Market Performance Report June 2018 September 4, 2018 ISO Market Quality and Renewable Integration # **Executive Summary**¹ The market performance in June 2018 is summarized below. CAISO area performance, - Peak loads for ISO exceeded 35,000 MW for six days in June due to high temperatures. - Across all market, such as the integrated forward market (IFM), the fifteenminute market (FMM) and real-time market (RTD), SDG&E prices were elevated in a few days due to transmission congestion. - Congestion rents for interties rose to \$11.59 million from \$8.88 million in May. Majority of the congestion rents in June accrued on MALIN (58 percent) intertie and NOB (41 percent) intertie. - In the congestion revenue rights (CRR) market, revenue adequacy was 82.85 percent, inching down from the 86.15 percent in May. The nomogram RM_TM12_NG contributed largely to the revenue shortfall. This nomogram was enforced for the contingency related to operating procedure 6110. - The monthly average ancillary service cost to load fell to \$0.61/MWh in June from \$1.01/MWh in May. There were 24 scarcity events this month. - The cleared virtual supply was well above the cleared demand in most days of June. The profits from convergence bidding rose to \$3.53 million from \$2.89 million in May. - The bid cost recovery increased to \$6.27 million from \$5.13 million in May. - The real-time energy offset decreased to -\$2.15 million from -\$1.52 million in May. The real-time congestion offset cost fell to \$3.63 million from \$9.99 million in May. - The volume of exceptional dispatch dropped to 65,921 MWh from 71,366 MWh in May. The main contributors to this volume were planned transmission outage and load forecast uncertainty. The monthly average of total exceptional dispatch volume as a percentage of load percentage was 0.34 percent, decreasing from 0.39 in May. _ ¹ This report contains the highlights of the reporting period. For a more detailed explanation of the technical characteristics of the metrics included in this report please download the Market Performance Metric Catalog, which is available on the CAISO web site at http://www.caiso.com/market/Pages/ReportsBulletins/Default.aspx. Energy Imbalance market (EIM) performance, - In the FMM, the prices for NEVP were elevated on June 21 and 25 due to upward load adjustment and tight supply. In RTD, the prices for AZPS, NEVP, PACE and PACW were elevated on June 4 due to the transmission congestion driven by the fire in CAISO area. - The monthly average prices in FMM for EIM entities (AZPS, BCHA, IPCO, NEVP, PACE, PACW, PGE and PSEI) were \$25.79, \$16.39, \$20.23, \$27.80, \$21.45, \$16.49, \$15.42 and \$17.60 respectively. - The monthly average prices in RTD for EIM entities (AZPS, BCHA, IPCO, NEVP, PACE, PACW, PGE and PSEI) was \$31.14, \$16.43, \$21.17, \$27.72, \$22.57, \$16.14, \$15.16 and \$17.43 respectively. - Bid cost recovery, real-time imbalance energy offset, and real-rime congestion offset costs for EIM entities (AZPS, BCHA, IPCO, NEVP, PACE, PACW, PGE and PSEI) were \$1.21 million, -\$4.69 million and -\$1.53 million respectively. # TABLE OF CONTENTS | Executive Summary | 2 | |---|----| | Market Characteristics | 5 | | Loads | 5 | | Resource Adequacy Available Incentive Mechanism | 6 | | Direct Market Performance Metrics | 7 | | Energy | 7 | | Day-Ahead Prices | | | Real-Time Prices | 8 | | Congestion | | | Congestion Rents on Interties | 11 | | Congestion Revenue Rights | | | Ancillary Services | 16 | | IFM (Day-Ahead) Average Price | 16 | | Ancillary Service Cost to Load | | | Scarcity Events | 17 | | Convergence Bidding | 18 | | Renewable Generation Curtailment | 19 | | Flexible Ramping Product | 20 | | Flexible Ramping Product Payment | 21 | | Indirect Market Performance Metrics | 22 | | Bid Cost Recovery | 22 | | Real-time Imbalance Offset Costs | 33 | | Market Software Metrics | 34 | | Market Disruption | | | Manual Market Adjustment | 36 | | Exceptional Dispatch | 36 | | Energy Imbalance Market | 38 | #### **Market Characteristics** # Loads Peak loads for ISO exceeded 35,000 MW for six days in June due to high temperatures. Figure 1: System Peak Load # Resource Adequacy Available Incentive Mechanism Resource Adequacy Availability Incentive Mechanism (RAAIM) was activated on November 1, 2016 to track the performance of Resource Adequacy (RA) Resources. RAAIM is used to determine the availability of resources providing local and/or system Resource Adequacy Capacity and Flexible RA Capacity each month and then assess the resultant Availability Incentive Payments and Non-Availability Charges through the CAISO's settlements process. Table 1 below shows the monthly average actual availability, total non-availability charge, and total availability incentive payment.² Starting from May 2018, the ISO reports the system RA average actual availability and flexible RA average actual availability separately. **Table 1: Resource Adequacy Availability and Payment** | | Total Non-
