rio Oso, South of Palermo, South of Rio Oso, South of Table Mountain		QF/Selfg en
ULTRCK_2_UNIT	32500	ULTR RCK	9.1	21.28	1	Drum-Rio Oso, South of Palermo, South of Rio Oso, South of Table Mountain		QF/Selfg en
WDLEAF_7_UNIT 1	31794	WOODLEAF	13.8	55.00	1	Drum-Rio Oso, South of Table Mountain		MUNI
WISE_1_UNIT 1	32512	WISE	12	9.20	1	Placer, Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Monthly NQC - used August for LCR	Market
WISE_1_UNIT 2	32512	WISE	12	2.79	1	Placer, Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Monthly NQC - used August for LCR	Market
YUBACT_1_SUNSW T	32494	YUBA CTY	9.1	41.68	1	Pease, Drum-Rio Oso, South of Table Mountain		QF/Selfg en
YUBACT_6_UNITA1		YCEC	13.8	46.00	1	Pease, Drum-Rio Oso, South of Table Mountain		Market
CAMPFW_7_FARWS	32470	CMP.FARW	9.1	6.50	1	Colgate, South of Table Mountain	No NQC - historical data	MUNI
NA	31862	DEADWOOD	9.1	2.00	1	Drum-Rio Oso, South of Table Mountain	No NQC - historical data	MUNI
NA	32162	RIV.DLTA	9.11	3.10	1	Drum-Rio Oso, South of Palermo, South of Table Mountain		QF/Selfg en
UCDAVS_1_UNIT	32166	UC DAVIS	9.1	3.50	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	No NQC - historical data	QF/Selfg en

Major new projects modeled:

1. Table Mountain-Rio Oso Reconductor and Tower Upgrade

Critical Contingency Analysis Summary

South of Table Mountain Sub-area

The most critical contingency is the loss of the Table Mountain-Rio Oso 230 kV and Table Mountain-Palermo double circuit tower line outage. The area limitation is thermal overloading of the Caribou-Palermo 115 kV line. This limiting contingency establishes in 2009 a LCR of 1617 MW (includes 216 MW of QF and 796 MW of Muni generation) as the minimum capacity necessary for reliable load serving capability within this area.

The most critical single contingency is the loss of the Table Mountain-Rio Oso 230 kV line with one of the Colgate Units out of service. The area limitation is thermal overloading of the Table Mt-Palermo 230 kV line. This limiting contingency establishes in 2009 a LCR of 1159 MW (includes 216 MW of QF and 796 MW of Muni generation).

If the Table Mountain-Palermo 230 kV line upgrade (part of the Table Mountain-Rio Oso Reconductor and Tower Upgrade) is not achieved before June 1, 2009 then the most critical contingency is the loss of the Table Mountain-Rio Oso 230 kV line with one of the Colgate Units out of service. The area limitation is thermal overloading of the Table Mt-Palermo 230 kV line. This limiting contingency establishes a LCR higher then the total amount of available generation (1780 MW) in 2009 as the minimum capacity necessary for reliable load serving capability within this pocket. As such all the units in this area are needed and no sub-area analysis is required.

Effectiveness factors:

The following table has all units in Sierra area and their effectiveness factor to the above-mentioned constraint.

Gen Bus	Gen Name	Gen ID	Eff Fctr. (%)
31814	FORBSTWN	1	8
31794	WOODLEAF	1	8
31832	SLY.CR.	1	7
31862	DEADWOOD	1	7
31888	OROVLLE	1	6
31890	PO POWER	2	6
31890	PO POWER	1	6

31834	KELLYRDG	1	6
32452	COLGATE2	1	5
32450	COLGATE1	1	5
32466	NARROWS1	1	5
32468	NARROWS2	1	5
32470	CMP.FARW	1	5
32451	FREC	1	5
32490	GRNLEAF1	2	4
32490	GRNLEAF1	1	4
32496	YCEC	1	3
32494	YUBA CTY	1	3
32492	GRNLEAF2	1	3
32156	WOODLAND	1	3
31820	BCKS CRK	1	2
31820	BCKS CRK	2	2
31788	ROCK CK2	1	2
31812	CRESTA	1	2
31812	CRESTA	2	2
31792	POE 2	1	2
31790	POE 1	1	2
31786	ROCK CK1	1	2
31784	BELDEN	1	2
32166	UC DAVIS	1	2
		1	2
32500	ULTR RCK		
32498	SPILINCF	1	2
32162	RIV.DLTA	1	2
32510	CHILIBAR	1	2
32514	ELDRADO2	1	2
32513	ELDRADO1	1	2
32478	HALSEY F	1	2
32458	RALSTON	1	2
32456	MIDLFORK	1	2
32456	MIDLFORK	2	2
32460	NEWCSTLE	1	2
32512	WISE	1	2
32486	HELLHOLE	1	2
32508	FRNCH MD	1	2
32502	DTCHFLT2	1	2
32462	CHI.PARK	1	2
32464	DTCHFLT1	1	1
32454	DRUM 5	1	1
32476	ROLLINSF	1	1
32484	OXBOW F	1	1
32474	DEER CRK	1	1
32506	DRUM 3-4	1	1
32506	DRUM 3-4	2	1
32504	DRUM 1-2	1	1
32504	DRUM 1-2	2	1

32488	HAYPRES+	1	1
32488	HAYPRES+	2	1
32480	BOWMAN	1	1
32472	SPAULDG	1	1
32472	SPAULDG	2	1
32472	SPAULDG	3	1

Colgate Sub-area

The most critical contingency is the loss of the Colgate 230/60 kV transformer followed by the Pease-Marysville 60 kV line out or vice versa. The area limitation is thermal overloading of the Palermo-Colgate 60 kV line. This limiting contingency establishes in 2009 a LCR of 114 MW (includes 41 MW of QF and Muni generation as well as 73 MW of deficiency) as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is the loss of the Colgate 230/60 kV transformer. The area limitation is thermal overloading of the Palermo-Colgate 60 kV line. This limiting contingency establishes in 2009 a LCR of 55 MW (includes 41 MW of Muni generation and 14 MW of deficiency).

Effectiveness factors:

All units within this area (Narrows #1 & #2 and Camp Far West) are needed therefore no effectiveness factor is required.

Pease Sub-area

The most critical contingency is the loss of the Palermo-East Nicolaus 115 kV line with Green Leaf II Cogen unit out of service. The area limitation is thermal overloading of the Palermo-Pease 115 kV line. This limiting contingency establishes a LCR of 154 MW (includes 90 MW of QF generation and 20 MW of deficiency) in 2009 as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this area (Greenleaf #2, Yuba City and Yuba City EC) are needed therefore no effectiveness factor is required.

Bogue Sub-area

The most critical contingency is the loss of the Pease-Rio Oso 115 kV line with one of the Greenleaf #1 (or Feather River EC) units out of service. The area limitation is thermal overloading of the Palermo-Bogue 115 kV line. This limiting contingency establishes in 2009 a LCR of 136 MW (includes 47 MW of QF generation and 44 MW of deficiency) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this area (Greenleaf #1 units 1&2 and Feather River EC) are needed therefore no effectiveness factor is required.

South of Palermo Sub-area

The most critical contingency is the loss of the Double Circuit Tower Line Table Mountain-Rio Oso and Colgate-Rio Oso 230 kV lines. The area limitation is thermal overloading of the Pease-East Nicolaus 115 kV line. This limiting contingency establishes a LCR of 1632 MW (includes 364 MW of QF and Muni generation as well as 584 MW of deficiency) in 2009 as the minimum capacity necessary for reliable load serving capability within this sub-area.

The single most critical contingency is the loss of the Palermo-Pease 115 kV line with Belden unit out of service. The area limitation is thermal overloading of the Palermo-East Nicolaus 115 kV line. This limiting contingency establishes in 2009 a LCR of 1191 MW (includes 364 MW of QF and Muni generation and 143 MW of deficiency).

Effectiveness factors:

All units within this area are needed therefore no effectiveness factor is required.

Placerville Sub-area

The most critical contingency is the loss of the Gold Hill-Clarksville 115 kV line followed by loss of the Gold Hill-Missouri Flat #2 115 kV line. The area limitation is thermal overloading of the Gold Hill-Missouri Flat #1 115 kV line. This limiting contingency establishes a LCR of 118 MW (includes 0 MW of QF and Muni generation as well as 89 MW of deficiency) in 2009 as the minimum capacity necessary for reliable load serving capability within this sub-area.

The single most critical contingency is the loss of the Gold Hill-Clarksville 115 kV line with one of the El Dorado units out of service. The area limitation is thermal overloading of the Gold Hill-Missouri Flat #1 115 kV line. This limiting contingency establishes a LCR of 34 MW (includes 0 MW of QF and Muni generation as well as 5 MW of deficiency) in 2009.

Effectiveness factors:

All units within this area (El Dorado units 1&2 and Chili Bar) are needed therefore no effectiveness factor is required.

Placer Sub-area

The most critical contingency is the loss of the Drum-Higgins 115 kV line followed by loss of the Gold Hill-Placer #2 115 kV line. The area limitation is thermal overloading of the Gold Hill-Placer #1 115 kV line. This limiting contingency establishes a LCR of 140 MW (includes 0 MW of QF and Muni generation as well as 116 MW of deficiency) in 2009 as the minimum capacity necessary for reliable load serving capability within this sub-area.

The single most critical contingency is the loss of the Drum-Higgins 115 kV line with the Halsey unit out of service. The area limitation is thermal overloading of the Gold Hill-Placer #1 115 kV line. This limiting contingency establishes a LCR of 37 MW (includes 0 MW of QF and Muni generation as well as 13 MW of deficiency) in 2009.

Effectiveness factors:

All units within this area (Wise units 1&2, Newcastle and Halsey) are needed therefore no effectiveness factor is required.

Drum-Rio Oso Sub-area

The most critical contingency is the loss of the Rio Oso #2 230/115 transformer followed by loss of the Rio Oso-Brighton 230 kV line. The area limitation is thermal overloading of the Rio Oso #1 230/115 kV transformer. This limiting contingency establishes in 2009 a LCR of 676 MW (includes 418 MW of QF and Muni generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

The single most critical contingency is the loss of the Rio Oso #2 230/115 transformer. The area limitation is thermal overloading of the Rio Oso #1 230/115 kV transformer. This limiting contingency establishes in 2009 a LCR of 461 MW (includes 418 MW of QF and Muni generation).

Effectiveness factors:

All units within this area are needed for the most limiting contingency therefore no effectiveness factor is required (LCR need is 3 MW less than NQC).

South of Rio Oso Sub-area

The most critical contingency is the loss of the Rio Oso-Gold Hill 230 line followed by loss of the Gold Hill-Ralston 230 kV line or vice versa. The area limitation is thermal overloading of the Rio Oso-Atlantic 230 kV line. This limiting contingency establishes a LCR of 434 MW (includes 291 MW of QF and Muni generation as well as 67 MW of deficiency) in 2009 as the minimum capacity necessary for reliable load serving capability within this sub-area.

The single most critical contingency is the loss of the Rio Oso-Gold Hill 230 line with the Ralston unit out of service. The area limitation is thermal overloading of the Rio Oso-

Atlantic 230 kV line. This limiting contingency establishes a LCR of 293 MW (includes 291 MW of QF and Muni generation) in 2009.

Effectiveness factors:

All units within this area are needed for the most limiting contingency therefore no effectiveness factor is required.

Changes compared to last year's results:

Overall the load forecast went up by 35 MW. The new project modeled Table Mountain-Rio Oso Reconductor and Tower Upgrade has helped reduce the overall LCR resource needs concurrent with the reduction of the South of Table Mountain need. Some of the sub-area LCRs have increase mainly because projects previously modeled in the 2008 base case have now been delayed past summer of 2009. This is also the main reason why the deficiency has increased as well. These projects are: South of Palermo reconductoring, New Pease-Marysville 60 kV line and Atlantic-Lincoln 115 kV upgrade.

Sierra Overall Requirements:

2009	QF (MW)	Muni (MW)	Market (MW)	Max. Qualifying Capacity (MW)
Available generation	216	796	768	1780

2009	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) ¹²	1453	226	1679
Category C (Multiple) ¹³	1617	703	2320

4. Stockton Area

_

¹² A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other then load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

¹³ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

Area Definition

The transmission facilities that establish the boundary of the Tesla-Bellota Sub-area are:

- 1) Bellota 230/115 kV Transformer #1
- 2) Bellota 230/115 kV Transformer #2
- 3) Tesla-Tracy 115 kV Line
- 4) Tesla-Salado 115 kV Line
- 5) Tesla-Salado-Manteca 115 kV line
- 6) Tesla-Schulte 115 kV Line
- 7) Tesla-Kasson-Manteca 115 kV Line

The substations that delineate the Tesla-Bellota Sub-area are:

- 1) Bellota 230 kV is out Bellota 115 kV is in
- 2) Bellota 230 kV is out Bellota 115 kV is in
- 3) Tesla is out Tracy is in
- 4) Tesla is out Salado is in
- 5) Tesla is out Salado and Manteca are in
- 6) Tesla is out Schulte is in
- 7) Tesla is out Kasson and Manteca are in

The transmission facilities that establish the boundary of the Lockeford Sub-area are:

- 1) Lockeford-Industrial 60 kV line
- 2) Lockeford-Lodi #1 60 kV line
- 3) Lockeford-Lodi #2 60 kV line
- 4) Lockeford-Lodi #3 60 kV line

The substations that delineate the Lockeford Sub-area are:

- 1) Lockeford is out Industrial is in
- Lockeford is out Lodi is in
- 3) Lockeford is out Lodi is in
- 4) Lockeford is out Lodi is in

The transmission facilities that establish the boundary of the Stagg Sub-area are:

- 1) Tesla Stagg 230 kV Line
- 2) Tesla Eight Mile Road 230 kV Line
- 3) Gold Hill Eight Mile Road 230 kV Line
- Gold Hill Lodi Stig 230 kV Line

The substations that delineate the Stagg Sub-area is:

- 1) Tesla is out Stagg is in
- Tesla is out Eight Mile Road is in
- 3) Gold Hill is out Eight Mile Road is in
- 4) Gold Hill is out Lodi Stig is in

Total 2009 busload within the defined area: 1409 MW with 27 MW of losses resulting in total load + losses of 1436 MW.

Total units and qualifying capacity available in this area:

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC	UNIT ID	LCR SUB- AREA NAME	NQC Comments	CAISO Tag
BEARDS_7_UNIT 1	34074	BEARDSLY	6.9	8.36	1	Tesla-Bellota	Monthly NQC - used August for LCR	MUNI
CURIS_1_QF				0.67		Tesla-Bellota	Not modeled	QF/Selfgen
DONNLS_7_UNIT	34058	DONNELLS	13.8	72.00	1	Tesla-Bellota	Monthly NQC - used August for LCR	MUNI
LODI25_2_UNIT 1	38120	LODI25CT	9.11	22.70	1	Lockeford	No NQC - historical data	MUNI
PHOENX_1_UNIT				1.45		Tesla-Bellota	Not modeled - Monthly NQC - used August for LCR	Market
SCHLTE_1_UNITA1	33805	GWFTRCY1	13.8	83.56	1	Tesla-Bellota		Market
SCHLTE_1_UNITA2	33807	GWFTRCY2	13.8	82.88	1	Tesla-Bellota		Market
SNDBAR_7_UNIT 1	34060	SANDBAR	13.8	8.16	1	Tesla-Bellota		MUNI
SPRGAP_1_UNIT 1	34078	SPRNG GP	6	6.70	1	Tesla-Bellota		Market
STANIS_7_UNIT 1	34062	STANISLS	13.8	91.00	1	Tesla-Bellota		Market
STIGCT_2_LODI	38114	Stig CC	13.8	49.50	1	Stagg		MUNI
STNRES_1_UNIT	34056	STNSLSRP	13.8	16.72	1	Tesla-Bellota		QF/Selfgen
STOKCG_1_UNIT 1	33814	CPC STCN	12.5	47.04	1	Tesla-Bellota		QF/Selfgen
TULLCK_7_UNITS	34076	TULLOCH	6.9	8.23	1	Tesla-Bellota	Monthly NQC - used August for LCR	MUNI
TULLCK_7_UNITS	34076	TULLOCH	6.9	8.24	2	Tesla-Bellota	Monthly NQC - used August for LCR	MUNI
ULTPCH_1_UNIT 1	34050	CH.STN.	13.8	16.69	1	Tesla-Bellota		QF/Selfgen
VLYHOM_7_SSJID				1.18		Tesla-Bellota	Not modeled	QF/Selfgen
CAMCHE_1_PL1X3	33850	CAMANCHE	4.2	3.50	1	Tesla-Bellota	No NQC - historical data	MUNI
CAMCHE_1_PL1X3	33850	CAMANCHE	4.2	3.50	2	Tesla-Bellota	No NQC - historical data	MUNI
CAMCHE_1_PL1X3	33850	CAMANCHE	4.2	3.50	3	Tesla-Bellota	No NQC - historical data	MUNI
NA	33830	GEN.MILL	9.11	2.50	1	Lockeford	No NQC - historical data	QF/Selfgen
SPIFBD_1_PL1X2	33917	FBERBORD	115	3.20	1	Tesla-Bellota	No NQC - historical data	QF/Selfgen

Major new projects modeled:

1. None

Critical Contingency Analysis Summary

Stockton overall

The requirement for this area is driven by the sum of requirements for the Tesla-Bellota, Lockeford, and Stagg Sub-areas.

Tesla-Bellota Sub-area

The critical contingency for the Tesla-Bellota pocket is the loss of Tesla-Tracy 115 kV and Tesla-Kasson-Manteca 115 kV. The area limitation is thermal overloading of the Manteca-Ingram Creek section of Tesla-Salado-Manteca 115 kV line above its emergency rating. This limiting contingency establishes a LCR of 524 MW (includes 201 MW of QF and Muni generation as well as 57 MW of deficiency) in 2009 as the minimum capacity necessary for reliable load serving capability within this area.

The single most critical contingency for the Tesla-Bellota pocket is the loss of Tesla-Kasson-Manteca 115 kV line and the loss of the Stanislaus unit #1. The area limitation is thermal overloading of the Manteca-Ingram Creek section of Tesla-Salado-Manteca 115 kV line above its emergency rating. This single contingency establishes a LCR of 496 MW (includes 201 MW of QF and Muni generation as well as 29 MW of deficiency) in 2009.

Effectiveness factors:

All units within this sub-area are needed for the most limiting contingency therefore no effectiveness factor is required.

Lockeford Sub-area

The critical contingency for the Lockeford area is the loss of Lockeford-Industrial 60 kV circuit and Lockeford-Lodi #2 60 kV circuit. The area limitation is thermal overloading of the Lockeford-Lodi Jct. section of the Lockeford-Lodi #3 60 kV circuit. This limiting contingency establishes a LCR of 88 MW (including 25 MW of QF and Muni as well as a deficiency of 63 MW) in 2009 as the minimum capacity necessary for reliable load serving capability within this area.

The single most critical contingency for the Lockeford area is the loss of Lockeford-Industrial 60 kV line and the loss of the Lodi CT. The area limitation is thermal overloading of the Lockeford-Lodi Jct. section of the Lockeford-Lodi #3 60 kV circuit line above its emergency rating. This single contingency establishes a LCR of 30 MW (includes 25 MW of QF and Muni generation as well as 5 MW of deficiency) in 2009.