availability
Charge | Total Availability
Incentive Payment | Average Actual
Availability | Flexible Average
Actual Availability | System Average
Actual Availability | |--------|--------------------------------------|-----------------------------------------|--------------------------------|-----------------------------------------|---------------------------------------| | Jan-17 | \$2,265,805 | -\$1,844,332 | 95.72% | | | | Feb-17 | \$3,157,590 | -\$1,867,721 | 92.31% | | | | Mar-17 | \$2,975,585 | -\$1,550,365 | 91.92% | | | | Apr-17 | \$3,641,392 | -\$1,483,548 | 89.46% | | | | May-17 | \$1,017,191 | -\$1,017,191 | 96.44% | | | | Jun-17 | \$4,058,330 | -\$1,502,850 | 94.24% | | | | Jul-17 | \$3,277,858 | -\$1,940,268 | 95.20% | | | | Aug-17 | \$3,691,798 | -\$1,544,674 | 95.27% | | | | Sep-17 | \$934,468 | -\$934,468 | 96.82% | | | | Oct-17 | \$620,818 | -\$620,818 | 97.58% | | | | Nov-17 | \$1,483,755 | -\$1,483,755 | 96.15% | | | | Dec-17 | \$1,517,252 | -\$1,517,252 | 96.87% | | | | Jan-18 | \$1,169,857 | -\$893,352 | 97.59% | | | | Feb-18 | \$2,480,894 | -\$1,759,093 | 95.46% | | | | Mar-18 | \$3,552,921 | -\$1,541,456 | 93.06% | | | | Apr-18 | \$2,917,993 | -\$1,599,950 | 93.00% | | | | May-18 | \$6,585,339 | -\$2,203,632 | | 92.43% | 90.15% | | Jun-18 | \$5,182,422 | -\$2,640,789 | | 95.08% | 92.15% | ² On June 21, 2017, the ISO indicated in the market notice that it intended to file a petition with the FERC for a limited tariff waiver on section 40.9.6 to forego assessing any Resource Adequacy Availability Incentive Mechanism (RAAIM) charges for the period April 1, 2017 through December 31, 2017 due to identified implementation issues. This waiver includes April, 2017 and May 2017. The ISO is currently estimating the penalties reflected in the charge code 8830 to be zero pursuant to tariff section 11.29.10.5. #### **Direct Market Performance Metrics** # **Energy** #### **Day-Ahead Prices** Figure 2 shows daily prices of four default load aggregate points (DLAPs). Table 2 below lists the binding constraints along with the associated DLAP locations and the occurrence dates when the binding constraints resulted in relatively high or low DLAP prices. Figure 2: Day-Ahead Simple Average LAP Prices (All Hours) **Table 2: Day-Ahead Transmission Constraints** | DLAP | Date | Transmission Constraint | |------------|--------|-----------------------------| | SDG&E | June 1 | DOUBLTTP-FRIARS -138kV line | | SCE, SDG&E | June 4 | CHINO -MIRALOM -230kV line | #### **Real-Time Prices** FMM daily prices of the four DLAPs are shown in Figure 3. Table 3 lists the binding constraints along with the associated DLAP locations and the occurrence dates when the binding constraints resulted in relatively high or low DLAP prices. Figure 3: FMM Simple Average LAP Prices (All Hours) **Table 3: FMM Transmission Constraints** | DLAP | Date | Transmission Constraint | |-----------------|--------|-------------------------| | SCE, SDG&E, VEA | June 4 | 6410_CP6_NG | Figure 4 below shows the daily frequency of positive price spikes and negative prices by price range for the default LAPs in the FMM. The cumulative frequency of prices above \$250/MWh decreased to 0.15 percent in June from 0.19 percent in May. The cumulative frequency of negative prices dropped to 2.68 percent in June from 5.59 percent in May. Figure 4: Daily Frequency of FMM LAP Positive Price Spikes and Negative Prices RTD daily prices of the four DLAPs are shown in Figure 5. Table 4 lists the binding constraints along with the associated DLAP locations and the occurrence dates when the binding constraints resulted in relatively high or low DLAP prices. Figure 5: RTD Simple Average LAP Prices (All Hours) **Table 4: RTD Transmission Constraints** | DLAP | Date | Transmission Constraint | | | |-----------------|--------|-------------------------|--|--| | SCE, SDG&E, VEA | June 4 | 6410_CP6_NG | | | Figure 6 below shows the daily frequency of positive price spikes and negative prices by price range for the default LAPs in RTD. The cumulative frequency of prices above \$250/MWh declined to 0.54 percent in June from 0.61 percent in May. The cumulative frequency of negative prices rose to 3.59 percent in June from 9.61 percent in May. Figure 6: Daily Frequency of RTD LAP Positive Price Spikes and Negative Price # Congestion #### **Congestion Rents on Interties** Figure 7 below illustrates the daily integrated forward market congestion rents by interties. The cumulative total congestion rent for interties in June rose to \$11.59 million from \$8.88 million in May. Majority of the congestion rents in June accrued on Malin (58 percent) intertie and NOB (41 percent) intertie. The congestion rent on NOB decreased to \$4.72 million in June from \$5.87 million in May. The congestion rent on MALIN rose to \$6.73 million in June from \$2.77 million in May. Malin was derated in June due to various outages including the outage of Grizzly Captain Jack #1 500 kV line series capacitor and the outage of Table Mountain-Tesla 500 kV line. Figure 7: IFM Congestion Rents by Interties (Import) #### **Average Congestion Cost per Load Served** This metric quantifies the average congestion cost for serving one megawatt of load in the ISO system. Figure 8 shows the daily and monthly averages for the day-ahead and real-time markets respectively. Figure 8: Average Congestion Cost per Megawatt of Served Load The average congestion cost per MWh of load served in the integrated forward market decreased to \$2.19/MWh in June from \$2.48/MWh in May. The average congestion cost per load served in the real-time market increased to -\$0.31/MWh in June from -\$0.57/MWh in May. # **Congestion Revenue Rights** Figure 9 illustrates the daily revenue adequacy for congestion revenue rights (CRRs) broken out by transmission element. The average CRR revenue deficit in June increased to \$285,691 from the average revenue deficit of \$224,877 in May. Figure 9: Daily Revenue Adequacy of Congestion Revenue Rights Overall, June experienced a CRR revenue deficit. Revenue shortfalls were observed in most days of June. The main reasons are - The line 22192_DOUBLTTP_138_22300_FRIARS was binding in 12 days of this month, resulting in revenue shortfall of \$2.83 million. - The nomogram RM_TM12_NG was binding in 22 days of this month, resulting in revenue shortfall of \$3.73 million. This nomogram was enforced for the contingency related to operating procedure 6110. The shares of the revenue surplus and deficit accruing on various congested transmission elements for the reporting period are shown in Figure 10 and the monthly summary for CRR revenue adequacy is provided in Table 5. Figure 10: CRR Revenue Adequacy by Transmission Element Overall, the total amount collected from the IFM was not sufficient to cover the net payments to congestion revenue right holders and the cost of the exemption for existing rights. The revenue adequacy level was 82.85 percent in June. Out of the total congestion rents, 3.85 percent was used to cover the cost of existing right exemptions. Net total congestion revenues in June were in deficit by \$8.57 million, compared to the deficit of \$6.97 million in May. The auction revenues credited to the balancing account for June were \$7.10 million. As a result, the balancing account for June had a deficit of approximately \$1.37 million, which will be allocated to measured demand. **Table 5: CRR Revenue Adequacy Statistics** | IFM Congestion Rents | \$43,074,287.05 | |-------------------------------|-----------------| | Existing Right Exemptions | -\$1,658,495.51 | | Available Congestion Revenues | \$41,415,791.54 | | CRR Payments | \$49,986,535.63 | | CRR Revenue Adequacy | -\$8,570,744.09 | | Revenue Adequacy Ratio | 82.85% | | Annual Auction Revenues | \$3,075,591.09 | | Monthly Auction Revenues | \$4,029,050.96 | | CRR Settlement Rule | \$99,710.06 | | Allocation to Measured Demand | -\$1,366,391.98 | # **Ancillary Services** #### IFM (Day-Ahead) Average Price Table 6 shows the monthly IFM average ancillary service procurements and the monthly average prices. In June the monthly average procurement decreased for all four types