Effectiveness factors:

All units within this sub-area are needed therefore no effectiveness factor is required.

Stagg Sub-area

The outage of the Tesla-Stagg 230 kV line and Tesla-Eight Mile 230 kV line causes low voltages in the area. The worst post-contingency steady-state voltage is at the Mosher 60 kV bus less than 0.92 pu. This limiting contingency establishes a LCR of 115 MW (includes 50 MW of Muni generation as well as 65 MW of deficiency) in 2009 as the minimum capacity necessary for reliable load serving capability within this area.

Effectiveness factors:

The only unit within this sub-area is needed therefore no effectiveness factor is required.

Changes compared to last year's results:

Overall the load forecast went up by 106 MW. All local capacity resources were needed for 2008 and there is no change in 2009. Overall the total LCR has decreased by 60 MW because of the significant decrease in the Stagg sub-area deficiency due to an updated model for the distribution capacitors connected directly to the distribution banks at Stagg 230 kV bus.

Stockton Overall Requirements:

2009	QF (MW)			Max. Qualifying Capacity (MW)
Available generation	88	188	265	541

2009	Existing Generation	Deficiency	Total MW
	Capacity Needed (MW)	(MW)	LCR Need
Category B (Single) ¹⁴	491	34	525
Category C (Multiple) ¹⁵	541	185	726

5. Greater Bay Area

Area Definition

The transmission tie lines into the Greater Bay Area are:

- 1) Lakeville-Sobrante 230 kV
- 2) Ignacio-Sobrante 230 kV
- 3) Parkway-Moraga 230 kV
- 4) Bahia-Moraga 230 kV
- 5) Lambie SW Sta-Vaca Dixon 230 kV
- 6) Peabody-Contra Costa P.P. 230 kV
- 7) Tesla-Kelso 230 kV
- 8) Tesla-Delta Switching Yard 230 kV
- 9) Tesla-Pittsburg #1 230 kV
- 10) Tesla-Pittsburg #2 230 kV
- 11) Tesla-Newark #1 230 kV
- 12) Tesla-Newark #2 230 kV
- 13) Tesla-Ravenswood 230 kV
- 14) Tesla-Metcalf 500 kV
- 15) Moss Landing-Metcalf 500 kV
- 16) Moss Landing-Metcalf #1 230 kV
- 17) Moss Landing-Metcalf #2 230 kV
- 18) Oakdale TID-Newark #1 115 kV
- 19) Oakdale TID-Newark #2 115 kV

The substations that delineate the Greater Bay Area are:

- 1) Lakeville is out Sobrante is in
- 2) Ignacio is out Sobrante is in
- 3) Parkway is out Moraga is in
- 4) Bahia is out Moraga is in
- 5) Lambie SW Sta is in Vaca Dixon is out
- 6) Peabody is out Contra Costa P.P. is in
- 7) Tesla is out Kelso is in
- 8) Tesla is out Delta Switching Yard is in

¹⁴ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other then load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

¹⁵ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

- 9) Tesla is out Pittsburg is in
- 10) Tesla is out Pittsburg is in
- 11) Tesla is out Newark is in
- 12) Tesla is out Newark is in
- 13) Tesla is out Ravenswood is in
- 14) Tesla is out Metcalf is in
- 15) Moss Landing is out Metcalf is in
- 16) Moss Landing is out Metcalf is in17) Moss Landing is out Metcalf is in
- 18) Oakdale TID is out Newark is in
- 19) Oakdale TID is out Newark is in

Total 2009 busload within the defined area: 10,041 MW with 253 MW of losses resulting in total load + losses of 10,294 MW.

Total units and qualifying capacity available in this area:

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC	UNI T ID	LCR SUB- AREA NAME	NQC Comments	CAISO Tag
ALMEGT_1_UNIT 1	38118	ALMDACT1	13.8	23.80	1	Oakland		MUNI
ALMEGT_1_UNIT 2	38119	ALMDACT2	13.8	24.00	1	Oakland		MUNI
BLHVN_7_MENLOP				1.57		None	Not modeled	QF/Selfgen
BRDSLD_2_HIWIND	32172	HIGHWINDS	34.5	78.64	1	None	Monthly NQC - used August for LCR	Wind
BRDSLD_2_SHILO1	32176	SHILOH	34.5	35.24	1	None	Monthly NQC - used August for LCR	Wind
CALPIN_1_AGNEW	35860	OLS-AGNE	9.11	26.56	1	San Jose		QF/Selfgen
CARDCG_1_UNITS	33463	CARDINAL	12.47	12.64	1	None		QF/Selfgen
CARDCG_1_UNITS	33463	CARDINAL	12.47	12.64	2	None		QF/Selfgen
CLRMTK_1_QF				0.00		Oakland	Not modeled	QF/Selfgen
COCOPP_7_UNIT 6	33116	C.COS 6	18	337.00	1	None		Market
COCOPP_7_UNIT 7	33117	C.COS 7	18	337.00	1	None		Market
CONTAN_1_UNIT	36856	CCA100	13.8	16.26	1	San Jose		QF/Selfgen
CROKET_7_UNIT	32900	CRCKTCOG	18	240.00	1	Pittsburg		QF/Selfgen
CSCCOG_1_UNIT 1	36854	Cogen	12	3.00	1	San Jose		MUNI
CSCCOG_1_UNIT 1	36854	Cogen	12	3.00	2	San Jose		MUNI
CSCGNR_1_UNIT 1	36858	Gia100	13.8	24.00	1	San Jose		MUNI
CSCGNR_1_UNIT 2	36895	Gia200	13.8	24.00	2	San Jose		MUNI
DELTA_2_PL1X4	33107	DEC STG1	24	269.61	1	Pittsburg	Monthly NQC - used August for LCR	Market
DELTA_2_PL1X4	33108	DEC CTG1	18	181.13	1	Pittsburg	Monthly NQC - used August for LCR	Market
DELTA_2_PL1X4	33109	DEC CTG2	18	181.13	1	Pittsburg	Monthly NQC - used August for LCR	Market
DELTA_2_PL1X4	33110	DEC CTG3	18	181.13	1	Pittsburg	Monthly NQC - used August for LCR	Market

DOWO						
DOWCHM_1_UNITS 33161 DOWC	HEM 13.8	6.63	1	Pittsburg		QF/Selfgen
DOWCHM_1_UNITS 33162 DOWC 2	HEM 13.8	8.76	1	Pittsburg		QF/Selfgen
DOWCHM_1_UNITS 33163 DOWC	HEM _{13.8}	8.76	1	Pittsburg		QF/Selfgen
DUANE_1_PL1X3 36863 DVRa	GT1 13.8	49.27	1	San Jose		MUNI
DUANE_1_PL1X3 36864 DVRb	GT2 13.8	49.27	1	San Jose		MUNI
DUANE_1_PL1X3 36865 DVRa	ST3 13.8	49.26	1	San Jose		MUNI
FLOWD2_2_UNIT 1 35318 FLOWE	DPTR 9.11	9.94	1	None	Monthly NQC - used August for LCR	Wind
GILROY_1_UNIT 35850 GLRY	COG 13.8	66.00	1	Llagas	Monthly NQC - used August for LCR	Market
GILROY_1_UNIT 35850 GLRY	COG 13.8	34.00	2	Llagas	Monthly NQC - used August for LCR	Market
GILRPP_1_PL1X2 35851 GROYF	PKR1 13.8	45.50	1	Llagas	Monthly NQC - used August for LCR	Market
GILRPP_1_PL1X2 35852 GROYF	PKR2 13.8	45.50	1	Llagas	Monthly NQC - used August for LCR	Market
GILRPP_1_PL3X4 35853 GROYF	PKR3 13.8	45.00	1	Llagas	Monthly NQC - used August for LCR	Market
GRZZLY_1_BERKLY 32740 HILLS	IDE 115	26.48	1	None	August 101 Lort	QF/Selfgen
GWFPW1_6_UNIT 33131 GWF	#1 9.11	19.42	1	Pittsburg		QF/Selfgen
GWFPW2_1_UNIT 1 33132 GWF	#2 13.8	18.90	1	Pittsburg		QF/Selfgen
GWFPW3_1_UNIT 1 33133 GWF	#3 13.8	19.37	1	Pittsburg		QF/Selfgen
GWFPW4_6_UNIT 1 33134 GWF	#4 13.8	19.09	1	Pittsburg		QF/Selfgen
GWFPW5_6_UNIT 1 33135 GWF	#5 13.8	18.97	1	Pittsburg		QF/Selfgen
HICKS_7_GUADLP		1.91		None	Not modeled	QF/Selfgen
LECEF_1_UNITS 35854 LECEF	GT1 13.8	46.50	1	San Jose	Monthly NQC - used August for LCR	Market
LECEF_1_UNITS 35855 LECEF	GT2 13.8	46.50	1	San Jose	Monthly NQC - used August for LCR	Market
LECEF_1_UNITS 35856 LECEF	GT3 13.8	46.50	1	San Jose	Monthly NQC - used August for LCR	Market
LECEF_1_UNITS 35857 LECEF	GT4 13.8	46.50	1	San Jose	Monthly NQC - used August for LCR	Market
LFC 51_2_UNIT 1 35310 LFC F	IN+ 9.11	4.50	1	None	Monthly NQC - used August for LCR	Wind
LMBEPK_2_UNITA1 32173 LAMB	GT1 13.8	47.00	1	None	Monthly NQC - used August for LCR	Market
LMBEPK_2_UNITA2 32174 GOOSE	HGT 13.8	46.00	2	None	Monthly NQC - used August for LCR	Market
LMBEPK_2_UNITA3 32175 CREED	OGT1 13.8	47.00	3	None	Monthly NQC - used August for LCR	Market
LMEC_1_PL1X3 33111 LMEC	CT2 18	163.20	1	Pittsburg	Monthly NQC - used August for LCR	Market
LMEC_1_PL1X3 33112 LMEC	CT1 18	163.20	1	Pittsburg	Monthly NQC - used August for LCR	Market

LMEC_1_PL1X3 33113 LMECST1 18	229.60	1	Pittsburg	Monthly NQC - used August for LCR	Market
MARKHM_1_CATLS 35863 CATALYST 9.11 T	2.00	1	San Jose		QF/Selfgen
MEDOLN_7_CHEVC P	0.91		Pittsburg	Not modeled	QF/Selfgen
METCLF_1_QF	0.37		None	Not modeled	QF/Selfgen
METEC_2_PL1X3 35881 MEC CTG1 18	178.43	1	San Jose	Monthly NQC - used August for LCR	Market
METEC_2_PL1X3 35882 MEC CTG2 18	178.43	1	San Jose	Monthly NQC - used August for LCR	Market
METEC_2_PL1X3 35883 MEC STG1 18	213.14	1	San Jose	Monthly NQC - used August for LCR	Market
MISSIX_1_QF	0.02		San Francisco	Not modeled	QF/Selfgen
MLPTAS_7_QFUNTS	0.62		San Jose	Not modeled	QF/Selfgen
MNTAGU_7_NEWBY I	3.42		None	Not modeled	QF/Selfgen
NEWARK_1_QF	0.00		None	Not modeled	QF/Selfgen
OAK C_7_UNIT 1 32901 OAKLND 1 13.8	55.00	1	Oakland		Market
OAK C_7_UNIT 2 32902 OAKLND 2 13.8	55.00	1	Oakland		Market
OAK C_7_UNIT 3 32903 OAKLND 3 13.8	55.00	1	Oakland		Market
OAK L_7_EBMUD	1.22		Oakland	Not modeled	MUNI
PALALT_7_COBUG	4.50		None	Not modeled	MUNI
PITTSP_7_UNIT 5 33105 PTSB 5 18	312.00	1	Pittsburg		Market
PITTSP_7_UNIT 6 33106 PTSB 6 18	317.00	1	Pittsburg		Market
PITTSP_7_UNIT 7 30000 PTSB 7 20	682.00	1	Pittsburg		Market
POTRPP_7_UNIT 3 33252 POTRERO3 20	206.00	1	San Francisco		Market
POTRPP_7_UNIT 4 33253 POTRERO4 13.8	52.00	1	San Francisco		Market
POTRPP_7_UNIT 5 33254 POTRERO5 13.8	52.00	1	San Francisco		Market
POTRPP_7_UNIT 6 33255 POTRERO6 13.8	52.00	1	San Francisco		Market
RICHMN_7_BAYENV	2.00		None	Not modeled	QF/Selfgen
RVRVEW_1_UNITA1 33178 RVEC_GEN 13.8	46.00	1	None	Monthly NQC - used August for LCR	Market
SEAWST_6_LAPOS 35312 SEAWESTF 9.11	1.62	1	None	Monthly NQC - used August for LCR	Wind
SJOSEA_7_SJCONV	0.00		None	Not modeled	QF/Selfgen
SRINTL_6_UNIT 33468 SRI INTL 9.11	0.89	1	None		QF/Selfgen
STAUFF_1_UNIT 33139 STAUFER 9.11	0.03	1	None		QF/Selfgen
STOILS_1_UNITS 32921 CHEVGEN1 13.8	0.09	1	Pittsburg		QF/Selfgen
STOILS_1_UNITS 32922 CHEVGEN2 13.8	0.09	1	Pittsburg		QF/Selfgen
TIDWTR_2_UNITS 33151 FOSTER W 12.4	5.97	1	Pittsburg		QF/Selfgen
TIDWTR_2_UNITS 33151 FOSTER W 12.4	5.97	2	Pittsburg		QF/Selfgen
TIDWTR_2_UNITS 33151 FOSTER W 12.4	5.97	3	Pittsburg		QF/Selfgen

UNCHEM_1_UNIT	32920	UNION CH	9.11	20.00	1	Pittsburg		QF/Selfgen
UNOCAL 1 UNITS	32910	UNOCAL	12	0.40	1	Pittsburg		QF/Selfgen
UNOCAL 1 UNITS		UNOCAL	12	0.40	2	Pittsburg		QF/Selfgen
UNOCAL_1_UNITS		UNOCAL	12	0.39	3	Pittsburg		QF/Selfgen
UNTDQF 7 UNITS			9.11	27.25	1	None		QF/Selfgen
UNIDQF_/_UNITS	33400	ONTED CO	9.11	21.25	'	None		QF/Sellgell
USWNDR_2_UNITS	32168	EXNCO	9.11	12.62	1	None	Monthly NQC - used August for LCR	Wind
USWPFK_6_FRICK	35320	USW FRIC	12	0.88	1	None	Monthly NQC - used August for LCR	Wind
USWPFK_6_FRICK	35320	USW FRIC	12	0.88	2	None	Monthly NQC - used August for LCR	Wind
USWPJR_2_UNITS	33838	USWP_#3	9.11	9.76	1	None	Monthly NQC - used August for LCR	Wind
WNDMAS_2_UNIT 1	33170	WINDMSTR	9.11	1.91	1	None	Monthly NQC - used August for LCR	Wind
ZOND_6_UNIT	35316	ZOND SYS	9.11	3.40	1	None	Monthly NQC - used August for LCR	Wind
GATWAY_2_PL1X3	33118	GATEWAY1	18.0	200.00	1	None	No NQC - Pmax	Market
GATWAY_2_PL1X3	33119	GATEWAY2	18.0	195.00	1	None	No NQC - Pmax	Market
GATWAY_2_PL1X3	33120	GATEWAY3	18.0	195.00	1	None	No NQC - Pmax	Market
IBMCTL_1_UNIT 1	35637	IBM-CTLE	115	0.00	1	San Jose	No NQC - historical data	Market
IMHOFF_1_UNIT 1	33136	CCCSD	12.47	4.40	1	Pittsburg	No NQC - historical data	QF/Selfgen
New unit	32177	SHILO	34.5	35.24	2	None	No NQC - estimated data	Wind
OXMTN_6_LNDFIL	33469	OX_MTN	4.16	1.90	1	None	No NQC - Pmax	Market
OXMTN_6_LNDFIL	33469	OX_MTN	4.16	1.90	2	None	No NQC - Pmax	Market
OXMTN_6_LNDFIL	33469	OX_MTN	4.16	1.90	3	None	No NQC - Pmax	Market
OXMTN_6_LNDFIL	33469	OX_MTN	4.16	1.90	4	None	No NQC - Pmax	Market
OXMTN_6_LNDFIL	33469	OX_MTN	4.16	1.90	5	None	No NQC - Pmax	Market
OXMTN_6_LNDFIL	33469	OX_MTN	4.16	1.90	6	None	No NQC - Pmax	Market
OXMTN_6_LNDFIL	33469	OX_MTN	4.16	1.90	7	None	No NQC - Pmax	Market
SHELRF_1_UNITS	33141	SHELL 1	12.47	20.00	1	Pittsburg	No NQC - historical data	QF/Selfgen
SHELRF_1_UNITS	33142	SHELL 2	12.47	40.00	1	Pittsburg	No NQC - historical data	QF/Selfgen
SHELRF_1_UNITS	33143	SHELL 3	12.47	40.00	1	Pittsburg	No NQC - historical data	QF/Selfgen
USWNDR_2_SMUD	32169	SOLANOWP	21	20.00	1	None	No NQC - historical data	Wind
ZANKER_1_UNIT 1	35861	SJ-SCL W	9.11	2.10	1	San Jose	No NQC - historical data	QF/Selfgen

Major new projects modeled:

- 1. Gateway Power Plant
- 2. New H-P #4 115 kV Cable in San Francisco
- 3. Re-rate of Tesla #4 and #6 500/230 kV Transformer Banks

Critical Contingency Analysis Summary

San Francisco Sub-area

Per the CAISO Revised Action Plan for SF, Potrero units #3 and all three CTs (360 MW) will continue to be required until completion of the plan as it is presently described.

The water permit for the Potrero site needs to be renewed beyond 2008. Because of "once through cooled" issues, this may not be possible. San Francisco sub-area will be deficient without the operation of Potrero or the implementation of the CAISO Revised Action Plan.

Effectiveness factors:

All units within this area are needed therefore no effectiveness factor is required.

Oakland Sub-area

The most critical contingency is an outage of the D-L 115 kV cable (with one of the Oakland CT's off-line). The area limitation is thermal overloading of the C-X #2 115 kV cable. This limiting contingency establishes a LCR of 101 MW in 2009 (includes 49 MW of Muni generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this area have the same effectiveness factor. Units outside of this area are not effective.

Llagas Sub-area

The most critical contingency is an outage between Metcalf D and Morgan Hill 115 kV (with one of the Gilroy Peaker off-line). The area limitation is thermal overloading of the Metcalf-Llagas 115 kV line. As documented within a CAISO Operating Procedure, this limitation is dependent on power flowing in the direction from Metcalf to Llagas/Morgan Hill. This limiting contingency establishes a LCR of 112 MW in 2009 (includes 0 MW of

QF and Muni generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this area have the same effectiveness factor. Units outside of this area are not effective.

San Jose Sub-area

The most critical contingency is an outage of Metcalf-El Patio #1 or #2 115 kV line followed by Metcalf-Evergreen #1 115 kV line. The area limitation is thermal overloading of the Metcalf-Evergreen #2 115 kV line. This limiting contingency establishes a LCR of 259 MW in 2009 (includes 48 MW of QF and 202 MW of Muni generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The following table has units within the Bay Area that are at least 5% effective to the above-mentioned constraint.

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
35863	CATALYST	1	20
36856	CCCA100	1	6
36854	Cogen	1	6
36854	Cogen	2	6
36863	DVRaGT1	1	6
36864	DVRbGT2	1	6
36865	DVRaST3	1	6
35860	OLS-AGNE	1	5
36858	Gia100	1	5
36859	Gia200	2	5
35854	LECEFGT1	1	5
35855	LECEFGT2	2	5
35856	LECEFGT3	3	5
35857	LECEFGT4	4	5

Pittsburg Sub-area

The most critical contingency is an outage of the Pittsburg-Tesla #1 or #2 230 kV line (with Delta Energy Center off-line). The sub-area area limitation is thermal overloading of the parallel Pittsburg-Tesla 230 kV line. This limiting contingency establishes a LCR of 2160 MW in 2009 (including 504 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The following table has units within the Bay Area that are at least 5% effective to the above-mentioned constraint.

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
33840	FLOWD3-6	1	86
33840	FLOWD3-6	2	86
33840	FLOWD3-6	3	86
33840	FLOWD3-6	4	86
33171	TRSVQ+NW	2	26
33171	TRSVQ+NW	1	26
33105	PTSB 5	1	26
33106	PTSB 6	1	26
30000	PTSB 7	1	26
33110	DEC CTG3	1	25
33109	DEC CTG2	1	25
33108	DEC CTG1	1	25
33107	DEC STG1	1	25
33113	LMECST1	1	24
33112	LMECCT1	1	24
33111	LMECCT2	1	24
33132	GWF #2	1	24
33161	DOWCHEM1	1	24
33162	DOWCHEM2	1	24
33163	DOWCHEM3	1	24
33151	FOSTER W	1	23
33151	FOSTER W	2	23
33151	FOSTER W	3	23
33141	SHELL 1	1	21
33143	SHELL 3	1	21
33142	SHELL 2	1	21
32900	CRCKTCOG	1	19
32910	UNOCAL	1	19
32910	UNOCAL	2	19
32910	UNOCAL	3	19
32920	UNION CH	1	19
32922	ChevGen2	1	18
32921	ChevGen1	1	18

32740	HILLSIDE	1	18
33135	GWF #5	1	18
38119	ALMDACT2	1	16
32903	OAKLND 3	1	16
32902	OAKLND 2	1	16
32901	OAKLND 1	1	16
38118	ALMDACT1	1	16
30464	EXXON_BH	1	9
33252	POTRERO3	1	7
33253	POTRERO4	1	7
33254	POTRERO5	1	7
33255	POTRERO6	1	7
33466	UNTED CO	1	7
35312	SEAWESTF	1	7
35316	ZOND SYS	1	7
35320	USW FRIC	1	7
32176	SHILOH	1	5
36865	DVRPPSTA	1	5
36864	DVRPPCT2	1	5
36863	DVRPPCT1	1	5
33178	RVEC_GEN	1	5
32175	CREEDGT1	3	5
32174	GOOSEHGT	2	5
32173	LAMBGT1	1	5
32172	HIGHWNDS	1	5
33134	GWF #4	1	5
33116	C.COS 6	1	5
33117	C.COS 7	1	5
33133	GWF #3	1	5
33145	CROWN.Z.	1	5
33145	CROWN.Z.	2	5
33131	GWF #1	1	5
36856	CSC_CCA	1	5
33463	CARDINAL	1	5
33463	CARDINAL	2	5
32168	USWINDPW	1	5
32168	USWINDPW	2	5
33838	USWP_#3	1	5

Bay Area overall

The most critical contingency is the loss of the Tesla-Metcalf 500 kV followed by Delta Energy Center or vice versa. The area limitation is reactive margin within the Bay Area. This limiting contingency establishes a LCR of 4791 MW in 2009 (includes 641 MW of

QF, 215 MW of Wind and 255 MW of Muni generation) as the minimum capacity necessary for reliable load serving capability within this area.

Effectiveness factors:

For most helpful procurement information please read procedure T-133Z effectiveness factors – Bay Area at:

http://www.caiso.com/docs/2004/11/01/2004110116234011719.pdf

Changes compared to last year's results:

Overall the load forecast went up by 424 MW and that drives the LCR increase. A few new small resources and Gateway Power Plant were installed and major path flows in Northern California have changed slightly with COI up 500 MW N-S and Path 15 down 300 S-N. No clear correlation has been established before on major path flows vs. reactive margin in the Bay Area. Reactive Margin is a non-linear function and the overall effect is that LCR has increased by 103 MW.

Bay Area Overall Requirements:

2009	Wind (MW)	QF/Selfgen (MW)	Muni (MW)	Market (MW)	Max. Qualifying Capacity (MW)
Available generation	215	641	255	5662	6773

2009	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) ¹⁶	4791	0	4791
Category C (Multiple) ¹⁷	4791	0	4791

6. Greater Fresno Area

_

¹⁶ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other then load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

¹⁷ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

Area Definition

The transmission facilities coming into the Greater Fresno area are:

- 1) Gates-Henrietta Tap 1 230 kV Line
- 2) Gates-Henrietta Tap 2 230 kV Line
- 3) Gates #1 230/115 kV Transformer Bank
- 4) Los Banos #3 230/70 kV Transformer Bank
- 5) Los Banos #4 230/70 kV Transformer Bank
- 6) Panoche-Gates #1 230 kV Line
- 7) Panoche-Gates #2 230 kV Line
- 8) Panoche-Coburn 230 kV Line
- 9) Panoche-Moss Landing 230 kV Line
- 10) Panoche-Los Banos #1 230 kV Line
- 11) Panoche-Los Banos #2 230 kV Line
- 12) Panoche-Dos Amigos 230 kV Line
- 13) Warnerville-Wilson 230 kV Line
- 14) Wilson-Melones 230 kV Line
- 15) Midway-Semitropic-Smyrna 115kV Line
- 16) Coalinga #1-San Miguel 70 kV Line

The substations that delineate the Greater Fresno area are:

- 1) Gates is out Henrietta is in
- 2) Gates is out Henrietta is in
- 3) Gates 230 kV is out Gates 115 kV is in
- 4) Los Banos 230 kV is out Los Banos 70 kV is in
- 5) Los Banos 230 kV is out Los Banos 70 kV is in
- 6) Panoche is in Gates is out
- 7) Panoche is in Gates is out
- 8) Panoche is in Coburn is out
- 9) Panoche is in Moss Landing is out
- 10) Panoche is in Los Banos is out
- 11) Panoche is in Los Banos is out
- 12) Panoche is in Dos Amigos is out
- 13) Warnerville is out Wilson is in
- 14) Wilson is in Melones is out
- 15) Midway and Semitropic are out Smyrna is in
- 16) Coalinga is in San Miguel is out

2009 total busload within the defined area is 3257 MW with 124 MW of losses resulting in a total (load plus losses) of 3381 MW.

Total units and qualifying capacity available in this area:

MKT/SCHED BUS NAME KV NQC UNI LCR SUB-AREA NQC Comments CAISO Tag

AGRICO_6_PL3N5 34608 AGRICO 13.4 AGRICO_7_UNIT 34608 AGRICO 13.4 AGRICO_7_UNIT 34608 AGRICO 13.4 BALCHS_7_UNIT 1 34624 BALCH 13.4 BALCHS_7_UNIT 2 34612 BLCH 13.4 BALCHS_7_UNIT 3 34614 BLCH 13.4 BORDEN_2_QF 30805 BORDEN 2308 BULLRD_7_SAGNES	3 42.62 3 7.38 2 34.00 3 52.50 3 52.50	3 Wilson, Herndon 2 Wilson, Herndon 4 Wilson, Herndon 5 Wilson, Herndon 6 Market 7 Wilson, Herndon 7 Wilson, Herndon 8 Market 8 Wilson, Herndon 9 Market 9 Wilson 9 Wilson 9 Not modeled 9 QF/Selfgen 9 Wilson 9 Wilson 9 Not modeled 9 QF/Selfgen
CAPMAD_1_UNIT 1 34179 MADERA_G 13.6	3 17.47	1 Wilson Market
CHEVCO_6_UNIT 1 34652 CHV.COAL 9.1	9.24	1 Wilson QF/Selfgen
CHEVCO_6_UNIT 2 34652 CHV.COAL 9.1	1.38	2 Wilson QF/Selfgen
CHWCHL_1_UNIT 34301 CHOWCOG 13.5	48.00	1 Wilson, Herndon Market
COLGA1_6_SHELLW 34654 COLNEAGN 9.1	35.96	1 Wilson QF/Selfgen
CRESSY_1_PARKER 34140 CRESSEY 118	1.53	Wilson Not modeled MUNI
CRNEVL_6_CRNVA	0.71	Not modeled - Wilson Monthly NQC - used Market August for LCR
CRNEVL_6_SJQN 2 34631 SJ2GEN 9.1 CRNEVL 6 SJQN 3 34633 SJ3GEN 9.1		1 Wilson Market 1 Wilson Market
DINUBA_6_UNIT 34648 DINUBA E 13.	3 10.54	1 Wilson, Herndon Market
EXCHEC_7_UNIT 1 34306 EXCHQUER 13.	61.77	1 Wilson Monthly NQC - used MUNI August for LCR
FRIANT_6_UNITS 34636 FRIANTDM 6.6	7.58	2 Wilson QF/Selfgen
FRIANT_6_UNITS 34636 FRIANTDM 6.6	4.05	3 Wilson QF/Selfgen
FRIANT_6_UNITS 34636 FRIANTDM 6.6		4 Wilson QF/Selfgen
GATES_6_PL1X2 34553 WHD_GAT2 13.	38.00	1 Wilson Market
GWFPWR_1_UNITS 34431 GWF_HEP1 13.	3 42.20	1 Wilson, Herndon Market
GWFPWR_1_UNITS 34433 GWF_HEP2 13.	3 42.20	1 Wilson, Herndon Market
GWFPWR_6_UNIT 34650 GWF-PWR. 9.1	1 24.02	1 Wilson, Henrietta QF/Selfgen
HAASPH_7_PL1X2 34610 HAAS 13.	68.15	1 Wilson, Herndon Monthly NQC - used Market
	00.10	August for LCR
HAASPH_7_PL1X2 34610 HAAS 13.		2 Wilson Herndon Monthly NQC - used Market
HAASPH_7_PL1X2 34610 HAAS 13.4 HELMPG_7_UNIT 1 34600 HELMS 18		2 Wilson, Herndon Monthly NQC - used August for LCR Market
	8 68.15	2 Wilson, Herndon Monthly NQC - used August for LCR Market 1 Wilson Market
HELMPG_7_UNIT 1 34600 HELMS 18	68.15 404.00	2 Wilson, Herndon Monthly NQC - used August for LCR Market 1 Wilson Market 2 Wilson Market
HELMPG_7_UNIT 1 34600 HELMS 18 HELMPG_7_UNIT 2 34602 HELMS 18	3 68.15 404.00 404.00 404.00	2 Wilson, Herndon Monthly NQC - used August for LCR Market 1 Wilson Market 2 Wilson Market
HELMPG_7_UNIT 1 34600 HELMS 18 HELMPG_7_UNIT 2 34602 HELMS 18 HELMPG_7_UNIT 3 34604 HELMS 18	3 68.15 404.00 404.00 404.00 3 45.33	2 Wilson, Herndon Monthly NQC - used August for LCR Market 1 Wilson Market 2 Wilson Market 3 Wilson Market

JRWOOD_1_UNIT 1 34332 JRWCOGEN 9.11	7.00	1	Wilson, Merced		QF/Selfgen
KERKH1_7_UNIT 1 34344 KERCKHOF 6.6	13.00	1	Wilson, Herndon		Market
KERKH1_7_UNIT 2 34344 KERCKHOF 6.6	8.50	2	Wilson, Herndon		Market
KERKH1_7_UNIT 3 34344 KERCKHOF 6.6	12.80	3	Wilson, Herndon		Market
KERKH2_7_UNIT 1 34308 KERCKHOF 13.8	153.90	1	Wilson, Herndon		Market
KINGCO_1_KINGBR 34642 KINGSBUR 9.11	29.77	1	Wilson, Herndon		QF/Selfgen
KINGRV_7_UNIT 1 34616 KINGSRIV 13.8	51.20	1	Wilson, Herndon		Market
MALAGA_1_PL1X2 34671 KRCDPCT1 13.8	48.00	1	Wilson, Herndon		Market
MALAGA_1_PL1X2 34672 KRCDPCT2 13.8	48.00	1	Wilson, Herndon		Market
MCCALL_1_QF	0.75		Wilson, Herndon	Not modeled	QF/Selfgen
MCSWAN_6_UNITS 34320 MCSWAIN 9.11	5.04	1	Wilson	Monthly NQC - used August for LCR	MUNI
MENBIO_6_UNIT 34334 BIO PWR 9.11	21.19	1	Wilson		QF/Selfgen
MERCFL_6_UNIT 34322 MERCEDFL 9.11	2.20	1	Wilson	Monthly NQC - used August for LCR	Market
PINFLT_7_UNITS 38720 PINEFLAT 13.8	75.00	1	Wilson, Herndon		MUNI
PINFLT_7_UNITS 38720 PINEFLAT 13.8	75.00	2	Wilson, Herndon		MUNI
PINFLT_7_UNITS 38720 PINEFLAT 13.8	75.00	3	Wilson, Herndon		MUNI
PNOCHE_1_PL1X2 34142 WHD_PAN2 13.8	40.00	1	Wilson, Herndon		Market
PNOCHE_1_UNITA1 34186 DG_PAN1 13.8	42.78	1	Wilson		Market
SGREGY_6_SANGE 34646 SANGERCO 9.11	36.51	1	Wilson		QF/Selfgen
STOREY_7_MDRCH W	1.04		Wilson	Not modeled	QF/Selfgen
ULTPFR_1_UNIT 1 34640 ULTR.PWR 9.11	21.77	1	Wilson, Herndon		QF/Selfgen
WISHON_6_UNITS 34658 WISHON 2.3	4.60	1	Wilson		Market
WISHON_6_UNITS 34658 WISHON 2.3	4.60	2	Wilson		Market
WISHON_6_UNITS 34658 WISHON 2.3	4.60	3	Wilson		Market
WISHON_6_UNITS 34658 WISHON 2.3	4.60	4	Wilson		Market
WISHON_6_UNITS 34658 WISHON 2.3	0.00	5	Wilson		Market
WRGHTP_7_AMENG Y	0.66		Wilson	Not modeled	QF/Selfgen
CHWCHL_1_BIOMA 34305 CHWCHLA2 13.8	12.50	1	Wilson, Herndon	No NQC - Pmax	Market
ELNIDP_6_BIOMAS 34330 ELNIDO 13.8	12.50	1	Wilson	No NQC - Pmax	Market
NA 34485 FRESNOW 12.5	9.00	1	Wilson	No NQC - historical data	QF/Selfgen
ONLLPP_6_UNIT 1 34316 ONEILPMP 9.11	0.50	1	Wilson	No NQC - historical data	MUNI

Major new projects modeled:

1. Installation of the Altwater SPS

2. Two new small peakers

Critical Contingency Analysis Summary

Wilson Sub-area

The Wilson sub-area largely defines the Fresno area import constraints. The main constrained spot is located at Wanerville-Wilson-Gregg 230 kV transmission corridor. Other constrained spots are located at the Gates-McCall, Gates-Gregg, Panoche-McCall and Panoche-Gregg 230 kV transmission corridors.

The most critical contingency is the loss of the Melones - Wilson 230 kV line overlapped with one of the Helms units out of service. This contingency would thermally overload the Warnerville - Wilson 230 kV line and possibly also the Gates-McCall 230 kV line. This limiting contingency establishes a LCR of 2262 MW in 2009 (includes 216 MW of QF and 294 MW of Muni generation) as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The following table has units within Fresno that are at least 5% effective to the constraint on the Warnerville – Wilson 230 kV line.

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
34332	JRWCOGEN	1	40%
34330	ELNIDO	1	37%
34322	MERCEDFL	1	35%
34320	MCSWAIN	1	34%
34306	EXCHQUER	1	34%
34305	CHWCHLA2	1	32%
34301	CHOWCOGN	1	32%
34658	WISHON	1	28%
34658	WISHON	1	28%
34658	WISHON	1	28%
34658	WISHON	1	28%
34658	WISHON	1	28%
34631	SJ2GEN	1	28%
34633	SJ3GEN	1	27%
34636	FRIANTDM	2	27%
34636	FRIANTDM	3	27%
34636	FRIANTDM	4	27%
34600	HELMS 1	1	27%

34602	HELMS 2	1	27%
34604	HELMS 3	1	27%
34308	KERCKHOF	1	26%
34344	KERCKHOF	1	26%
34344	KERCKHOF	2	26%
34344	KERCKHOF	3	26%
34485	FRESNOWW	1	24%
34648	DINUBA E	1	22%
34179	MADERA_G	1	22%
34616	KINGSRIV	1	22%
34624	BALCH 1	1	21%
34671	KRCDPCT1	1	21%
34672	KRCDPCT2	1	21%
34640	ULTR.PWR	1	21%
34646	SANGERCO	1	21%
34642	KINGSBUR	1	19%
34610	HAAS	1	18%
34610	HAAS	1	18%
34614	BLCH 2-3	1	18%
34612	BLCH 2-2	1	17%
38720	PINE FLT	1	17%
38720	PINE FLT	2	17%
38720	PINE FLT	3	17%
34431	GWF_HEP1	1	17%
34433	GWF HEP2	1	17%
34334	BIO PWR	1	14%
34608	AGRICO	2	14%
34608	AGRICO	3	14%
34608	AGRICO	4	14%
34539	GWF_GT1	1	14%
34541	GWF_GT2	1	14%
34650	GWF-PWR.	1	13%
34186	DG PAN1	1	11%
34142	WHD PAN2	1	11%
34652	CHV.COAL	1	10%
34652	CHV.COAL	2	10%
34553	WHD GAT2	1	9%
34654	COLNGAGN	1	9%
34342	INT.TURB	1	6%
34316	ONEILPMP	1	6%
			-

Herndon Sub-area

The most critical contingency is the loss of the Herndon 230/115 kV bank 1 overlapped with Kerckhoff II generator out of service. This contingency could thermally overload the parallel Herndon 230/115 kV bank 2. This limiting contingency establishes a LCR of 1150 MW (includes 52 MW of QF and 225 MW of Muni generation) in 2009 as the

minimum generation capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency for the Herndon sub-area is the loss of the Herndon 230/115 kV bank 1, which could thermally overload the parallel Herndon 230/115 kV bank 2. This limiting contingency establishes a LCR of 787 MW (includes 52 MW of QF and 225 MW of Muni generation) in 2009.

Effectiveness factors:

The following table has units within Fresno area that are relatively effective to the above-mentioned constraint. All units in Fresno not listed or units outside of this area have smaller effectiveness factors.

Gen Bus	Gen Name	Gen ID	Eff Fctr (%
34308	KERCKHOF	1	34%
34344	KERCKHOF	1	34%
34344	KERCKHOF	2	34%
34344	KERCKHOF	3	34%
34624	BALCH 1	1	33%
34646	SANGERCO	1	31%
34616	KINGSRIV	1	31%
34671	KRCDPCT1	1	31%
34672	KRCDPCT2	1	31%
34640	ULTR.PWR	1	30%
34648	DINUBA E	1	28%
34642	KINGSBUR	1	25%
38720	PINE FLT	1	23%
38720	PINE FLT	2	23%
38720	PINE FLT	3	23%
34610	HAAS	1	23%
34610	HAAS	2	23%
34614	BLCH 2-3	1	23%
34612	BLCH 2-2	1	23%
34431	GWF_HEP1	1	14%
34433	GWF_HEP2	1	14%
34301	CHOWCOGN	1	9%
34305	CHWCHLA2	1	9%
34608	AGRICO	2	7%
34608	AGRICO	3	7%
34608	AGRICO	4	7%
34332	JRWCOGEN	1	-6%
34600	HELMS 1	1	-12%
34602	HELMS 2	1	-12%
34604	HELMS 3	1	-12%

McCall Sub-area

No requirements because of the McCall 230/115kV #1 transformer bank replacement by May 2008.