of reserves. Table 6: IFM (Day-Ahead) Monthly Average Ancillary Service Procurement | | Average Procurred | | | Average Price | | | | | |-----------------------|-------------------|--------|----------|---------------|---------|---------|----------|--------------| | | Reg Up | Reg Dn | Spinning | Non-Spinning | Reg Up | Reg Dn | Spinning | Non-Spinning | | Jun-18 | 312 | 418 | 1038 | 1041 | \$10.09 | \$12.41 | \$5.39 | \$0.56 | | May-18 | 326 | 444 | 1054 | 1055 | \$14.97 | \$17.08 | \$7.90 | \$0.41 | | Percent Change | -4.15% | -5.90% | -1.55% | -1.31% | -32.62% | -27.34% | -31.81% | 36.50% | The monthly average prices decreased for regulation up, regulation down and spinning reserve and increased for non-spinning reserve in June. Figure 11 shows the daily IFM average ancillary service prices. The average prices for regulation down reserve spiked on June 10 and 17 due to high opportunity cost of energy. Figure 11: IFM (Day-Ahead) Ancillary Service Average Price #### Ancillary Service Cost to Load The monthly average cost to load fell to \$0.61/MWh in June from \$1.01/MWh in May. The average cost was relatively high on June 10 and 17 due to high regulation down prices in day-ahead market. \$2.00 \$1.80 \$1.60 \$1.40 \$1.20 \$1.00 \$0.80 \$0.60 \$0.40 \$0.20 \$0.00 5-May 7-May 11-May 13-May 17-May 21-May 23-May 25-May 25-May 25-May 31-May 2-Jun 4-Jun 6-Jun 8-Jun ■ Spinning ■ Non-Spinning ■ Regulation Down ■ Regulation Up — Monthly Average On Figure 12: System (Day-Ahead and Real-Time) Average Cost to Load #### **Scarcity Events** The ancillary services scarcity pricing mechanism is triggered when the ISO is not able to procure the target quantity of one or more ancillary services in the IFM and real-time market runs. The scarcity events in June are shown in the table below. | Date | Hour | Interval | Ancillary | Region | Shortfall | Percentage of | |---------|--------|-----------|-----------------|----------|-----------|---------------| | | Ending | iiileivai | Service | Negion | (MW) | Requirement | | June 5 | 7 | 3 | Regulation Up | SP26_EXP | 0.03 | 0.02% | | June 6 | 13 | 3-4 | Regulation Up | NP26_EXP | 0.29 | 0.28% | | June 8 | 2 | 3 | Regulation Down | SP26_EXP | 0.03 | 0.03% | | June 8 | 2 | 4 | Regulation Down | SP26_EXP | 4.55 | 4.3% | | June 8 | 3 | 2-3 | Regulation Down | SP26_EXP | 2 | 2% | | June 8 | 5, 7 | 2, 4 | Regulation Down | SP26_EXP | 0.02 | 0.02% | | June 8 | 5, 7 | 3 | Regulation Down | SP26_EXP | 0.04 | 0.04% | | June 8 | 6 | 2-4 | Regulation Down | SP26_EXP | 0.02 | 0.02% | | June 5 | 7 | 3 | Regulation Up | SP26_EXP | 0.03 | 0.02% | | June 6 | 13 | 3-4 | Regulation Up | NP26_EXP | 0.29 | 0.28% | | June 8 | 2 | 3 | Regulation Down | SP26_EXP | 0.03 | 0.03% | | June 8 | 2 | 4 | Regulation Down | SP26_EXP | 4.55 | 4.3% | | June 8 | 3 | 2-3 | Regulation Down | SP26_EXP | 2 | 2% | | June 22 | 5 | 4 | Regulation Down | SP26_EXP | 0.08 | 0.1% | # **Convergence Bidding** Figure 13 below shows the daily average volume of cleared virtual bids in IFM for virtual supply and virtual demand. The cleared virtual supply was well above the cleared demand moved in most days of June. Figure 13: Cleared Virtual Bids Convergence bidding tends to cause the day-ahead market and real-time market prices to move closer together, or "converge". Figure 14 shows the energy prices (namely the energy component of the LMP) in IFM, hour ahead scheduling process (HASP), FMM, and RTD. Figure 14: IFM, HASP, FMM, and RTD Prices Figure 15 shows the profits that convergence bidders receive from convergence bidding. The total profits from convergence bidding rose to \$3.53 million in June from \$2.89 million in May. Figure 15: Convergence Bidding Profits ## **Renewable Generation Curtailment** Figure 16 below shows the monthly wind and solar VERs (variable energy resource) curtailment due to system wide condition or local congestion in RTD. Figure 17 shows the monthly wind and solar VERs (variable energy resource) curtailment by resource type in RTD. Economic curtailment is defined as the resource's dispatch upper limit minus its RTD schedule when the resource has an economic bid. Dispatch upper limit is the maximum level the resource can be dispatched to when various factors are take into account such as forecast, maximum economic bid, generation outage, and ramping capacity. Self-schedule curtailment is defined as the resource's