Henrietta Sub-area

The most critical contingency is the loss of Henrietta 230/70 kV transformer bank #4 followed by the loss of the Henrietta-GWF Henrietta 70 kV line. This contingency could thermally overload the Henrietta 230/70 kV transformer bank #2. This limiting contingency establishes a LCR of 40 MW in 2009 (includes 24 MW of QF generation) as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is the loss of Henrietta 230/70 kV transformer bank #4. This contingency could thermally overload the Henrietta 230/70 kV transformer bank #2. This limiting contingency establishes a LCR of 14 MW in 2009 (includes 24 MW of QF generation).

Effectiveness factors:

All units within this sub-area have the same effectiveness factor. Units outside of this sub-area are not effective.

Merced Sub-area

The installation of Altwater SPS by May 2008 eliminates the LCR in this sub-area.

Changes compared to last year's results:

Overall the load forecast went up by 121 MW and that contributes to the increase in LCR. Another significant factor in the increase in LCR is changes in the Path 15 flow from 2100 MW S-N to 1275 MW N-S. Based on historical data at the time of system peak and/or Fresno peak there is no consistent Path 15 flow. The CAISO became

aware of the fact that Path 15 flows have a rather significant effect on the Fresno LCR during this last year. As such, the Path 15 flow chosen for the 2009 Fresno LCR base case assures the CAISO that if the LCR for Fresno are procured the CAISO can sustain any Path 15 flow during system and/or Fresno peak. This assumption has been implemented during this LCT Study and it will be included in the next release of the CAISO LCR Manual. The total overall effect is that LCR has increased by 406 MW.

Fresno Area Overall Requirements:

2009	QF/Selfgen (MW)	Muni (MW)	Market (MW)	Max. Qualifying Capacity (MW)
Available generation	216	294	2319	2829

2009	Existing Generation	Deficiency	Total MW LCR	
	Capacity Needed (MW)	(MW)	Need	
Category B (Single) 18	2414	0	2414	
Category C (Multiple) 19	2680	0	2680	

7. Kern Area

Area Definition

The transmission facilities coming into the Kern PP sub-area are:

- 1) Wheeler Ridge-Lamont 115 kV line
- 2) Kern PP 230/115 kV Bank # 3 & 3A
- 3) Kern PP 230/115 kV Bank # 4
- 4) Kern PP 230/115 kV Bank # 5
- 5) Midway 230/115 Bank # 1
- 6) Midway 230/115 Bank # 2 & 2a
- 7) Midway 230/115 Bank #3
- 8) Temblor San Luis Obispo 115 kV line

The substations that delineate the Kern-PP sub-area are:

- 1) Wheeler Ridge is out Lamont is in
- 2) Kern PP 230 kV is out Kern PP 115 kV is in
- 3) Kern PP 230 kV is out Kern PP 115 kV is in

¹⁸ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other then load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

¹⁹ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

- 4) Kern PP 230 kV is out Kern PP 115 kV is in
- 5) Midway 230 kV is out Midway 115 kV is in
- 6) Midway 230 kV is out Midway 115 kV is in
- 7) Midway 230 kV is out Midway 115 kV is in
- 8) Temblor is in San Luis Obispo is out

The transmission facilities coming into the Weedpatch sub-area are:

- 1) Wheeler Ridge-Tejon 60 kV line
- 2) Wheeler Ridge-Weedpach 60 kV line
- 3) Wheeler Ridge-San Bernard 60 kV line

The substations that delineate the Weedpatch sub-area are:

- 1) Wheeler Ridge is out Tejon is in
- 2) Wheeler Ridge is out Weedpach is in
- 3) Wheeler Ridge is out San Bernard is in

2009 total busload within the defined area: 1300 MW with 16 MW of losses resulting in a total (load plus losses) of 1316 MW.

Total units and qualifying capacity available in this Kern area:

MKT/SCHED BUS BUS NAME RESOURCE ID #	kV	NQC	UNIT ID	LCR SUB- AREA NAME	NQC Comments	CAISO Tag
BDGRCK_1_UNITS 35029 BADGERCK	9.11	42.48	1	Kern PP		QF/Selfgen
BEARMT_1_UNIT 35066 PSE-BEAR	9.11	43.20	1	Kern PP		QF/Selfgen
CHALK_1_UNIT 35038 CHLKCLF+	9.11	40.91	1	Kern PP		QF/Selfgen
CHEVCD_6_UNIT 35052 CHEV.USA	9.11	0.87	1	Kern PP		QF/Selfgen
CHEVCY_1_UNIT 35032 CHV-CYMR	9.11	7.25	1	Kern PP		QF/Selfgen
DEXZEL_1_UNIT 35024 DEXEL+	9.11	29.49	1	Kern PP		QF/Selfgen
DISCOV_1_CHEVRN 35062 DISCOVRY	9.11	4.88	1	Kern PP		QF/Selfgen
DOUBLC_1_UNITS 35023 DOUBLE C	9.11	47.00	1	Kern PP		QF/Selfgen
FELLOW_7_QFUNTS		4.12		Kern PP	Not modeled	QF/Selfgen
FRITO_1_LAY 35048 FRITOLAY	9.11	0.10	1	Kern PP		QF/Selfgen
KERNFT_1_UNITS 35026 KERNFRNT	9.11	44.32	1	Kern PP		QF/Selfgen
KERNRG_1_UNITS 35040 KERNRDGE	9.11	0.44	1	Kern PP		QF/Selfgen
KERNRG_1_UNITS 35040 KERNRDGE	9.11	0.45	2	Kern PP		QF/Selfgen
KRNCNY_6_UNIT 35018 KERNCNYN	9.11	9.22	1	Weedpatch	Monthly NQC - used August for LCR	Market
KRNOIL_7_TEXEXP		11.95		Kern PP	Not Modeled	QF/Selfgen
LIVOAK_1_UNIT 1 35058 PSE-LVOK	9.11	40.58	1	Kern PP		QF/Selfgen
MIDSET_1_UNIT 1 35044 TX MIDST	9.11	34.46	1	Kern PP		QF/Selfgen
MIDSUN_1_PL1X2 35034 MIDSUN +	9.11	21.80	1	Kern PP		Market
MIDWAY_1_QF		0.03		Kern PP	Not modeled	QF/Selfgen
MKTRCK_1_UNIT 1 35060 PSEMCKIT	9.11	44.99	1	Kern PP		QF/Selfgen

MTNPOS_1_UNIT	35036	MT POSO	9.11	52.47	1	Kern PP		QF/Selfgen
NAVY35_1_UNITS	35064	NAVY 35R	9.11	0.00	1	Kern PP		QF/Selfgen
NAVY35_1_UNITS	35064	NAVY 35R	9.11	0.00	2	Kern PP		QF/Selfgen
OILDAL_1_UNIT 1	35028	OILDALE	9.11	38.87	1	Kern PP		QF/Selfgen
RIOBRV 6 UNIT 1	35020	RIOBRAVO	9.11	6.39	1	Weedpatch		QF/Selfgen
SIERRA 1 UNITS			9.11	44.43	1	Kern PP		QF/Selfgen
TANHIL 6 SOLART			9.11	8.93	1	Kern PP		QF/Selfgen
TEMBLR 7 WELLPT				0.57		Kern PP	Not modeled	QF/Selfgen
TXMCKT_6_UNIT				1.71		Kern PP	Not modeled	QF/Selfgen
TXNMID_1_UNIT 2	34783	TEXCO_NM	9.11	0.00	1	Kern PP		QF/Selfgen
TXNMID_1_UNIT 2	34783	TEXCO_NM	9.11	0.00	2	Kern PP		QF/Selfgen
ULTOGL_1_POSO	35035	ULTR PWR	9.11	34.82	1	Kern PP		QF/Selfgen
UNVRSY_1_UNIT 1	35037	UNIVRSTY	9.11	32.86	1	Kern PP		QF/Selfgen
VEDDER_1_SEKERN	35046	SEKR	9.11	18.14	1	Kern PP		QF/Selfgen
NA	35056	TX-LOSTH	4.16	9.00	1	Kern PP	No NQC - historical data	QF/Selfgen

Major new projects modeled:

1. None

Critical Contingency Analysis Summary

Kern PP Sub-area

The most critical contingency is the outage of the Kern PP #5 230/115 kV transformer bank followed by the Kern PP – Kern Front 115 kV line, which could thermally overload the parallel Kern PP 230/115 kV Bank 3 and Bank 3a. This limiting contingency establishes a LCR of 401 MW in 2009 (includes 639 MW of QF generation) as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is the loss of Kern PP #5 230/115 kV transformer bank, which could thermally overload the parallel Kern PP 230/115 kV Bank 3 and Bank

3a. This limiting contingency establishes a LCR of 208 MW in 2009 (includes 639 MW of QF generation).

Effectiveness factors:

The following table shows units that are at least 5% effective to the above-mentioned constraint.

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
35066	PSE-BEAR	1	22%
35029	BADGERCK	1	22%
35023	DOUBLE C	1	22%
35027	HISIERRA	1	22%
35026	KERNFRNT	1	21%
35058	PSE-LVOK	1	21%
35028	OILDALE	1	21%
35062	DISCOVRY	1	21%
35046	SEKR	1	21%
35024	DEXEL +	1	21%
35036	MT POSO	1	15%
35035	ULTR PWR	1	15%
35052	CHEV.USA	1	6%

Weedpatch Sub-area

The most critical contingency is the loss of the Wheeler Ridge – San Bernard 70 kV line followed by the Wheeler Ridge – Tejon 70 kV line, which could thermally overload the Wheeler Ridge – Weedpatch 70 kV line and cause low voltage problem at the local 70 kV transmission system. This limiting contingency establishes a LCR of 21 MW in 2009 (includes 6 MW of QF generation and 5 MW of deficiency) as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this sub-area are needed therefore no effectiveness factor is required.

Changes compared to last year's results:

Overall the load forecast went down by 8 MW and that drives the LCR down as well.

Also this area is comprised heavily of QF facilities, which had an increase in NQC of 31 MW. As a result, following the LCR manual, the CAISO was able to use more MW from

the effective QF units and decrease output from units less effective at resolving the contingency. The overall effect is that LCR has decreased by 64 MW.

Kern Area Overall Requirements:

2009	QF/Selfgen	Market	Max. Qualifying
	(MW)	(MW)	Capacity (MW)
Available generation	646	31	677

2009	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) 20	208	0	208
Category C (Multiple) 21	417	5	422

8. LA Basin Area

Area Definition

The transmission tie lines into the LA Basin Area are:

- 1) San Onofre San Luis Rey #1, #2, & #3 230 kV Lines
- 2) San Onofre Talega #1 & #2 230 kV Lines
- 3) Lugo Mira Loma #1, #2 & #3 500 kV Lines
- 4) Sylmar Eagle Rock 230 kV Line
- 5) Sylmar Gould 230 kV Line
- 6) Vincent Mesa Cal 230 kV Line
- 7) Antelope Mesa Cal 230 kV Line
- 8) Vincent Rio Hondo #1 & #2 230 kV Lines
- 9) Eagle Rock Pardee 230 kV Line
- 10) Devers Palo Verde 500 kV Line
- 11) Devers Harquahala 500 kV Line
- 12) Mirage Coachely 230 kV Line
- 13) Mirage Ramon 230 kV Line
- 14) Mirage Julian Hinds 230 kV Line

²⁰ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other then load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

²¹ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

These sub-stations form the boundary surrounding the LA Basin area:

- 1) San Onofre is in San Luis Rey is out
- 2) San Onofre is in Talega is out
- 3) Mira Loma is in Lugo is out
- 4) Eagle Rock is in Sylmar is out
- 5) Gould is in Sylmar is out
- 6) Mesa Cal is in Vincent is out
- 7) Mesa Cal is in Antelope is out
- 8) Rio Hondo is in Vincent is out
- 9) Eagle Rock is in Pardee is out
- 10) Devers is in Palo Verde is out
- 11) Devers is in Harquahala is out
- 12) Mirage is in Coachelv is out
- 13) Mirage is in Ramon is out
- 14) Mirage is in Julian Hinds is out

Total 2009 busload within the defined area is 19,612 MW with 202 MW of losses and 22MW pumps resulting in total load + losses + pumps of 19,836 MW.

Total units and qualifying capacity available in the LA Basin area:

•	, , ,					
MKT/SCHED RESOURCE ID	BUS BUS NAME	kV	NQC	UNI LCR SUB- T ID AREA NAME	NQC Comments	CAISO Tag
ALAMIT_7_UNIT 1	24001 ALAMT1 G	18	174.56	1 Western, Barre		Market
ALAMIT_7_UNIT 2	24002 ALAMT2 G	18	175.00	2 Western, Barre		Market
ALAMIT_7_UNIT 3	24003 ALAMT3 G	18	332.18	3 Western, Barre		Market
ALAMIT_7_UNIT 4	24004 ALAMT4 G	18	335.67	4 Western, Barre		Market
ALAMIT_7_UNIT 5	24005 ALAMT5 G	20	497.97	5 Western, Barre		Market
ALAMIT_7_UNIT 6	24161 ALAMT6 G	20	495.00	6 Western, Barre		Market
ANAHM_7_CT	25203 ANAHEIMG	13.8	46.00	1 Western, Barre		MUNI
ARCOGN_2_UNITS	24011 ARCO 1G	13.8	64.88	1 Western, Barre		QF/Selfgen
ARCOGN_2_UNITS	24012 ARCO 2G	13.8	64.88	2 Western, Barre		QF/Selfgen
ARCOGN_2_UNITS	24013 ARCO 3G	13.8	64.88	3 Western, Barre		QF/Selfgen
ARCOGN_2_UNITS	24014 ARCO 4G	13.8	64.88	4 Western, Barre		QF/Selfgen

ARCOGN_2_UNITS	24163	ARCO 5G	13.8	32.45	5 V	Vestern, Barre		QF/Selfgen
ARCOGN_2_UNITS	24164	ARCO 6G	13.8	32.45	6 V	Vestern, Barre		QF/Selfgen
BADLND_7_PL1X2 BARRE_2_QF BARRE_6_PEAKER BRDWAY_7_UNIT 3 BUCKWD_Y_WINTCV CABZON_1_WINDA1	28007 E 25634			1.20 45.38 65.00 1.32 13.23	1 V	Eastern Vestern, Barre Vestern, Barre Vestern, Barre Eastern Eastern	Not modeled Not modeled Monthly NQC - used August for LCR	Market QF/Selfgen Market MUNI Wind Wind
CENTER_2_QF	24203	CENTER S	66	25.38	٧	Vestern, Barre	Not Modeled	QF/Selfgen
CENTER_6_PEAKER CENTRY_6_PL1X4	28308	CTRPKGEN	13.8	44.57 34.00	1 V	Vestern, Barre Eastern Western,	Not Modeled	Market Market
CHEVMN_2_UNITS CHEVMN_2_UNITS		CHEVGEN1 CHEVGEN2		0.57 0.58	2	Barre, El Nido Western, Barre, El Nido		QF/Selfgen QF/Selfgen
CHINO_2_QF	24024	CHINO	66	11.55	_	Western	Not modeled	QF/Selfgen
CHINO_6_CIMGEN	24026	CIMGEN	13.8	25.62	1	Western		QF/Selfgen
CHINO_6_SMPPAP CHINO_7_MILIKN COLTON_6_AGUAM1	24140 24024	SIMPSON CHINO	13.8 66	39.95 1.90 43.00	1	Western Western Eastern	Not modeled Not Modeled	QF/Selfgen Market MUNI
CORONS_6_CLRWTR	24210	MIRALOMA	66	14.00	1	Eastern	Not modeled	MUNI
CORONS_6_CLRWTR			66 66	14.00	1	Eastern Eastern	Not modeled	MUNI
CORONS_6_CLRWTR	24210 24815	MIRALOMA	66	14.00	2	Eastern	Not modeled Monthly NQC - used August for LCR Monthly NQC - used August for LCR	MUNI
CORONS_6_CLRWTR DEVERS_1_QF	24210 24815 25632	MIRALOMA GARNET	66 115 115	14.00 14.13	2 QF QF	Eastern Eastern	Not modeled Monthly NQC - used August for LCR Monthly NQC - used August for LCR Monthly NQC - used August for LCR	MUNI QF/Selfgen
CORONS_6_CLRWTR DEVERS_1_QF DEVERS_1_QF	24210 24815 25632 25633	MIRALOMA GARNET TERAWND	66 115 115	14.00 14.13 4.26	2 QF QF	Eastern Eastern Eastern	Not modeled Monthly NQC - used August for LCR	MUNI QF/Selfgen QF/Selfgen
CORONS_6_CLRWTR DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF	24210 24815 25632 25633 25634	MIRALOMA GARNET TERAWND CAPWIND	66 115 115 115	14.00 14.13 4.26 3.79	2 QF QF QF	Eastern Eastern Eastern Eastern	Not modeled Monthly NQC - used August for LCR	MUNI QF/Selfgen QF/Selfgen QF/Selfgen
CORONS_6_CLRWTR DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF	24210 24815 25632 25633 25634 25635	MIRALOMA GARNET TERAWND CAPWIND BUCKWIND	66 115 115 115 115	14.00 14.13 4.26 3.79 3.24	2 QF QF QF	Eastern Eastern Eastern Eastern Eastern	Not modeled Monthly NQC - used August for LCR	MUNI QF/Selfgen QF/Selfgen QF/Selfgen
CORONS_6_CLRWTR DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF	24210 24815 25632 25633 25634 25635 25635	MIRALOMA GARNET TERAWND CAPWIND BUCKWIND ALTWIND	66 115 115 115 115	14.00 14.13 4.26 3.79 3.24 6.23	2 QF QF QF QF Q1	Eastern Eastern Eastern Eastern Eastern Eastern	Not modeled Monthly NQC - used August for LCR	MUNI QF/Selfgen QF/Selfgen QF/Selfgen QF/Selfgen
CORONS_6_CLRWTR DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF	24210 24815 25632 25633 25634 25635 25635 25636	MIRALOMA GARNET TERAWND CAPWIND BUCKWIND ALTWIND ALTWIND	66 115 115 115 115 115	14.00 14.13 4.26 3.79 3.24 6.23 2.86	2 QF QF QF QF Q1 Q2	Eastern Eastern Eastern Eastern Eastern Eastern Eastern	Not modeled Monthly NQC - used August for LCR	MUNI QF/Selfgen QF/Selfgen QF/Selfgen QF/Selfgen QF/Selfgen
CORONS_6_CLRWTR DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF	24210 24815 25632 25633 25634 25635 25636 25636	MIRALOMA GARNET TERAWND CAPWIND BUCKWIND ALTWIND ALTWIND RENWIND	66 115 115 115 115 115 115	14.00 14.13 4.26 3.79 3.24 6.23 2.86 1.19	2 QF QF QF QF Q1 Q2 Q1	Eastern Eastern Eastern Eastern Eastern Eastern Eastern Eastern	Not modeled Monthly NQC - used August for LCR	MUNI QF/Selfgen QF/Selfgen QF/Selfgen QF/Selfgen QF/Selfgen QF/Selfgen
CORONS_6_CLRWTR DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF	24210 24815 25632 25633 25634 25635 25636 25636 25636	MIRALOMA GARNET TERAWND CAPWIND BUCKWIND ALTWIND ALTWIND RENWIND RENWIND	66 115 115 115 115 115 115 115	14.00 14.13 4.26 3.79 3.24 6.23 2.86 1.19 1.25	2 QF QF QF Q1 Q2 Q1 Q2	Eastern Eastern Eastern Eastern Eastern Eastern Eastern Eastern Eastern	Not modeled Monthly NQC - used August for LCR	MUNI QF/Selfgen QF/Selfgen QF/Selfgen QF/Selfgen QF/Selfgen QF/Selfgen QF/Selfgen
CORONS_6_CLRWTR DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF DEVERS_1_QF	24210 24815 25632 25633 25634 25635 25636 25636 25636 25637	MIRALOMA GARNET TERAWND CAPWIND BUCKWIND ALTWIND ALTWIND RENWIND RENWIND RENWIND	66 115 115 115 115 115 115 115 115	14.00 14.13 4.26 3.79 3.24 6.23 2.86 1.19 1.25 1.70	2 QF QF QF Q1 Q2 Q1 Q2 W1	Eastern Eastern Eastern Eastern Eastern Eastern Eastern Eastern Eastern	Not modeled Monthly NQC - used August for LCR	MUNI QF/Selfgen QF/Selfgen QF/Selfgen QF/Selfgen QF/Selfgen QF/Selfgen QF/Selfgen QF/Selfgen