self-schedule minus its RTD schedule when RTD schedule is lower than self-schedule. When a VER resource is exceptionally dispatched, then exceptional dispatch curtailment is defined as the dispatch upper limit minus the exceptional dispatch value. As Figure 16 and Figure 17 below indicate, the renewable curtailment skidded in June. The majority of the curtailments was economic. Figure 16: Renewable Curtailment by Reason # Flexible Ramping Product On November 1, 2016 the ISO implemented two market products in the 15-minute and 5-minute markets: Flexible Ramping Up and Flexible Ramping Down uncertainty awards. These products provide additional upward and downward flexible ramping capability to account for uncertainty due to demand and renewable forecasting errors. In addition, the existing flexible ramping sufficiency test was extended to ensure feasible ramping capacity for real-time interchange schedules. #### **Flexible Ramping Product Payment** Figure 18 shows the flexible ramping up and down uncertainty payments. Flexible ramping up uncertainty payment dropped to \$0.02 million in June from \$0.13 million in May. Flexible ramping down uncertainty payment increased to \$0.03 million in June from \$0.14 million in May. Figure 18: Flexible Ramping Up/down Uncertainty Payment Figure 19 shows the flexible ramping forecast payment. Flexible ramping forecast payment edged down to \$30,154 this month from \$30,911 observed in May. Figure 19: Flexible Ramping Forecast Payment ## **Indirect Market Performance Metrics** #### **Bid Cost Recovery** Figure 20 shows the daily uplift costs due to exceptional dispatch payments. The monthly uplift costs in June increased to \$0.53 million from \$0.26 million in May. Figure 20: Exceptional Dispatch Uplift Costs Figure 21 shows the allocation of bid cost recovery payment in the IFM, residual unit commitment (RUC) and RTM markets. The total bid cost recovery for June increased to \$6.27 million from \$5.13 million in May. Out of the total monthly bid cost recovery payment for the three markets in June, the IFM market contributed 12 percent, RTM contributed 42 percent, and RUC contributed 46 percent of the total bid cost recovery payment. \$0.7 \$0.6 \$0.5 Millions \$0.4 \$0.3 \$0.2 \$0.1 \$0.0 17-May 2-Jun 21-May 0-Jun 18-Jun 20-Jun 3-May 15-May 19-May Figure 21: Bid Cost Recovery Allocation Figure 22 and Figure 23 show the daily and monthly BCR cost by local capacity requirement area (LCR) respectively. Figure 22: Bid Cost Recovery Allocation by LCR \$3.5 \$3.0 \$2.5 \$2.0 \$1.5 \$1.0 \$0.5 \$0.0 -\$0.5 Fresno Kern Stockton Bay Area Fresno Big Creek-Ventura NCNB Sierra LA Basin NCNB Bay Area Big Creek-Ventura San Diego-IV Humboldt LA Basin San Diego-IV Humboldt May-18 Jun-18 ■ RTM ■ IFM RUC Figure 23: Monthly Bid Cost Recovery Allocation by LCR Figure 24 and Figure 25 show the daily and monthly BCR cost by utility distribution company (UDC) respectively. Figure 24: Bid Cost Recovery Allocation by UDC Figure 25: Monthly Bid Cost Recovery Allocation by UDC Figure 26 shows the cost related to BCR by cost type in RUC. Figure 26: Cost in RUC Figure 27 and Figure 28 show the daily and monthly cost related to BCR by type and LCR in RUC respectively. Figure 27: Cost in RUC by LCR Figure 29 and Figure 30 show the daily and monthly cost related to BCR by type and UDC in RUC respectively. Figure 29: Cost in RUC by UDC Figure 31 shows the cost related to BCR in real time by cost type. Minimum load cost contributed largely to the real time cost this month. Figure 31: Cost in Real Time Figure 32 and Figure 33 show the daily and monthly cost related to BCR by type and LCR in real time respectively. Figure 32: Cost in Real Time by LCR \$3 \$2 \$1 \$0 -\$1 Bay Area Fresno Sierra Stockton Fresno Stockton Big Creek-Ventura Kern NCNB Kern NCNB Sierra San Diego-IV Bay Area Big Creek-Ventura Humboldt Humboldt LA Basin San Diego-IV LA Basin May-18 Jun-18 ■ rt_minimum_load_cost ■ rt_startup_cost ■ rt_as_cost ■ rt_transition_cost rt_pump_cost Figure 33: Monthly Cost in Real Time by LCR Figure 34 and Figure 35 show the daily and monthly cost related to BCR by type and UDC in Real Time respectively. Figure 34: Cost in Real Time by UDC Figure 35: Monthly Cost in Real Time by UDC Figure 36 shows the cost related to BCR in IFM by cost type. Figure 36: Cost in IFM Figure 37 and Figure 38 show the daily and monthly cost related to BCR by type and location in IFM respectively. Figure 37: Cost in IFM by LCR Figure 38: Monthly Cost in IFM by LCR Figure 39 and Figure 40 show the daily and monthly cost related to BCR by type and UDC in IFM respectively. Figure 39: Cost in IFM by UDC Market Performance Report #### **Real-time Imbalance Offset Costs** Figure 41 shows the daily real-time energy and congestion imbalance offset costs. Real-time energy offset cost decreased to -\$2.15 million in June from -\$1.52 million in May. Real-time congestion offset cost fell to \$3.63 million in June from \$9.99 million in May. Figure 41: Real-Time Energy and Congestion Imbalance Offset #### **Market Software Metrics** Market performance can be confounded by software issues, which vary in severity levels with the failure of a market run being the most severe. #### **Market Disruption** A market disruption is an action or event that causes a failure of an ISO market, related to system operation issues or system emergencies.³ Pursuant to section 7.7.15 of the ISO tariff, the ISO can take one or more of a number of specified actions to prevent a market disruption, or to minimize the extent of a market disruption. There were a total of 30 market disruptions this month. Table 7 lists the number of market disruptions and the number of times that the ISO removed bids (including self-schedules) in any of the following markets in this month. The ISO markets include IFM, RUC, FMM and RTD processes. **Table 7: Summary of Market Disruption** | Type of CAISO Market | Market Disruption or Reportable | Removal of Bids (including Self-Schedules) | |----------------------|---------------------------------|--------------------------------------------| | Day-Ahead | | | | IFM | 0 | 0 | | RUC | 0 | 0 | | Real-Time | | | | FMM Interval 1 | 3 | 0 | | FMM Interval 2 | 1 | 0 | | FMM Interval 3 | 0 | 0 | | FMM Interval 4 | 2 | 0 | | Real-Time Dispatch | 24 | 0 | Figure 42 shows the frequency of IFM, HASP (FMM interval 2), FMM (intervals 1, 3 and 4), and RTD failures. On June 12, one HASP, two FMM and six RTD disruptions occurred due to application problem. There were one other RTD disruption due to broadcast not being successful. _ ³ These system operation issues or system emergencies are referred to in Sections 7.6 and 7.7, respectively, of the ISO tariff. Figure 42: Frequency of Market Disruption # **Manual Market Adjustment** #### **Exceptional Dispatch** Figure 43 shows the daily volume of exceptional dispatches, broken out by market type: real-time incremental dispatch and real-time decremental dispatch. The real-time exceptional dispatches are among one of the following types: a unit commitment at physical minimum; an incremental dispatch above the day-ahead schedule and a decremental dispatch below the day-ahead schedule. The total volume of exceptional dispatch in June dropped to 65,921 MWh from 71,366 MWh in May. Figure 43: Total Exceptional Dispatch Volume (MWh) by Market Type Figure 44 shows the volume of the exceptional dispatch broken out by reason. ⁴ The majority of the exceptional dispatch volumes in June were driven by planned transmission outage (43 percent), load forecast uncertainty (31 percent) and unit testing (12 percent). - ⁴ For details regarding the reasons for exceptional dispatch please read the white paper at this link: http://www.caiso.com/1c89/1c89d76950e00.html. 12 10 Thousands MWh Per Day 8 6 4 2 11-May 17-May 19-May 21-May 23-May 25-May 27-May 29-May 31-May 15-May ■ Load Forecast Uncertainty Load Pull ■ Unit Testing Other Reliability Requirement ■ Unplanned Outage Operating Procedure Number and Constraint Transmission Outage Other Figure 44: Total Exceptional Dispatch Volume (MWh) by Reason Figure 45 shows the total exceptional dispatch volume as a percent of load, along with the monthly average. The monthly average percentage was 0.34 percent in June, decreasing from 0.39 in May. Figure 45: Total Exceptional Dispatch as Percent of Load ## **Energy Imbalance Market** On November 1, 2014, the California Independent System Operator Corporation (ISO) and Portland-based PacifiCorp fully activated the Energy Imbalance Market (EIM). This real-time market is the first of its kind in the West. EIM covers six western states: California, Oregon, Washington, Utah, Idaho and Wyoming. On December 1, 2015, NV Energy, the Nevada-based utility successfully