DEVERS_1_QF	25645	VENWIND	115	3.20	EU	Eastern	Monthly NQC - used August for LCR	QF/Selfgen
DEVERS_1_QF	25645	VENWIND	115	3.66	Q1	Eastern	Monthly NQC - used August for LCR	QF/Selfgen
DEVERS_1_QF	25645	VENWIND	115	4.83	Q2	Eastern	Monthly NQC - used August for LCR	QF/Selfgen
DEVERS_1_QF	25646	SANWIND	115	5.30	Q1	Eastern	Monthly NQC - used August for LCR	QF/Selfgen
DEVERS_1_QF	25646	SANWIND	115	0.57	Q2	Eastern	Monthly NQC - used August for LCR	QF/Selfgen
DMDVLY_1_UNITS	25425	ESRP P2	6.9	21.00		Eastern	Not modeled	QF/Selfgen
DREWS_6_PL1X4	25602	DVI CVN2C	12.0	34.00	2	Eastern	Not modeled	Market MUNI
DVLCYN_1_UNITS	25603	DVLCYN3G	13.8	67.66	3	Eastern		MONI
DVLCYN_1_UNITS	25604	DVLCYN4G	13.8	67.66	4	Eastern		MUNI
DVLCYN_1_UNITS	25648	DVLCYN1G	13.8	50.74	1	Eastern		MUNI
DVLCYN_1_UNITS	25649	DVLCYN2G	13.8	50.74	2	Eastern		MUNI
ELLIS_2_QF	24197	ELLIS	66	0.38		Western, Barre	Not modeled	QF/Selfgen
ELSEGN_7_UNIT 3	24047	ELSEG3 G	18	335.00	3	Western, Barre, El Nido		Market
ELSEGN_7_UNIT 4	24048	ELSEG4 G	18	335.00	4	Western, Barre, El Nido		Market
ETIWND_2_FONTNA	24055	ETIWANDA	66	0.82		Eastern	Not modeled	QF/Selfgen
ETIWND_2_QF	24055	ETIWANDA	66	17.74		Eastern	Not modeled	QF/Selfgen
ETIWND_6_GRPLND	28305	ETWPKGEN	13.8	42.53	1	Eastern		Market
ETIWND_6_MWDETI	25422	ETI MWDG	13.8	19.94	1	Eastern		Market
ETIWND_7_MIDVLY	24055	ETIWANDA	66	2.10		Eastern	Not modeled	QF/Selfgen
ETIWND_7_UNIT 3	24052	MTNVIST3	18	320.00	3	Eastern		Market
ETIWND_7_UNIT 4	24053	MTNVIST4	18	320.00	4	Eastern		Market
GARNET_1_UNITS	24815	GARNET	115	1.25	G1	Eastern	Monthly NQC - used August for LCR	QF/Selfgen
GARNET_1_UNITS	24815	GARNET	115	0.45	G2	Eastern	Monthly NQC - used August for LCR	QF/Selfgen
GARNET_1_UNITS	24815	GARNET	115	0.90	G3	Eastern	Monthly NQC - used August for LCR	QF/Selfgen
GARNET_1_UNITS	24815	GARNET	115	0.45	РС	Eastern	Monthly NQC - used August for LCR	QF/Selfgen
GLNARM_7_UNIT 1		PASADNA1	13.8	22.30		Western, Barre	, lagaction zon	MUNI
GLNARM_7_UNIT 2	28006	PASADNA2	13.8	22.30	1	Western, Barre		MUNI
GLNARM_7_UNIT 3	28005	PASADNA1	13.8	44.83	1	Western, Barre	Not modeled	MUNI
GLNARM_7_UNIT 4	28006	PASADNA2	13.8	42.42	1	Western, Barre	Not modeled	MUNI
HARBGN_7_UNITS	24062	HARBOR G	13.8	76.28	1	Western, Barre		Market
HARBGN_7_UNITS	24062	HARBOR G	13.8	11.86	HP	Western, Barre		Market

HARBGN_7_UNITS	25510	HARBORG4	4.16	11.86	LP	Western, Barre		Market
HINSON_6_CARBGN	24020	CARBOGEN	13.8	29.00	1	Western, Barre		Market
HINSON 6 LBECH1	24078	LBEACH1G	13.8	65.00	1	Western, Barre		Market
HINSON 6 LBECH2		LBEACH2G	13.8	65.00		Western, Barre		Market
HINSON_6_LBECH3		LBEACH3G	13.8	65.00		Western, Barre		Market
								
HINSON_6_LBECH4		LBEACH4G	13.8	65.00		Western, Barre		Market
HINSON_6_SERRGN	24139	SERREGEN	13.8	27.40	1	Western, Barre		QF/Selfgen
HNTGBH_7_UNIT 1	24066	HUNT1 G	13.8	225.80	1	Western, Barre		Market
HNTGBH_7_UNIT 2	24067	HUNT2 G	13.8	225.80	2	Western, Barre		Market
HNTGBH_7_Unit 3	24167	HUNT3 G	13.8	225.00	3	Western, Barre		Market
HNTGBH_7_Unit 4	24168	HUNT4 G	13.8	227.00	4	Western, Barre		Market
INDIGO_1_UNIT 1	28190	WINTECX2	13.8	42.00	1	Eastern		Market
INDIGO_1_UNIT 2	28191	WINTECX1	13.8	42.00	1	Eastern		Market
INDIGO_1_UNIT 3	28180	WINTEC8	13.8	42.00	1	Eastern		Market
JOHANN_6_QFA1	24072	JOHANNA	230	0.01		Western, Barre	Not Modeled	QF/Selfgen
LACIEN_2_QF		LCIENEGA	66	0.00		Western	Not modeled	QF/Selfgen
LAFRES_6_QF	24073	LA FRESA	66	4.06		Western, Barre	Not modeled	QF/Selfgen
LAGBEL_6_QF	24075	LAGUBELL	66	10.89		Western, Barre	Not modeled	QF/Selfgen
LGHTHP_6_ICEGEN	24070	ICEGEN	13.8	46.77	1	Western, Barre		QF/Selfgen
LGHTHP_6_QF	24083	LITEHIPE	66	0.68		Western, Barre	Not modeled	QF/Selfgen
MESAS_2_QF	24209	MESA CAL	66	1.50		Western	Not modeled	QF/Selfgen
MIRLOM_6_DELGEN	24030	DELGEN	13.8	38.59	1	Eastern		QF/Selfgen
MIRLOM_6_GRPLND	28307	MRLPKGEN	13.8	43.18	1	Eastern		Market
							Not modeled -	
MTWIND_1_UNIT 1				14.03		Eastern	Monthly NQC - used August for LCR	Wind
MTWIND_1_UNIT 2				6.57		Eastern	Not modeled - Monthly NQC - used	Wind
MTWIND_1_UNIT 3				7.34		Eastern	August for LCR Not modeled - Monthly NQC - used August for LCR	Wind
OLINDA_2_QF	24211	OLINDA	66	4.60	1	Western		QF/Selfgen
OLINDA 7 LNDFIL	24201	BARRE	66	4.85	1	Western, Barre	Not modeled	QF/Selfgen
PADUA_2_ONTARO	24111	PADUA	66	1.09		Eastern	Not modeled	QF/Selfgen
	24444	DADIIA	66	0.00	4	Eastern	Not modeled	OE/Colface
PADUA_6_QF	24111	PADUA	66	8.09	1	Eastern	Not modeled	QF/Selfgen

PADUA_7_SDIMAS	24111	PADUA	66	1.05		Eastern	Not modeled - Monthly NQC - used August for LCR	QF/Selfgen
REDOND_7_UNIT 5	24121	REDON5 G	18	178.87	5	Western, Barre		Market
REDOND_7_UNIT 6	24122	REDON6 G	18	175.00	6	Western, Barre		Market
REDOND_7_UNIT 7	24123	REDON7 G	20	493.24	7	Western, Barre		Market
REDOND_7_UNIT 8	24124	REDON8 G	20	495.90	8	Western, Barre		Market
RHONDO_2_QF	24213	RIOHONDO	66	1.50		Western	Not modeled	QF/Selfgen
RVSIDE_6_RERCU1 RVSIDE_6_RERCU2 RVSIDE_6_SPRING SANTGO_6_COYOTE	24243 24244 24133	RERC2G SPRINGEN SANTIAGO	13.8 13.8 13.8 66	48.50 48.50 39.60 9.99	1 1 1 1	Eastern Eastern Eastern Western, Barre		MUNI MUNI Market Market
SBERDO_2_PSP3		MNTV-CT1	18	129.71	1	Eastern		Market
SBERDO_2_PSP3	24922	MNTV-CT2	18	129.71	1	Eastern		Market
SBERDO_2_PSP3	24923	MNTV-ST1	18	225.08	1	Eastern		Market
SBERDO_2_PSP4	24924	MNTV-CT3	18	129.71	1	Eastern		Market
SBERDO_2_PSP4	24925	MNTV-CT4	18	129.71	1	Eastern		Market
SBERDO_2_PSP4	24926	MNTV-ST2	18	225.08	1	Eastern		Market
SBERDO_2_QF SBERDO_2_SNTANA SBERDO_6_MILLCK	24214		66 66 66	0.06 1.02 1.75		Eastern Eastern Eastern	Not modeled Not modeled Not modeled	QF/Selfgen QF/Selfgen QF/Selfgen
SONGS_7_UNIT 2	24129	S.ONOFR2	22	1122.00	2	Western		Nuclear
SONGS_7_UNIT 3	24130	S.ONOFR3	22	1124.00	3	Western		Nuclear
VALLEY_2_QF	24160	VALLEYSC	115	7.64	1	Eastern		QF/Selfgen
VALLEY_7_UNITA1	24160	VALLEYSC	115	1.56		Eastern	Not modeled	QF/Selfgen
VERNON_6_GONZL1 VERNON_6_GONZL2 VERNON_6_MALBRG VERNON_6_MALBRG VISTA_6_QF WALNUT_6_HILLGEN	24240 24241 24902	MALBRG2G MALBRG3G VSTA	13.8	5.50 5.50 40.79 40.79 47.42 0.04 46.99	C2	Western, Barre Western, Barre Western, Barre Western, Barre Western, Barre Eastern Western	Not modeled Not modeled	MUNI MUNI MUNI MUNI QF/Selfgen
WALNUT_6_QF	24157	WALNUT	66	7.34		Western	Not modeled	QF/Selfgen

WALNUT_7_WCOVCT	24157	WALNUT	66	4.47	1	Western	Not modeled	Market
WALNUT_7_WCOVST	24157	WALNUT	66	5.70	1	Western	Not modeled	Market
WHTWTR_1_WINDA1	28061	WHITEWTR	33	16.88	1	Eastern	Monthly NQC - used August for LCR	Wind
ARCOGN_2_UNITS	24018	BRIGEN	13.8	0.00	1	Western, Barre	No NQC - historical data	Market
GARNET_1_WIND	24815	GARNET	115	1.00	W2	Eastern	No NQC - historical data	Wind
GARNET_1_WIND	24815	GARNET	115	1.00	W3	Eastern	No NQC - historical data	Wind
HINSON_6_QF	24064	HINSON	66	0.00	1	Western, Barre	No NQC - historical data	QF/Selfgen
INLAND_6_UNIT	24071	INLAND	13.8	30.00	1	Eastern	No NQC - historical data	QF/Selfgen
INLDEM_UNIT 1	28041	IEEC-G1	19.5	405.00	1	Eastern	No NQC - Pmax	Market
INLDEM_UNIT 2	28042	IEEC-G2	19.5	405.00	2	Eastern	No NQC - Pmax	Market
MOBGEN_6_UNIT 1	24094	MOBGEN	13.8	45.00	1	Western, Barre	No NQC - historical data	QF/Selfgen
NA	24027	COLDGEN	13.8	0.00	1	Western, Barre	No NQC - historical data	Market
NA	24060	GROWGEN	13.8	0.00	1	Western, Barre	No NQC - historical data	Market

Major new projects modeled:

- 1. New Rancho Vista 500 kV Substation
- 2. Two new peakers

Critical Contingency Analysis Summary

LA Basin Overall:

The most critical contingency for LA Basin is the loss of one Songs unit followed by Palo Verde-Devers 500 kV line, which could exceed the approved 6400 MW rating for the South of Lugo path. This limiting contingency establishes a LCR of 10,225 MW in 2009 (includes 908 MW of QF and Wind, 788 MW of MUNI and 2246 MW of Nuclear generation) as the minimum generation capacity necessary for reliable load serving capability within this area.

Effectiveness factors:

The following table has units that have at least 5% effectiveness to the abovementioned South of Lugo constraint within the LA Basin area:

Gen Bus Gen Name Gen ID MW Eff Fctr (%)

24052	MTNVIST3	3	35
24053	MTNVIST4	4	35
24071	INLAND	1	33
25422	ETI MWDG	1	33
28305	ETWPKGEN	1	33
24921	MNTV-CT1	1	29
24922	MNTV-CT2	1	29
24924	MNTV-CT2	1	29
24925	MNTV-CT4	1	29
24926	MNTV-ST2	1	29
24923	MNTV-ST1	1	28
24244	SPRINGEN	1	28
24905	RVCANAL1	1	27
24906	RVCANAL2	2	27
24907	RVCANAL3	3	27
24908	RVCANAL4	4	27
28041	IEEC-G1	1	27
28041	IEEC-G1	2	27
25648	DVLCYN1G	1	26
25649			
	DVLCYN2G	2	26
25603	DVLCYN3G	3	26
25604	DVLCYN4G	4	26
25632	TERAWND	QF	26
25633	CAPWIND	QF	26
28021	WINTEC6	1	26
25634	BUCKWND	QF	26
25635	ALTWIND	Q1	26
25635	ALTWIND	Q2	26
25637	TRANWND	QF	26
25639	SEAWIND	QF	26
25640	PANAERO	QF	26
25645	VENWIND	EU	26
25645	VENWIND	Q2	26
25645	VENWIND	Q1	26
25646	SANWIND	Q2	26
28190	WINTECX2	1	26
28191	WINTECX1	1	26
28180	WINTEC8	1	26
24815	GARNET	QF	26
24815	GARNET	W3	26
24815	GARNET	W2	26
28023	WINTEC4	1	26
28060	SEAWEST	S1	26
28060	SEAWEST	S3	26
28060	SEAWEST	S2	26
28061	WHITEWTR	1	26
28260	ALTAMSA4	1	26
28280	CABAZON	1	26
24242	RERC1G	1	24
24242	RERC2G	1	24
Z7Z7J	NENUZU	ı	24

25203	ANAHEIMG	1	22
24026	CIMGEN	1	20
24030	DELGEN	1	20
24140	SIMPSON	1	20
28309	BARPKGEN	1	20
28307	MRLPKGEN	1	18
24005	ALAMT5 G	5	17
24161	ALAMT6 G	6	17
24001	ALAMT1 G	1	16
24002	ALAMT2 G	2	16
24003	ALAMT3 G	3	16
24004	ALAMT4 G	4	16
24162	ALAMT7 G	7	16
24063	HILLGEN	1	15
24129	S.ONOFR2	2	15
24130	S.ONOFR3	3	15
24066	HUNT1 G	1	14
24067	HUNT2 G	2	14
24167	HUNT3 G	3	14
24168	HUNT4 G	4	14
28308	CTRPKGEN	1	13
24011	ARCO 1G	1	12
24012	ARCO 2G	2	12
24013	ARCO 3G	3	12
24014	ARCO 4G	4	12
24163	ARCO 5G	5	12
24164	ARCO 6G	6	12
24018	BRIGEN	1	12
24020	CARBOGEN	1	12
24064	HINSON	1	12
24070	ICEGEN	1	12
24078	LBEACH1G	1	12
24170	LBEACH2G	2	12
24171 24172	LBEACH3G LBEACH4G	3 4	12
			12
24173 24174	LBEACH5G LBEACH6G	5 6	12 12
24174	LBEACH7G	7	12
24079	LBEACH8G	8	12
24080	LBEACH9G	9	12
24139	SERREGEN	1	12
24062	HARBOR G	1	12
25510	HARBORG4	LP	12
24062	HARBOR G	HP	12
24047	ELSEG3 G	3	11
24048	ELSEG4 G	4	11
24094	MOBGEN	1	11
24121	REDON5 G	5	11
24122	REDON6 G	6	11
24123	REDON7 G	7	11

24124	REDON8 G	8	11
24241	MALBRG3G	S3	10
24240	MALBRG2G	C2	10
24027	COLDGEN	1	10
24060	GROWGEN	1	10
24120	PULPGEN	1	10
24239	MALBRG1G	C1	9
28005	PASADNA1	1	7
28006	PASADNA2	1	7
28007	BRODWYSC	1	7

Barre Sub-Area:

The most critical contingency for the Barre sub-area is the loss of Barre–Ellis 230kV line followed by the loss of the two S. Onofre-Santiago 230 kV lines, which would result in voltage collapse. This limiting contingency establishes a LCR of 4173 MW (which includes 491 MW of QF and 383 MW of MUNI generation) in the Western LA Basin area in 2009 as the generation capacity necessary for reliable load serving capability within this sub-area.

El Nido Sub-area:

The most critical contingency is the loss of La Fresa-El Nido #1 and #2 230 kV double circuit tower line. This contingency could thermally overload the La Fresa-La Cienega 230 kV line. This limiting contingency establishes a LCR of 297 MW in 2009 (includes 1 MW of QF generation) as the minimum generation capacity necessary for reliable load serving capability within this sub-area. It is assumed that firm load shed can be done manually within 15 minutes after the contingency; if this is not possible the LCR will become 347 MW in 2009 (includes 1 MW of QF generation).

Effectiveness factors:

All units within this sub-area have the same effectiveness factor. Units outside of this sub-area are not effective.

Changes compared to last year's results:

Overall the load forecast went up by 188 MW, resulting in an increase in the LCR. A few new relatively small resources were installed and one major transmission project - the

new Rancho Vista 500 kV substation – reduces the LCR. The reason for the overall increase of 95 MW is the reactive margin in the Barre area (a non-linear problem) has increased substantially (about 1000 MW) for a rather small change in load and as a result resources in that sub-area need to be on-line when the LA Basin calculation is done. They displace some resources that would otherwise be much more effective to the overall problem the South of Lugo constraint.

LA Basin Overall Requirements:

2009	QF/Wind	Muni	Nuclear	Market	Max. Qualifying
	(MW)	(MW)	(MW)	(MW)	Capacity (MW)
Available generation	908	788	2246	8222	12164

2009	Existing Generation	Deficiency	Total MW LCR
	Capacity Needed (MW)	(MW)	Need
Category B (Single) ²²	10,225	0	10,225
Category C (Multiple) ²³	10,225	0	10,225

9. Big Creek/Ventura Area

Area Definition

The transmission tie lines into the Big Creek/Ventura Area are:

- 1) Vincent-Antelope #1 230 kV Line
- 2) Vincent-Antelope #2 230 kV Line
- 3) Mesa-Antelope 230 kV Line
- 4) Sylmar-Pardee #1 230 kV Line
- 5) Sylmar-Pardee #2 230 kV Line
- 6) Eagle Rock-Pardee #1 230 kV Line
- 7) Vincent-Pardee 230 kV Line
- 8) Vincent-Santa Clara 230 kV Line

_

²² A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other then load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

²³ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

These sub-stations form the boundary surrounding the Big Creek/Ventura area:

- 1) Vincent is out Antelope is in
- 2) Vincent is out Antelope is in
- 3) Mesa is out Antelope is in
- 4) Sylmar is out Pardee is in
- 5) Sylmar is out Pardee is in
- 6) Eagle Rock is out Pardee is in
- 7) Vincent is out Pardee is in
- 8) Vincent is out Santa Clara is in

Total 2009 busload within the defined area is 4,416 MW with 116 MW of losses and 405 MW of pumps resulting in total load + losses + pumps of 4937 MW.

Total units and qualifying capacity available in the Big Creek/Ventura area:

MKT/SCHED RESOURCE ID	BUS BUS NAME	kV	NQC	UNIT ID	LCR SUB-AREA NAME	NQC Comments	CAISO Tag
ALAMO_6_UNIT	25653 ALAMO SC	13.8	18.00	1	Big Creek		Market
						Monthly NQC -	
ANTLPE_2_QF	24457 ARBWIND	66	4.57	1	Big Creek	used August for LCR	Wind
ANTLPE_2_QF	24458 ENCANWND	66	23.69	1	Big Creek	Monthly NQC - used August for LCR	Wind
ANTLPE_2_QF	24459 FLOWIND	66	8.56	1	Big Creek	Monthly NQC - used August for LCR	Wind
ANTLPE_2_QF	24460 DUTCHWND	66	2.94	1	Big Creek	Monthly NQC - used August for LCR	Wind
ANTLPE_2_QF	24465 MORWIND	66	11.75	1	Big Creek	Monthly NQC - used August for LCR	Wind
ANTLPE_2_QF	24491 OAKWIND	66	3.78	1	Big Creek	Monthly NQC - used August for LCR	Wind
ANTLPE_2_QF	28501 MIDWIND	12	3.78	1	Big Creek	Monthly NQC - used August for LCR	Wind
ANTLPE_2_QF	28502 SOUTHWND	12	1.39	1	Big Creek	Monthly NQC - used August for LCR	Wind
ANTLPE_2_QF	28503 NORTHWN D	12	4.07	1	Big Creek	Monthly NQC - used August for LCR	Wind
ANTLPE_2_QF	28504 ZONDWND1	12	2.77	1	Big Creek	Monthly NQC - used August for LCR	Wind
ANTLPE_2_QF	28505 ZONDWND2	12	2.69	1	Big Creek	Monthly NQC - used August for LCR	Wind
ANTLPE_2_QF	28506 BREEZE1	12	0.94	1	Big Creek	Monthly NQC - used August for LCR	Wind

ANTLPE_2_QF	28507 BREEZE2	12	1.68	1	Big Creek	Monthly NQC - used August for	Wind
APPGEN 6 UNIT 1	24009 APPGEN1G	13.8	60.50	1	Big Creek	LCR	Market
APPGEN_6_UNIT 1	24010 APPGEN2G	13.8	60.50	2	Big Creek		Market
BIGCRK_2_PROJCT		7.2	19.33	1	Big Creek,		Market
BIGGINI_Z_I NOJCI	24300 B CKK1-1	1 .2	19.55	'	Rector, Vestal		Market
BIGCRK_2_PROJCT	24306 B CRK1-1	7.2	20.98	2	Big Creek, Rector, Vestal		Market
BIGCRK_2_PROJCT	24307 B CRK1-2	13.8	20.98	3	Big Creek, Rector, Vestal		Market
BIGCRK_2_PROJCT	24307 B CRK1-2	13.8	30.31	4	Big Creek, Rector, Vestal		Market
BIGCRK_2_PROJCT	24308 B CRK2-1	13.8	49.35	1	Big Creek, Rector, Vestal		Market
BIGCRK_2_PROJCT	24308 B CRK2-1	13.8	50.51	2	Big Creek, Rector, Vestal		Market
BIGCRK_2_PROJCT	24309 B CRK2-2	7.2	18.17	3	Big Creek, Rector, Vestal		Market
BIGCRK_2_PROJCT	24309 B CRK2-2	7.2	19.14	4	Big Creek, Rector, Vestal		Market
BIGCRK_2_PROJCT	24310 B CRK2-3	7.2	16.51	5	Big Creek, Rector, Vestal		Market
BIGCRK_2_PROJCT	24310 B CRK2-3	7.2	17.97	6	Big Creek, Rector, Vestal		Market
BIGCRK_2_PROJCT	24311 B CRK3-1	13.8	34.00	1	Big Creek, Rector, Vestal		Market
BIGCRK_2_PROJCT	24311 B CRK3-1	13.8	34.00	2	Big Creek, Rector, Vestal		Market
BIGCRK_2_PROJCT	24312 B CRK3-2	13.8	34.00	3	Big Creek, Rector, Vestal		Market
BIGCRK_2_PROJCT	24312 B CRK3-2	13.8	39.83	4	Big Creek, Rector, Vestal		Market
BIGCRK_2_PROJCT	24313 B CRK3-3	13.8	37.89	5	Big Creek, Rector, Vestal		Market
BIGCRK_2_PROJCT	24314 B CRK 4	11.5	48.96	41	Big Creek, Rector, Vestal		Market
BIGCRK_2_PROJCT	24314 B CRK 4	11.5	49.15	42	Big Creek, Rector, Vestal		Market
BIGCRK_2_PROJCT	24315 B CRK 8	13.8	23.70	81	Big Creek, Rector, Vestal		Market
BIGCRK_2_PROJCT	24315 B CRK 8	13.8	42.74	82	Big Creek, Rector, Vestal		Market
BIGCRK_2_PROJCT	24317 MAMOTH1G	13.8	90.83	1	Big Creek,		Market
					Rector, Vestal Big Creek,		
BIGCRK_2_PROJCT			90.83	2	Rector, Vestal Big Creek,		Market
BIGCRK_2_PROJCT	24319 EASTWOOD	13.8	201.09	1	Rector, Vestal		Market
BIGCRK_2_PROJCT	24323 PORTAL	4.8	9.33	1	Big Creek, Rector, Vestal		Market
GOLETA_2_QF	24057 GOLETA	66	2.30		Ventura	Not modeled	QF/Selfgen
GOLETA_6_ELLWOD		13.8	54.00	1	Ventura		Market
GOLETA_6_EXGEN	24057 GOLETA	66	1.44		Ventura	Not modeled	QF/Selfgen
GOLETA_6_GAVOTA		66	9.90		Ventura	Not modeled	QF/Selfgen
KERRGN_1_UNIT 1	24437 KERNRVR	66	23.51	1	Big Creek	Month I. NO	Market
LEBECS_2_UNITS	28051 PSTRIAG1	18	157.90	G1	Big Creek	Monthly NQC - used August for LCR	Market
LEBECS_2_UNITS	28052 PSTRIAG2	18	157.90	G2	Big Creek	Monthly NQC -	Market

							used August for	
							LCR Monthly NQC -	
LEBECS_2_UNITS	28053	PSTRIAS1	18	162.40	S1	Big Creek	used August for LCR	Market
							Monthly NQC -	
LEBECS_2_UNITS	28054	PSTRIAG3	18	157.90	G3	Big Creek	used August for LCR	Market
1 EDE 00 0 1 1 1 1 TO		DOTELLOS	4.0	70.00		D: 0 I	Monthly NQC -	
LEBECS_2_UNITS	28055	PSTRIAS2	18	78.90	S2	Big Creek	used August for LCR	Market
MNDALY_7_UNIT 1	24089	MANDLY1G	13.8	215.00	1	Ventura		Market
MNDALY_7_UNIT 2		MANDLY2G	13.8	215.29	2	Ventura		Market
MNDALY_7_UNIT 3	24222	MANDLY3G	16	130.00	3	Ventura		Market
MONLTH_6_BOREL	24456	BOREL	66	9.24	1	Big Creek		QF/Selfgen
MOORPK_6_QF	24098	MOORPARK	66	26.86		Ventura	Not modeled	QF/Selfgen
MOORPK_7_UNITA1	24098	MOORPARK	66	1.13		Ventura	Not modeled	QF/Selfgen
OMAR_2_UNITS	24102	OMAR 1G	13.8	62.60	1	Big Creek		QF/Selfgen
OMAR_2_UNITS	24103	OMAR 2G	13.8	62.60	2	Big Creek		QF/Selfgen
OMAR_2_UNITS	24104	OMAR 3G	13.8	62.60	3	Big Creek		QF/Selfgen
OMAR_2_UNITS		OMAR 4G	13.8	62.60	4	Big Creek		QF/Selfgen
ORMOND_7_UNIT 1		ORMOND1G	26	741.27	1	Ventura		Market
ORMOND_7_UNIT 2	24108	ORMOND2G	26	775.00	2	Ventura		Market
PANDOL_6_UNIT	24113	PANDOL	13.8	19.43	1	Big Creek, Vestal		QF/Selfgen
PANDOL_6_UNIT	24113	PANDOL	13.8	15.83	2	Big Creek, Vestal		QF/Selfgen
RECTOR_2_KAWEAH	24212	RECTOR	66	5.63		Big Creek, Rector, Vestal	Not modeled	Market
RECTOR_2_KAWH 1	24212	RECTOR	66	1.83		Big Creek, Rector, Vestal	Not modeled	Market
RECTOR_2_QF	24212	RECTOR	66	12.70		Big Creek, Rector, Vestal	Not modeled	QF/Selfgen
RECTOR_7_TULARE	24212	RECTOR	66	1.51		Big Creek, Rector, Vestal	Not modeled	QF/Selfgen
SAUGUS_6_PTCHGN	24118	PITCHGEN	13.8	21.64	1	Big Creek		MUNI
SAUGUS_6_QF	24135	SAUGUS	66	6.16		Big Creek	Not modeled	QF/Selfgen
SAUGUS_7_LOPEZ	24135	SAUGUS	66	6.10		Big Creek	Not modeled	QF/Selfgen
SNCLRA_6_OXGEN	24110	OXGEN	13.8	46.76	1	Ventura		QF/Selfgen
SNCLRA_6_PROCGN	24119	PROCGEN	13.8	44.37	1	Ventura		Market
SNCLRA_6_QF	24127	S.CLARA	66	2.85	1	Ventura		QF/Selfgen
								-
SNCLRA_6_WILLMT	24159	WILLAMET	13.8	14.08	1	Ventura		QF/Selfgen
SPRGVL_2_QF	24215	SPRINGVL	66	0.59		Big Creek,	Not modeled	QF/Selfgen
 						Rector, Vestal	Not modeled	
SPRGVL_2_TULE	24215	SPRINGVL	66	1.11		Big Creek, Rector, Vestal	Monthly NQC - used August for LCR	Market
SPRGVL_2_TULESC	24215	SPRINGVL	66	1.74		Big Creek,	Not modeled	Market

				Rector, Vestal		
SYCAMR_2_UNITS	24143 SYCCYN1G 13.8	75.31	1	Big Creek		QF/Selfgen
SYCAMR_2_UNITS	24144 SYCCYN2G 13.8	75.31	2	Big Creek		QF/Selfgen
SYCAMR_2_UNITS	24145 SYCCYN3G 13.8	75.31	3	Big Creek		QF/Selfgen
SYCAMR_2_UNITS	24146 SYCCYN4G 13.8	75.32	4	Big Creek		QF/Selfgen
TENGEN_6_UNIT_1	24148 TENNGEN1 13.8	19.50	1	Big Creek		QF/Selfgen
TENGEN_6_UNIT_2	24149 TENNGEN2 13.8	16.57	2	Big Creek		QF/Selfgen
VESTAL_2_KERN	24152 VESTAL 66	22.67	1	Big Creek, Vestal		QF/Selfgen
VESTAL_6_QF	24152 VESTAL 66	8.16		Big Creek, Vestal	Not modeled	QF/Selfgen
VESTAL_6_ULTRGN	24150 ULTRAGEN 13.8	34.26	1	Big Creek, Vestal		QF/Selfgen
VESTAL_6_WDFIRE	28008 LAKEGEN 13.8	7.00	1	Big Creek, Vestal		QF/Selfgen
WARNE_2_UNIT	25651 WARNE1 13.8	39.00	1	Big Creek		Market
WARNE_2_UNIT	25652 WARNE2 13.8	39.00	1	Big Creek		Market
MNDALY_6_MCGRTH	28306 MCGPKGEN 13.8	47.20	1	Ventura	No NQC - Pmax	Market
NA	24422 PALMDALE 66	1.00	1	Big Creek	No NQC - historical data	Market
NA	24436 GOLDTOWN 66	13.00	1	Big Creek	No NQC - historical data	Market

Major new projects modeled:

- 1. Antelope Transmission Project (Segments 1, 2 and 3)
- 2. One new peaker

Critical Contingency Analysis Summary

Big Creek/Ventura overall:

The most critical contingency is the loss of Sylmar-Pardee #1 (or # 2) line followed by Ormond Beach Unit #2, which could thermally overload the remaining Sylmar-Pardee #1 or #2 230 kV line. This limiting contingency establishes a LCR of 3178 MW in 2009 (includes 836 MW of QF, 22 MW of MUNI and 73 MW of Wind generation) as the minimum generation capacity necessary for reliable load serving capability within this area.

The second most critical contingency is the loss of the Lugo-Victorville 500 kV followed by Sylmar-Pardee #1 or #2 230 kV line, which could thermally overload the remaining Sylmar-Pardee #1 or #2 230 kV line. This limiting contingency establishes a LCR of

3136 MW in 2009 (includes 836 MW of QF, 22 MW of MUNI and 73 MW of Wind generation).

If the Antelope Transmission Project (sections 1, 2 and 3) is not achieved before June 1, 2009 then the most critical contingency is the loss of the Lugo-Victorville 500 kV followed by Sylmar-Pardee #1 or #2 230 kV line, which could thermally overload the remaining Sylmar-Pardee #1 or #2 230 kV line. This limiting contingency establishes a LCR of 3436 MW in 2009 (includes 836 MW of QF, 22 MW of MUNI and 73 MW of Wind generation) as the minimum generation capacity necessary for reliable load serving capability within this area.

If the Antelope Transmission Project (sections 1, 2 and 3) is not achieved before June 1, 2009 then the most critical single contingency is the loss of Sylmar-Pardee #1 (or # 2) line followed by Ormond Beach Unit #2, which could thermally overload the remaining Sylmar-Pardee #1 or #2 230 kV line. This limiting contingency establishes a LCR of 3211 MW in 2009 (includes 836 MW of QF, 22 MW of MUNI and 73 MW of Wind generation).

Effectiveness factors:

The following table has units that have at least 5% effectiveness to any one of the Sylmar-Pardee 230 kV lines after the loss of the Lugo-Victorville 500 kV followed by one of the other Sylmar-Pardee 230 kV line in this area:

Gen Bus	Gen Name	Gen ID	MW Eff. Fctr. (%)
24009	APPGEN1G	1	29
24010	APPGEN2G	2	29
24107	ORMOND1G	1	29
24108	ORMOND2G	2	29
24118	PITCHGEN	1	28
24148	TENNGEN1	1	28
24149	TENNGEN2	2	28
24089	MANDLY1G	1	27
24090	MANDLY2G	2	27
24110	OXGEN	1	27
24119	PROCGEN	1	27
24159	WILLAMET	1	27
25651	WARNE1	1	27
25652	WARNE2	1	27