began participating in the western Energy Imbalance Market (EIM). On October 1, 2016, Phoenix-based Arizona Public Service (AZPS) and Puget Sound Energy (PSEI) of Washington State successfully began full participation in the western Energy Imbalance Market. On October 1, 2017, Portland General Electric Company (PGE) became the fifth western utility to successfully begin full participation in the western Energy Imbalance Market (EIM). PGE joins Arizona Public Service, Puget Sound Energy, NV Energy, PacifiCorp and the ISO, together serving over 38 million consumers in eight states: California, Arizona, Oregon, Washington, Utah, Idaho, Wyoming and Nevada. On April 4, 2018, Boise-based Idaho Power and Powerex of Vancouver, British Columbia successfully entered the western Energy Imbalance Market (EIM) today, allowing the ISO's real-time power market to serve energy imbalances occurring within about 55 percent of the electric load in the Western Interconnection. The eight western EIM participants serve more than 42 million consumers in the power grid stretching from the border with Canada south to Arizona, and eastward to Wyoming. Figure 46 shows daily simple average ELAP prices for PacifiCorp east (PACE), PacifiCorp West (PACW), NV Energy (NEVP), Arizona Public Service (AZPS), Puget Sound Energy (PSEI), Portland General Electric Company (PGE), Idaho Power (IPCO), and Powerex (BCHA) for all hours in FMM. The prices for NEVP were elevated on June 21 and 25 due to upward load adjustment and tight supply. 80 60 40 \$/MWh 20 0 -20 -40 BCHA —AZPS — PACE — PACW — PGE — PSEI Figure 46: EIM Simple Average LAP Prices (All Hours) in FMM Figure 47 shows daily simple average ELAP prices for PACE, PACW, NEVP, AZPS, PSEI, PGE, IPCO, and BCHA for all hours in RTD. The prices for AZPS, NEVP, PACE and PACW were elevated on June 4 due to the transmission congestion driven by the fire in CAISO area. Figure 47: EIM Simple Average LAP Prices (All Hours) in RTD Figure 48 shows the daily price frequency for prices above \$250/MWh and negative prices in FMM for PACE, PACW, NEVP, AZPS, PSEI, PGE, IPCO, and BCHA. The cumulative frequency of prices above \$250/MWh increased to 0.24 percent in June from 0.08 percent in May. The cumulative frequency of negative prices decreased to 2.99 percent in June from 5.81 percent in May. Figure 48: Daily Frequency of EIM LAP Positive Price Spikes and Negative Prices in FMM Figure 49 shows the daily price frequency for prices above \$250/MWh and negative prices in RTD for PACE, PACW, NEVP, AZPS, PSEI, PGE, IPCO, and BCHA. The cumulative frequency of prices above \$250/MWh inched up to 0.42 percent in June from 0.34 percent in May. The cumulative frequency of negative prices fell to 3.37 percent in June from 9.57 percent in May. Figure 49: Daily Frequency of EIM LAP Positive Price Spikes and Negative Prices in RTD Figure 50 shows the daily volume of EIM transfer for CAISO in FMM. "Import" represents the total EIM transfer from other balancing areas (BAs) into CAISO. "Export" represents the total EIM transfer out of CAISO to other BAs in FMM. Figure 50: EIM Transfer for CAISO in FMM Figure 51 shows the daily volume of EIM transfer for PACE in FMM. Figure 52 shows the daily volume of EIM transfer for PACW in FMM. Figure 51: EIM Transfer for PACE in FMM Figure 52: EIM Transfer for PACW in FMM Figure 53 shows the daily volume of EIM transfer for NEVP in FMM. Figure 53: EIM Transfer for NEVP in FMM Figure 54 shows the daily volume of EIM transfer for AZPS in FMM. Figure 55 shows the daily volume of EIM transfer for PSEI in FMM. Figure 55: EIM Transfer for PSEI in FMM Figure 56 shows the daily volume of EIM transfer for PGE in FMM. Figure 56: EIM Transfer for PGE in FMM Figure 57 shows the daily volume of EIM transfer for BCHA in FMM. Figure 57: EIM Transfer for BCHA in FMM Figure 58 shows the daily volume of EIM transfer for IPCO in FMM. Figure 58: EIM Transfer for IPCO in FMM Figure 59 shows the daily volume of EIM for ISO in RTD. Figure 59: EIM Transfer for CAISO in RTD Figure 60 shows the daily volume of EIM transfer for PACE in RTD. Figure 61 shows the daily EIM transfer volume for PACW in RTD. Figure 60: EIM Transfer for PACE in RTD Figure 62 shows the daily EIM transfer volume for NEVP in RTD. Figure 62: EIM Transfer for NEVP in RTD Figure 63 shows the daily volume EIM transfer for AZPS in RTD. Figure 63: EIM