25609 EDMON5AP 7 26 25609 EDMON5AP 8 26 25610 EDMON6AP 9 26 25611 EDMON6AP 10 26 25611 EDMON7AP 11 26 25611 EDMON7AP 12 26 25612 EDMON8AP 13 26 25612 EDMON8AP 14 26 28054 PSTRIAG3 G3 25 25615 OSO B P 7 25 25615 OSO B P 8 25 25615 OSO B P 8 25 25615 PSTRIAS2 S2 24 28053 PSTRIAS1 S1 24 28052 PSTRIAS2 S2 24 28053 PSTRIAS1 S1 24 28052 PSTRIAG2 G2 24 25605 EDMON1AP 1 24 24143 SYCCYN1G 1 24 24144 SYCCYN2G 2 24 24146 SYCCYN3G 3 24 24102 OMAR 1G 1 23 24103 OMAR 2G 2 23 24104 OMAR 3G 3 23 24105 OMAR 4G 4 23 25614 OSO A P 1 23 25614 OSO A P 2 23 25653 ALAMO SC 1 23 24222 MANDLY3G 3 20 28008 LAKEGEN 1 20 24150 ULTRAGEN 1 20 24306 B CRK1-1 1 20 24307 B CRK1-2 4 20 24308 B CRK2-1 1 20 24309 B CRK2-2 3 20 24309 B CRK2-2 4 20 24310 B CRK2-3 5 20 24311 B CRK2-3 5 20 24311 B CRK2-3 6 20 24311 B CRK2-3 6 20 24311 B CRK2-3 6 20	28004 28051 25606 25607 25607 25608 25608	ELLWOOD PSTRIAG1 EDMON2AP EDMON3AP EDMON4AP EDMON4AP	1 G1 2 3 4 5	27 26 26 26 26 26 26 26
25610 EDMON6AP 9 26 25610 EDMON6AP 10 26 25611 EDMON7AP 11 26 25612 EDMON8AP 13 26 25612 EDMON8AP 14 26 28054 PSTRIAG3 G3 25 25615 OSO B P 7 25 25615 OSO B P 8 25 24127 S.CLARA 1 25 28055 PSTRIAS2 S2 24 28053 PSTRIAS1 S1 24 28052 PSTRIAG2 G2 24 28052 PSTRIAG2 G2 24 28052 PSTRIAG2 G2 24 28055 PSTRIAG2 G2 24 28055 PSTRIAG2 G2 24 28055 PSTRIAG2 G2 24 24143 SYCCYN1G 1 24 24144 SYCCYN3G 3 24	25609	EDMON5AP	7	26
25610 EDMON6AP 10 26 25611 EDMON7AP 11 26 25611 EDMON8AP 13 26 25612 EDMON8AP 14 26 28054 PSTRIAG3 G3 25 25615 OSO B P 7 25 25615 OSO B P 8 25 24127 S.CLARA 1 25 28055 PSTRIAS2 S2 24 28053 PSTRIAS1 S1 24 28052 PSTRIAG2 G2 24 25605 EDMON1AP 1 24 24143 SYCCYN1G 1 24 24144 SYCCYN2G 2 24 24145 SYCCYN3G 3 24 24146 SYCCYN4G 4 24 24102 OMAR 1G 1 23 24103 OMAR 2G 2 23 24104 OMAR 3G 3 23				
25611 EDMONTAP 11 26 25611 EDMONTAP 12 26 25612 EDMON8AP 13 26 25612 EDMON8AP 14 26 28054 PSTRIAG3 G3 25 25615 OSO B P 7 25 25615 OSO B P 8 25 24127 S.CLARA 1 25 28055 PSTRIAS2 S2 24 28053 PSTRIAS1 S1 24 28052 PSTRIAG2 G2 24 28052 PSTRIAG2 G2 24 28053 PSTRIAG2 G2 24 28052 PSTRIAG2 G2 24 28053 PSTRIAG2 G2 24 28054 PSTRIAG2 G2 24 28055 PSTRIAG2 G2 24 24143 SYCCYN1G 1 24 24144 SYCCYN3G 3 24 24145 SYCCYN3G 3 24 24146 SYC				
25611 EDMON7AP 12 26 25612 EDMON8AP 13 26 25612 EDMON8AP 14 26 28054 PSTRIAG3 G3 25 25615 OSO B P 7 25 25615 OSO B P 8 25 24127 S.CLARA 1 25 28055 PSTRIAS2 S2 24 28053 PSTRIAS1 S1 24 28052 PSTRIAG2 G2 24 28052 PSTRIAG2 G2 24 28053 PSTRIAG2 G2 24 28052 PSTRIAG2 G2 24 28052 PSTRIAG2 G2 24 25605 EDMON1AP 1 24 24143 SYCCYN1G 1 24 24144 SYCCYN2G 2 24 24145 SYCCYN3G 3 24 24146 SYCCYN4G 4 24 24102 OMAR 1G 1 23 24103 OMAR 2G				
25612 EDMON8AP 13 26 25612 EDMON8AP 14 26 28054 PSTRIAG3 G3 25 25615 OSO B P 7 25 25615 OSO B P 8 25 24127 S.CLARA 1 25 28055 PSTRIAS2 S2 24 28052 PSTRIAG2 G2 24 28053 PSTRIAG2 G2 24 28052 PSTRIAG2 G2 24 28053 PSTRIAG2 G2 24 28054 PSTRIAG2 G2 24 28055 PSTRIAG2 G2 24 28055 PSTRIAG2 G2 24 25605 EDMON1AP 1 24 24143 SYCCYN1G 1 24 24144 SYCCYN3G 3 24 24145 SYCCYN4G 4 24 24102 OMAR 1G 1 23				
25612 EDMON8AP 14 26 28054 PSTRIAG3 G3 25 25615 OSO B P 7 25 25615 OSO B P 8 25 24127 S.CLARA 1 25 28055 PSTRIAS2 S2 24 28052 PSTRIAG2 G2 24 28052 PSTRIAG2 G2 24 28052 PSTRIAG2 G2 24 28053 PSTRIAG2 G2 24 28053 PSTRIAG2 G2 24 28053 PSTRIAG2 G2 24 28055 PSTRIAG2 G2 24 25605 EDMON1AP 1 24 24143 SYCCYN1G 1 24 24144 SYCCYN3G 3 24 24145 SYCCYN4G 4 24 24116 SYCCYN4G 4 24 24102 OMAR 1G 1 23 <				
28054 PSTRIAG3 G3 25 25615 OSO B P 7 25 25615 OSO B P 8 25 24127 S.CLARA 1 25 28055 PSTRIAS2 S2 24 28053 PSTRIAG2 G2 24 28052 PSTRIAG2 G2 24 25605 EDMON1AP 1 24 24143 SYCCYN1G 1 24 24144 SYCCYN2G 2 24 24145 SYCCYN3G 3 24 24146 SYCCYN4G 4 24 24102 OMAR 1G 1 23 24103 OMAR 2G 2 23 24104 OMAR 3G 3 23 24105 OMAR 4G 4 23 25614 OSO A P 1 23 25614 OSO A P 2 23 2563 ALAMO SC 1 23				
25615 OSO B P 7 25 25615 OSO B P 8 25 24127 S.CLARA 1 25 28055 PSTRIAS2 S2 24 28053 PSTRIAS1 S1 24 28052 PSTRIAG2 G2 24 25605 EDMON1AP 1 24 24143 SYCCYN1G 1 24 24144 SYCCYN2G 2 24 24145 SYCCYN3G 3 24 2416 SYCCYN4G 4 24 24102 OMAR 1G 1 23 24103 OMAR 2G 2 23 24104 OMAR 3G 3 23 24105 OMAR 4G 4 23 25614 OSO A P 1 23 25614 OSO A P 2 23 25653 ALAMO SC 1 23 25653 ALAMO SC 1 23 24222 MANDLY3G 3 20 28008 LAKEGEN 1 20 24150 ULTRAGEN 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24307 B CRK1-2 3 20 24308 B CRK2-1 1 20 24308 B CRK2-1 1 20 24309 B CRK2-2 4 20 24310 B CRK2-3 5 20				
25615 OSO B P 8 25 24127 S.CLARA 1 25 28055 PSTRIAS2 S2 24 28053 PSTRIAS1 S1 24 28052 PSTRIAG2 G2 24 25605 EDMON1AP 1 24 24143 SYCCYN1G 1 24 24144 SYCCYN2G 2 24 24145 SYCCYN3G 3 24 24146 SYCCYN4G 4 24 24102 OMAR 1G 1 23 24103 OMAR 2G 2 23 24104 OMAR 3G 3 23 24105 OMAR 4G 4 23 25614 OSO A P 1 23 25614 OSO A P 2 23 25653 ALAMO SC 1 23 24222 MANDLY3G 3 20 24150 ULTRAGEN 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1				
28055 PSTRIAS2 S2 24 28053 PSTRIAS1 S1 24 28052 PSTRIAG2 G2 24 25605 EDMON1AP 1 24 24143 SYCCYN1G 1 24 24144 SYCCYN2G 2 24 24145 SYCCYN3G 3 24 24102 OMAR 1G 1 23 24103 OMAR 2G 2 23 24104 OMAR 3G 3 23 24105 OMAR 4G 4 23 25614 OSO A P 1 23 25614 OSO A P 2 23 25653 ALAMO SC 1 23 25653 ALAMO SC 1 23 24222 MANDLY3G 3 20 28008 LAKEGEN 1 20 24150 ULTRAGEN 1 20 24152 VESTAL 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24306 B CRK1-1 2 20 24307 B CRK1-2 3 20 24308 B CRK2-1 1 20 24308 B CRK2-1 1 20 24309 B CRK2-2 3 20 24309 B CRK2-2 4 20 24310 B CRK2-3 5 20 24310 B CRK2-3 5 20 24310 B CRK2-3 5 20				
28053 PSTRIAS1 S1 24 28052 PSTRIAG2 G2 24 25605 EDMON1AP 1 24 24143 SYCCYN1G 1 24 24144 SYCCYN2G 2 24 24145 SYCCYN3G 3 24 24146 SYCCYN4G 4 24 24102 OMAR 1G 1 23 24103 OMAR 2G 2 23 24104 OMAR 3G 3 23 24105 OMAR 4G 4 23 25614 OSO A P 1 23 25614 OSO A P 2 23 25653 ALAMO SC 1 23 24222 MANDLY3G 3 20 28008 LAKEGEN 1 20 24150 ULTRAGEN 1 20 24150 ULTRAGEN 1 20 24151 VESTAL 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24306 B CRK1-1 2 20 24307 B CRK1-2 3 20 24308 B CRK2-1 1 20 24308 B CRK2-1 1 20 24309 B CRK2-2 3 20 24309 B CRK2-2 4 20 24310 B CRK2-3 5 20 24310 B CRK2-3 5 20 24310 B CRK2-3 5 20	24127	S.CLARA	1	25
28052 PSTRIAG2 G2 24 25605 EDMON1AP 1 24 24143 SYCCYN1G 1 24 24144 SYCCYN2G 2 24 24145 SYCCYN3G 3 24 24146 SYCCYN4G 4 24 24102 OMAR 1G 1 23 24103 OMAR 2G 2 23 24104 OMAR 3G 3 23 24105 OMAR 4G 4 23 25614 OSO A P 1 23 25614 OSO A P 2 23 25653 ALAMO SC 1 23 24222 MANDLY3G 3 20 28008 LAKEGEN 1 20 24150 ULTRAGEN 1 20 24150 ULTRAGEN 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24306 B CRK1-1 2 20 24307 B CRK1-2 3 20 24308 B CRK2-1 1 20 24308 B CRK2-1 1 20 24309 B CRK2-2 3 20 24309 B CRK2-2 4 20 24310 B CRK2-3 5 20 24310 B CRK2-3 5 20	28055	PSTRIAS2	S2	24
25605 EDMON1AP 1 24 24143 SYCCYN1G 1 24 24144 SYCCYN2G 2 24 24145 SYCCYN4G 4 24 24102 OMAR 1G 1 23 24103 OMAR 2G 2 23 24104 OMAR 3G 3 23 24105 OMAR 4G 4 23 25614 OSO A P 1 23 25614 OSO A P 2 23 25653 ALAMO SC 1 23 24222 MANDLY3G 3 20 28008 LAKEGEN 1 20 24150 ULTRAGEN 1 20 24152 VESTAL 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24307 B CRK1-2 3 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 <td< td=""><td>28053</td><td>PSTRIAS1</td><td>S1</td><td>24</td></td<>	28053	PSTRIAS1	S1	24
24143 SYCCYN1G 1 24 24144 SYCCYN2G 2 24 24145 SYCCYN3G 3 24 24146 SYCCYN4G 4 24 24102 OMAR 1G 1 23 24103 OMAR 2G 2 23 24104 OMAR 3G 3 23 24105 OMAR 4G 4 23 25614 OSO A P 1 23 25614 OSO A P 2 23 25653 ALAMO SC 1 23 24222 MANDLY3G 3 20 28008 LAKEGEN 1 20 24150 ULTRAGEN 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24307 B CRK1-2 3 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24310 B CRK2-3 <		PSTRIAG2	G2	
24144 SYCCYN2G 2 24 24145 SYCCYN3G 3 24 24146 SYCCYN4G 4 24 24102 OMAR 1G 1 23 24103 OMAR 2G 2 23 24104 OMAR 3G 3 23 24105 OMAR 4G 4 23 25614 OSO A P 1 23 25614 OSO A P 2 23 25614 OSO A P 2 23 25653 ALAMO SC 1 23 24222 MANDLY3G 3 20 24150 ULTRAGEN 1 20 24150 ULTRAGEN 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24307 B CRK1-2 3 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24310 B CRK2-3 <		EDMON1AP		
24145 SYCCYN3G 3 24 24146 SYCCYN4G 4 24 24102 OMAR 1G 1 23 24103 OMAR 2G 2 23 24104 OMAR 3G 3 23 24105 OMAR 4G 4 23 25614 OSO A P 1 23 25614 OSO A P 2 23 25653 ALAMO SC 1 23 24222 MANDLY3G 3 20 28008 LAKEGEN 1 20 24150 ULTRAGEN 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24307 B CRK1-2 3 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20		SYCCYN1G		
24146 SYCCYN4G 4 24 24102 OMAR 1G 1 23 24103 OMAR 2G 2 23 24104 OMAR 3G 3 23 24105 OMAR 4G 4 23 25614 OSO A P 1 23 25614 OSO A P 2 23 25653 ALAMO SC 1 23 24222 MANDLY3G 3 20 28008 LAKEGEN 1 20 24150 ULTRAGEN 1 20 24152 VESTAL 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24307 B CRK1-2 3 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20				
24102 OMAR 1G 1 23 24103 OMAR 2G 2 23 24104 OMAR 3G 3 23 24105 OMAR 4G 4 23 25614 OSO A P 1 23 25614 OSO A P 2 23 25653 ALAMO SC 1 23 24222 MANDLY3G 3 20 28008 LAKEGEN 1 20 24150 ULTRAGEN 1 20 24152 VESTAL 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24307 B CRK1-2 3 20 24307 B CRK1-2 4 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20				
24103 OMAR 2G 2 23 24104 OMAR 3G 3 23 24105 OMAR 4G 4 23 25614 OSO A P 1 23 25614 OSO A P 2 23 25653 ALAMO SC 1 23 24222 MANDLY3G 3 20 28008 LAKEGEN 1 20 24150 ULTRAGEN 1 20 24152 VESTAL 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24307 B CRK1-2 3 20 24307 B CRK1-2 4 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20				
24104 OMAR 3G 3 23 24105 OMAR 4G 4 23 25614 OSO A P 1 23 25614 OSO A P 2 23 25653 ALAMO SC 1 23 24222 MANDLY3G 3 20 28008 LAKEGEN 1 20 24150 ULTRAGEN 1 20 24152 VESTAL 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24306 B CRK1-1 2 20 24307 B CRK1-2 3 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24309 B CRK2-2 4 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20				
24105 OMAR 4G 4 23 25614 OSO A P 1 23 25614 OSO A P 2 23 25653 ALAMO SC 1 23 24222 MANDLY3G 3 20 28008 LAKEGEN 1 20 24150 ULTRAGEN 1 20 24152 VESTAL 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24306 B CRK1-1 2 20 24307 B CRK1-2 3 20 24307 B CRK1-2 4 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20				
25614 OSO A P 1 23 25614 OSO A P 2 23 25653 ALAMO SC 1 23 24222 MANDLY3G 3 20 28008 LAKEGEN 1 20 24150 ULTRAGEN 1 20 24152 VESTAL 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24306 B CRK1-1 2 20 24307 B CRK1-2 3 20 24307 B CRK1-2 4 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24309 B CRK2-2 4 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20				
25614 OSO A P 2 23 25653 ALAMO SC 1 23 24222 MANDLY3G 3 20 28008 LAKEGEN 1 20 24150 ULTRAGEN 1 20 24152 VESTAL 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24306 B CRK1-1 2 20 24307 B CRK1-2 3 20 24307 B CRK1-2 4 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24309 B CRK2-2 4 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20				
25653 ALAMO SC 1 23 24222 MANDLY3G 3 20 28008 LAKEGEN 1 20 24150 ULTRAGEN 1 20 24152 VESTAL 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24306 B CRK1-1 2 20 24307 B CRK1-2 3 20 24307 B CRK1-2 4 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20				
24222 MANDLY3G 3 20 28008 LAKEGEN 1 20 24150 ULTRAGEN 1 20 24152 VESTAL 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24306 B CRK1-1 2 20 24307 B CRK1-2 3 20 24307 B CRK1-2 4 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24309 B CRK2-2 4 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20				
28008 LAKEGEN 1 20 24150 ULTRAGEN 1 20 24152 VESTAL 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24306 B CRK1-1 2 20 24307 B CRK1-2 3 20 24307 B CRK1-2 4 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24309 B CRK2-2 4 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20				
24150 ULTRAGEN 1 20 24152 VESTAL 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24306 B CRK1-1 2 20 24307 B CRK1-2 3 20 24307 B CRK1-2 4 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24309 B CRK2-2 4 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20				
24152 VESTAL 1 20 24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24306 B CRK1-1 2 20 24307 B CRK1-2 3 20 24307 B CRK1-2 4 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24309 B CRK2-2 4 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20				
24319 EASTWOOD 1 20 24306 B CRK1-1 1 20 24306 B CRK1-1 2 20 24307 B CRK1-2 3 20 24307 B CRK1-2 4 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24309 B CRK2-2 4 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20				
24306 B CRK1-1 1 20 24306 B CRK1-1 2 20 24307 B CRK1-2 3 20 24307 B CRK1-2 4 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24309 B CRK2-2 4 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20				
24306 B CRK1-1 2 20 24307 B CRK1-2 3 20 24307 B CRK1-2 4 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24309 B CRK2-2 4 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20				
24307 B CRK1-2 3 20 24307 B CRK1-2 4 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24309 B CRK2-2 4 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20				
24307 B CRK1-2 4 20 24308 B CRK2-1 1 20 24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24309 B CRK2-2 4 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20				
24308 B CRK2-1 2 20 24309 B CRK2-2 3 20 24309 B CRK2-2 4 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20	24307		4	20
24309 B CRK2-2 3 20 24309 B CRK2-2 4 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20	24308	B CRK2-1	1	20
24309 B CRK2-2 4 20 24310 B CRK2-3 5 20 24310 B CRK2-3 6 20	24308	B CRK2-1	2	20
24310 B CRK2-3 5 20 24310 B CRK2-3 6 20	24309	B CRK2-2	3	20
24310 B CRK2-3 6 20	24309	B CRK2-2		
		B CRK2-3		
24311 B CRK3-1 1 20				
	24311	B CRK3-1	1	20

24311	B CRK3-1	2	20
24312	B CRK3-2	3	20
24312	B CRK3-2	4	20
24313	B CRK3-3	5	20
24314	B CRK 4	41	20
24314	B CRK 4	42	20
24315	B CRK 8	81	20
24315	B CRK 8	82	20
24317	MAMOTH1G	1	20
24318	MAMOTH2G	2	20
24113	PANDOL	1	19
24113	PANDOL	2	19
24437	KERNRVR	1	18
24459	FLOWIND	1	14
24436	GOLDTOWN	1	14
28501	MIDWIND	1	14
24457	ARBWIND	1	13
24456	BOREL	1	12
24458	ENCANWND	1	12
24460	DUTCHWND	1	12
24465	MORWIND	1	12
28503	NORTHWND	1	12
28504	ZONDWND1	1	12
28505	ZONDWND2	1	12
25618	PEARBMBP	5	6
25618	PEARBMBP	6	6
25619	PEARBMCP	7	6
25619	PEARBMCP	8	6
25617	PEARBMAP	1	5
25617	PEARBMAP	2	5
25620	PEARBMDP	9	5
24136	SEAWEST	1	5

The following table has units that have at least 5% effectiveness to the Vincent–Antelope 230 kV line after the loss of two Lugo-Vincent 500 kV lines in this area:

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
28501	MIDWIND	1	30
28504	ZONDWND1	1	28
28505	ZONDWND2	1	28
24436	GOLDTOWN	1	27
24459	FLOWIND	1	26
24460	DUTCHWND	1	26
24465	MORWIND	1	26
24457	ARBWIND	1	25
28506	BREEZE1	1	25
28507	BREEZE2	1	25
28503	NORTHWND	1	25
28502	SOUTHWND	1	25

24491	OAKWND	1	25
24458	ENCANWND		24
24105	OMAR 4G	4	21
24113	PANDOL	1	21
24113	PANDOL	2	21
28008	LAKEGEN	1	21
24150	ULTRAGEN	1	21
24152		1	21
24437	KERNRVR	1	21
24102	OMAR 1G	1	20
24102	OMAR 2G	2	20
24104	_	3	20
24143		3 1	20
24144	SYCCYN2G	2	20
24145	SYCCYN3G	3	20
24146		3 4	20
24307	B CRK1-2	3	20
		3 4	
24307 24309	B CRK1-2 B CRK2-2	3	20 20
24309		3 4	20
	_	2	
24318	MAMOTH2G EASTWOOD	1	20 19
24319		1	19
24306			
24306		2	19
24308	B CRK2-1	1	19
24308	B CRK2-1	2	19
24310	B CRK2-3	5	19
24310	B CRK2-3	6	19
24311	B CRK3-1	1	19
24311	B CRK3-1	2	19
24312	B CRK3-2	3	19
24312		4	19
24313	B CRK3-3	5	19
24314	B CRK 4	41	19
24314	B CRK 4	42	19
24315	B CRK 8	81	19
24315	B CRK 8	82	19
24317	MAMOTH1G	1	19
25614	OSO A P	1	17
25614	OSO A P	2	17
28054	PSTRIAG3	G3	16
28051	PSTRIAG1	G1	16
25605	EDMON1AP	1	16
25608	EDMON4AP	5	16
25608	EDMON4AP	6	16
25609	EDMON5AP	7	16
25609	EDMON5AP	8	16
25611	EDMON7AP	11	16

EDMON7AP	12	16
OSO B P	7	16
OSO B P	8	16
ALAMO SC	1	16
PSTRIAS2	S2	15
PSTRIAS1	S1	15
PSTRIAG2	G2	15
EDMON2AP	2	15
EDMON3AP	3	15
EDMON3AP	4	15
EDMON6AP	9	15
EDMON6AP	10	15
EDMON8AP	13	15
EDMON8AP	14	15
WARNE1	1	11
WARNE2	1	11
APPGEN1G	1	9
APPGEN2G	2	9
PITCHGEN	1	9
TENNGEN1	1	9
TENNGEN2	2	9
ORMOND1G	1	8
ORMOND2G	2	8
PROCGEN	1	7
WILLAMET	1	7
ELLWOOD	1	7
MCGPKGEN	1	7
MANDLY1G	1	6
MANDLY2G	2	6
MANDLY3G	3	6
OXGEN	1	6
S.CLARA	1	5
	OSO B P OSO B P ALAMO SC PSTRIAS2 PSTRIAS1 PSTRIAG2 EDMON2AP EDMON3AP EDMON6AP EDMON6AP EDMON6AP EDMON8AP WARNE1 WARNE2 APPGEN1G APPGEN2G PITCHGEN TENNGEN1 TENNGEN1 TENNGEN1 TENNGEN2 ORMOND1G ORMOND2G PROCGEN WILLAMET ELLWOOD MCGPKGEN MANDLY1G MANDLY1G MANDLY3G OXGEN	OSO B P 7 OSO B P 8 ALAMO SC 1 PSTRIAS2 S2 PSTRIAS1 S1 PSTRIAG2 G2 EDMON2AP 2 EDMON3AP 3 EDMON3AP 4 EDMON6AP 9 EDMON6AP 10 EDMON8AP 13 EDMON8AP 14 WARNE1 1 WARNE2 1 APPGEN1G 1 APPGEN1G 1 APPGEN2G 2 PITCHGEN 1 TENNGEN1 1 TENNGEN1 1 TENNGEN1 1 TENNGEN2 2 ORMOND1G 1 ORMOND2G 2 PROCGEN 1 WILLAMET 1 ELLWOOD 1 MCGPKGEN 1 MANDLY1G 1 MANDLY1G 1 MANDLY2G 2 MANDLY3G 3 OXGEN 1

Rector Sub-area

The most critical contingency for the Rector sub-area is the loss of the Rector-Vestal 230 kV line with the Eastwood unit out of service, which would thermally overload the remaining Rector-Vestal 230 kV line. This limiting contingency establishes a LCR of 603 MW (includes 15 MW of QF generation) in as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors: The following table has units that have at least 5% effectiveness to the above-mentioned constraint within Rector sub-area:

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
24319	EASTWOOD	1	41
24306	B CRK1-1	1	41
24306	B CRK1-1	2	41
24307	B CRK1-2	3	41
24307	B CRK1-2	4	41
24323	PORTAL	1	41
24308	B CRK2-1	1	40
24308	B CRK2-1	2	40
24309	B CRK2-2	3	40
24309	B CRK2-2	4	40
24315	B CRK 8	81	40
24315	B CRK 8	82	40
24310	B CRK2-3	5	39
24310	B CRK2-3	6	39
24311	B CRK3-1	1	39
24311	B CRK3-1	2	39
24312	B CRK3-2	3	39
24312	B CRK3-2	4	39
24313	B CRK3-3	5	39
24317	MAMOTH1G	1	39
24318	MAMOTH2G	2	39
24314	B CRK 4	41	38
24314	B CRK 4	42	38

Vestal Sub-area

The most critical contingency for the Vestal sub-area is the loss of the Magunden-Vestal 230 kV line with the Eastwood unit out of service, which would thermally overload the remaining Magunden-Vestal 230 kV line. This limiting contingency establishes a LCR of 733 MW in 2009 (which includes 122 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The following table has units that have at least 5% effectiveness to the abovementioned constraint within Vestal sub-area:

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
28008	LAKEGEN	1	46
24113	PANDOL	1	45
24113	PANDOL	2	45
24150	ULTRAGEN	1	45
24152	VESTAL	1	45
24319	EASTWOOD	1	24
24306	B CRK1-1	1	24
24306	B CRK1-1	2	24

24307	B CRK1-2	3	24
24307	B CRK1-2	4	24
24308	B CRK2-1	1	24
24308	B CRK2-1	2	24
24309	B CRK2-2	3	24
24309	B CRK2-2	4	24
24310	B CRK2-3	5	24
24310	B CRK2-3	6	24
24315	B CRK 8	81	24
24315	B CRK 8	82	24
24323	PORTAL	1	24
24311	B CRK3-1	1	23
24311	B CRK3-1	2	23
24312	B CRK3-2	3	23
24312	B CRK3-2	4	23
24313	B CRK3-3	5	23
24317	MAMOTH1G	1	23
24318	MAMOTH2G	2	23
24314	B CRK 4	41	22
24314	B CRK 4	42	22

Changes compared to last year's results:

Overall the load forecast went up by 26 MW. One new relatively small resources was installed and one major transmission project - Antelope Transmission Project (Segments 1, 2 and 3). The overall effect, mainly due to the transmission project, is that the LCR has decreased by 480 MW.

Big Creek Overall Requirements:

2009	QF/Wind	MUNI	Market	Max. Qualifying
	(MW)	(MW)	(MW)	Capacity (MW)
Available generation	909	22	4201	5132

2009	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) ²⁴	3178	0	3178
Category C (Multiple) ²⁵	3178	0	3178

_

²⁴ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other then load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.
²⁵ Multiple contingencies means that the system will be able the survive the loss of a single element, and

²⁵ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

10. San Diego Area

Area Definition

The transmission tie lines forming a boundary around San Diego include:

- 1) Imperial Valley Miguel 500 kV Line
- 2) Miguel Tijuana 230 kV Line
- 3) San Onofre San Luis Rey #1 230 kV Line
- 4) San Onofre San Luis Rey #2 230 kV Line
- 5) San Onofre San Luis Rey #3 230 kV Line
- 6) San Onofre Talega #1 230 kV Line
- 7) San Onofre Talega #2 230 kV Line

The substations that delineate the San Diego Area are:

- 1) Imperial Valley is out Miguel is in
- 2) Miguel is in Tijuana is out
- 3) San Onofre is out San Luis Rey is in
- 4) San Onofre is out San Luis Rey is in
- 5) San Onofre is out San Luis Rey is in
- 6) San Onofre is out Talega is in
- 7) San Onofre is out Talega is in

Total 2009 busload within the defined area: 4926 MW with 126 MW of losses resulting in total load + losses of 5052 MW.

Total units and qualifying capacity available in this area:

MKT/SCHED RESOURCE ID	BUS#	BUS NAME	kV	NQC	UNIT ID	LCR SUB- AREA NAME	NQC Comments	CAISO Tag
BORDER_6_UNITA1	22149	CALPK_BD	13.8	43.80	1	Border-Otay, South Bay 69		Market
CBRLLO_6_PLSTP1	22092	CABRILLO	69	3.11	1	None		QF/Selfgen
CCRITA_7_RPPCHF	22124	CHCARITA	138	3.50	1	None		QF/Selfgen
CHILLS_1_SYCLFL	22120	CARLTNHS	138	1.00	1	None		QF/Selfgen
CHILLS_7_UNITA1	22120	CARLTNHS	138	2.50	2	None		QF/Selfgen
CPSTNO_7_PRMADS	22112	CAPSTRNO	138	3.53	1	None		QF/Selfgen
CRSTWD_6_KUMYAY	22915	KUMEYAAY	34.5	8.82	1	None	Monthly NQC - used August for LCR	Wind
DIVSON_6_NSQF	22172	DIVISION	69	47.00	1	None		QF/Selfgen
EGATE_7_NOCITY	22204	EASTGATE	69	0.89	1	None		QF/Selfgen
ELCAJN_6_UNITA1	22150	CALPK_EC	13.8	42.20	1	El Cajon		Market

ELCAJN_7_GT1 ENCINA_7_EA1 ENCINA_7_EA2 ENCINA_7_EA3 ENCINA_7_EA4 ENCINA_7_EA5	22212 22233 22234 22236 22240 22244	ELCAJNGT ENCINA 1 ENCINA 2 ENCINA 3 ENCINA 4 ENCINA 5	12.5 14.4 14.4 14.4 22 24	13.00 106.00 103.00 109.00 299.00 329.00	1 1 1 1 1	El Cajon None None None None	Market Market Market Market Market Market
ENCINA_7_GT1	22248	ENCINAGT	12.5	14.00	1	None	Market
ESCNDO_6_PL1X2	22257	MMC_ES	13.8	35.50	1	None	Market
ESCNDO_6_UNITB1	22153	CALPK_ES	13.8	45.50	1	None	Market
ESCO_6_GLMQF	22332	GOALLINE	69	46.79	1	None	QF/Selfgen
KEARNY_7_KY1	22377	KEARNGT1	12.5	15.00	1	Rose Canyon	Market
KEARNY_7_KY2	22373	KEARN2AB	12.5	14.00	1	Rose Canyon	Market
KEARNY_7_KY2	22373	KEARN2AB	12.5	14.00	2	Rose Canyon	Market
KEARNY_7_KY2	22374	KEARN2CD	12.5	14.00	1	Rose Canyon	Market
KEARNY_7_KY2	22374	KEARN2CD	12.5	13.00	2	Rose Canyon	Market
KEARNY_7_KY3	22375	KEARN3AB	12.5	14.00	1	Rose Canyon	Market
KEARNY_7_KY3	22375	KEARN3AB	12.5	15.00	2	Rose Canyon	Market
KEARNY_7_KY3	22376	KEARN3CD	12.5	14.00	1	Rose Canyon	Market
KEARNY_7_KY3	22376	KEARN3CD	12.5	14.00	2	Rose Canyon	Market
LARKSP_6_UNIT 1	22074	LRKSPBD1	13.8	46.00	1	Border-Otay, South Bay 69	Market
LARKSP_6_UNIT 2	22075	LRKSPBD2	13.8	46.00	1	Border-Otay, South Bay 69	Market
MRGT_6_MMAREF	22486	MFE_MR1	13.8	46.60	1	None	Market
MRGT_7_UNITS	22488	MIRAMRGT	12.5	17.00	1	None	Market
MRGT_7_UNITS	22488	MIRAMRGT	12.5	16.00	2	None	Market
MSHGTS_6_MMARLF	22448	MESAHGTS	69	2.93	1	None	QF/Selfgen
MSSION_2_QF	22496	MISSION	69	2.10	1	None	QF/Selfgen
NIMTG_6_NIQF	22576	NOISLMTR	69	35.58	1	None	QF/Selfgen
OTAY_6_PL1X2	22617	MMC_OY	13.8	35.50	1	South Bay 69	Market
OTAY_6_UNITB1	22604	OTAY	69	1.42	1	South Bay 69	QF/Selfgen
OTAY_6_UNITB1	22604	OTAY	69	1.41	2	South Bay 69	QF/Selfgen
OTAY_7_UNITC1	22604	OTAY	69	3.40	3	South Bay 69	QF/Selfgen
PALOMR_2_PL1X3	22262	PEN_CT1	18	155.42	1	None	Market
PALOMR_2_PL1X3	22263	PEN_CT2	18	155.42	1	None	Market
PALOMR_2_PL1X3	22265	PEN_ST	18	230.64	1	None	Market
PTLOMA_6_NTCCGN	22660	POINTLMA	69	2.29	2	None	QF/Selfgen
PTLOMA_6_NTCQF	22660	POINTLMA	69	22.19	1	None	QF/Selfgen

SAMPSN_6_KELCO1	22704	SAMPSON	12.5	9.39	1	None		QF/Selfgen
SMRCOS_6_UNIT 1	22724	SANMRCOS	69	0.99	1	None		QF/Selfgen
SOBAY_7_GT1	22776	SOUTHBGT	12.5	15.00	1	South Bay 69		Market
SOBAY_7_SY1	22780	SOUTHBY1	15	146.00	1	South Bay 69		Market
SOBAY_7_SY2	22784	SOUTHBY2	15	149.60	1	None		Market
SOBAY_7_SY3	22788	SOUTHBY3	20	175.00	1	None		Market
SOBAY_7_SY4	22792	SOUTHBY4	20	222.00	1	None		Market
KYCORA_7_UNIT 1	22384	KYOCERA	69	0.00	1	None	No NQC - historical data	QF/Selfgen
LAKHDG_6_UNIT 1	22625	LKHODG1	13.8	20.00	1	Bernardo	No NQC - Pmax	Market
LAKHDG_6_UNIT 2	22626	LKHODG2	13.8	20.00	2	Bernardo	No NQC - Pmax	Market
MARGTA_1_UNIT 1	22488	MARGARTA	138	44.00	1	None	No NQC - Pmax	Market
NA	22008	ASH	69	0.90	1	None	No NQC - historical data	QF/Selfgen
NA	22532	MURRAY	69	0.20	1	None	No NQC - historical data	QF/Selfgen
NA	22680	R.SNTAFE	69	0.40	1	None	No NQC - historical data	QF/Selfgen
NA	22680	R.SNTAFE	69	0.30	2	None	No NQC - historical data	QF/Selfgen
NA	22756	SCRIPPS	69	0.00	1	None	No NQC - historical data	QF/Selfgen
NA	22760	SHADOWR	138	0.10	1	None	No NQC - historical data	QF/Selfgen
NA	22870	VALCNTR	69	0.10	1	None	No NQC - historical data	QF/Selfgen
NA	22916	PFC-AVC	0.6	0.00	1	None	No NQC - historical data	QF/Selfgen
New Unit	22624	PALA	69	46.80	1	None	No NQC - Pmax	Market
New Unit	22624	PALA	69	46.80	2	None	No NQC - Pmax	Market
OTMESA_2_PL1X3	22605	OTAYMGT1	18	172.00	1	None	No NQC - Pmax	Market
OTMESA_2_PL1X3	22606	OTAYMGT2	18	172.00	1	None	No NQC - Pmax	Market
OTMESA_2_PL1X3	22607	OTAYMST1	16	217.00	1	None	No NQC - Pmax	Market

Major new projects modeled:

- 1. Otay Mesa Power Plant
- 2. Three peakers and other two small resources

Critical Contingency Analysis Summary

El Cajon Sub-area:

The most critical contingency for the El Cajon sub-area is the loss of the El Cajon-Jamacha 69 kV line (TL624) followed by the loss of Miguel-Granite-Los Coches 69 kV line (TL632), which would thermally overload the El Cajon-Los Coches 69 kV line. This limiting contingency establishes a LCR of 100 MW (including 0 MW of QF and 45 MW of

deficiency) in 2009 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this sub-area (El Cajon Peaker and El Cajon GT) are needed therefore no effectiveness factor is required.

Rose Canyon Sub-area

The most critical contingency for the Rose Canyon Sub-area is the loss of Old Town-Pacific Beach 69 kV line (TL613) followed by the loss of Rose Canyon-Penasquitos 69 kV line (TL661), which would thermally overload the Eastgate–Rose Canyon 69 kV line (TL6927). This limiting contingency establishes a LCR of 55 MW (including 0 MW of QF) in 2009 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this area (Kearny GTs) have the same effectiveness factors.

Bernardo Sub-area

The most critical contingency for the Bernardo Sub-area is the loss of Artesian - Sycamore 69 kV line (TL6920) followed by the loss of Poway-Rancho Carmel 69 kV line (TL648), which would thermally overload the Felicita Tap—Bernardo 69 kV line (TL689). This limiting contingency establishes a LCR of 72 MW (including 0 MW of QF and 32 MW of deficiency) in 2009 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this area (Lake Hodge) are needed therefore no effectiveness factor is required.

Border-Otay Sub-area

The most critical contingency for the Border–Otay Sub-area is the loss of Border – Miguel 69 kV line (TL6910) followed by the loss of Imperial Beach-Otay-Syo 69 kV line (TL623), which would thermally overload Otay-Otay Lake Tap (TL649). This limiting contingency establishes a LCR of 27 MW (includes 0 MW of QF) in 2009 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units in this sub-area (Boarder Cal peak and Larkspur) have the same effectiveness factors.

South Bay 69 kV Sub-area

The most critical contingency for the South Bay 69 kV Sub-area is the loss of South Bay-Grant Hill 138 kV line, which would thermally overload the South Bay #50 138/69 kV transformer bank. This limiting contingency establishes a LCR of 146 MW (including 6 MW of QF) in 2009 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The following table has units that have at least 5% effectiveness to the abovementioned constraint within the South Bay 69 kV sub-area:

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
22780	SOUTHBY1	1	26
22776	SOUTHBGT	1	26
22617	MMC_OY	1	25
22604	OTAY	1	25
22604	OTAY	2	25
22604	OTAY	3	25
22074	LRKSPBD1	1	17
22149	CALPEAK_BD	1	17
22075	LRKSPBD2	1	17

San Diego overall:

The most limiting contingency in the San Diego area is described by the outage of the 500 kV Southwest Power Link (SWPL) between Imperial Valley and Miguel Substations

over-lapping with an outage of the Otay Mesa Combined-Cycle Power plant (561 MW) while staying within the South of San Onofre (WECC Path 44) non-simultaneous import capability rating of 2,500 MW. This contingency establishes a LCR of 3113 MW in 2009 (includes 192 MW of QF generation and 9 MW of Wind) as the minimum generation capacity necessary for reliable load serving capability within this area.

Effectiveness factors:

All units within this area have the same effectiveness factor. Units outside of this area are not effective.

Changes compared to last year's results:

Overall the load forecast went up by 60 MW and that lead to an increase in the LCR by same amount. Also the new Otay Mesa Power Plant replaces Palomar as the biggest single generator contingency and as a result the LCR need increases by another 20 MW.

San Diego Overall Requirements:

2009	QF (MW)	Wind (MW)	Market (MW)	Max. Qualifying Capacity (MW)
Available generation	192	9	3462	3663

2009	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) ²⁶	3113	0	3113
Category C (Multiple) ²⁷	3113	77	3190

_

²⁶ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other then load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

²⁷ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.