Transfer for AZPS in RTD Figure 64 shows the daily volume EIM transfer for PSEI in RTD. Figure 64: EIM Transfer for PSEI in RTD Figure 65 shows the daily volume EIM transfer for PGE in RTD. Figure 65: EIM Transfer for PGE in RTD Figure 66 shows the daily volume EIM transfer for BCHA in RTD. Figure 66: EIM Transfer for BCHA in RTD Figure 67 shows the daily volume EIM transfer for IPCO in RTD. Figure 67: EIM Transfer for IPCO in RTD Figure 68 shows daily real-time imbalance energy offset cost (RTIEO) for PACE, PACW, NEVP, AZPS, PSEI, PGE, IPCO, and BCHA respectively. Total RTIEO decreased to -\$4.69 million in June from -\$3.98 million in May. Figure 68: EIM Real-Time Imbalance Energy Offset by Area Figure 69 shows daily real-time congestion offset cost (RTCO) for PACE, PACW, NEVP, AZPS, PSEI, PGE, IPCO, and BCHA respectively. Total RTCO increased to -\$1.53 million in June from -\$2.64 million in May. Figure 69: EIM Real-Time Congestion Imbalance Offset by Area Figure 70 shows daily bid cost recovery for PACE, PACW, NEVP, AZPS, PSEI, PGE, IPCO, and BCHA respectively. Total BCR rose to \$1.21 million in June from \$0.96 million in May. Figure 70: EIM Bid Cost Recovery by Area Figure 71 shows the flexible ramping up uncertainty payment for PACE, PACW, NEVP, AZPS, PSEI, PGE, IPCO, and BCHA respectively. Total flexible ramping up uncertainty payment in June dropped to \$0.01 million from \$0.15 million in May. Figure 71: Flexible Ramping Up Uncertainty Payment Figure 72 shows the flexible ramping down uncertainty payment for PACE, PACW, NEVP, AZPS, PSEI, PGE, IPCO, and BCHA respectively. Total flexible ramping down uncertainty payment in June decreased to \$30,569 from \$104,581 million in May. Figure 72: Flexible Ramping Down Uncertainty Payment Figure 73 shows the flexible ramping forecast payment for PACE, PACW, NEVP, AZPS, PSEI, PGE, IPCO, and BCHA respectively. Total forecast payment in June rose to \$117,087 from \$4,828 in May. Figure 73: Flexible Ramping Forecast Payment The ISO's Energy Imbalance Market Business Practice Manual⁵ describes the methodology for determining whether an EIM participating resource is dispatched to support transfers to serve California load. The methodology ensures that the dispatch considers the combined energy and associated marginal greenhouse gas (GHG) compliance cost based on submitted bids⁶. The EIM dispatches to support transfers into the ISO were documented in Figure 74 and Table 8 below. Figure 74: Percentage of EIM Transfer into ISO by Fuel Type ⁵ See the Energy Imbalance Market Business Practice Manual for a description of the methodology for making this determination, which begins on page 42 -- http://bpmcm.caiso.com/Pages/BPMDetails.aspx?BPM=Energy Imbalance Market. ⁶ A submitted bid may reflect that a resource is not available to support EIM transfers to A submitted bid may reflect that a resource is not available to s California. Table 8: EIM Transfer into ISO by Fuel Type | Month | Coal (%) | Gas (%) | Non-Emitting (%) | Total | |--------|----------|---------|------------------|-------| | Jan-16 | 0.00% | 28.96% | 71.04% | 100% | | Feb-16 | 0.00% | 22.21% | 77.79% | 100% | | Mar-16 | 0.00% | 12.72% | 87.28% | 100% | | Apr-16 | 0.00% | 46.26% | 53.74% | 100% | | May-16 | 0.00% | 51.63% | 48.37% | 100% | | Jun-16 | 0.00% | 67.89% | 32.11% | 100% | | Jul-16 | 0.00% | 82.42% | 17.58% | 100% | | Aug-16 | 0.00% | 87.59% | 12.41% | 100% | | Sep-16 | 1.98% | 87.68% | 10.34% | 100% | | Oct-16 | 0.00% | 43.82% | 56.18% | 100% | | Nov-16 | 0.00% | 30.74% | 69.26% | 100% | | Dec-16 | 0.00% | 53.77% | 46.23% | 100% | | Jan-17 | 0.00% | 69.88% | 30.12% | 100% | | Feb-17 | 0.00% | 36.42% | 63.58% | 100% | | Mar-17 | 0.00% | 13.37% | 86.63% | 100% | | Apr-17 | 0.00% | 15.47% | 84.53% | 100% | | May-17 | 0.00% | 18.47% | 81.53% | 100% | | Jun-17 | 0.00% | 21.42% | 78.58% | 100% | | Jul-17 | 0.00% | 36.08% | 63.92% | 100% | | Aug-17 | 0.00% | 59.20% | 40.80% | 100% | | Sep-17 | 0.00% | 45.94% | 54.06% | 100% | | Oct-17 | 0.00% | 24.85% | 75.15% | 100% | | Nov-17 | 0.00% | 11.57% | 88.43% | 100% | | Dec-17 | 0.00% | 15.36% | 84.64% | 100% | | Jan-18 | 0.00% | 9.12% | 90.88% | 100% | | Feb-18 | 0.00% | 15.20% | 84.80% | 100% | | Mar-18 | 0.16% | 25.00% | 74.84% | 100% | | Apr-18 | 0.00% | 0.14% | 99.86% | 100% | | May-18 | 0.00% | 1.09% | 98.91% | 100% | | Jun-18 | 0.00% | 2.89% | 97.11% | 100% |