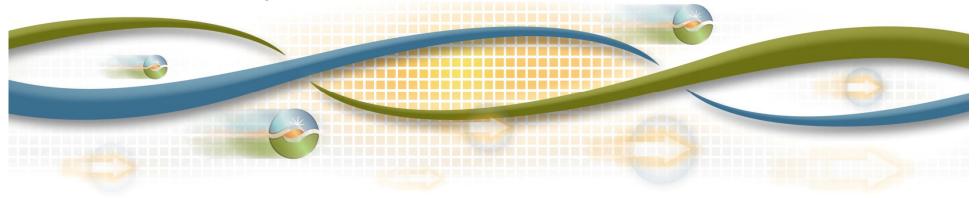

ISO Stakeholder Initiative Process For TPS

Agenda – May 20, 2011

ISO Planning Standards Stakeholder Conference Call

- 1. Introductions and Meeting Arrangements
- 2. Standards
 - A. SF/GBA generation outage retired
 - B. Combined line and generator outage no change
 - C. Specific nuclear units no change
 - D. Combined cycle module as G-1 added
 - E. Voltage added
 - F. New transmission vs. involuntary load interruption revised
- 3. Guidelines
 - A. New Special Protection Systems revised
- 4. Glossary and Other Stakeholder Comments
- 5. Next Steps and Schedule

California ISO Shaping a Renewed Future


ISO Planning Standards

Catalin Micsa

Lead Regional Transmission Engineer

Stakeholder Meeting

May 20, 2011

Existing Standards and Criteria

During its planning activities ISO must :

Follow all NERC Reliability Standards like

http://www.nerc.com/page.php?cid=2|20

- Transmission Planning (TPL)
- Nuclear Plant Interface Requirements (NUC-001)
- Follow all WECC Regional Criteria

http://www.wecc.biz/Standards/WECC%20Criteria/Forms/AllItems.aspx

Follow ISO Planning Standards

New Structure and Documentation for the ISO Planning Standards

Standards:

- Combined Line and Generator Outage Standard
- > Voltage
- > Specific Nuclear Unit
- Loss of Combined Cycle Power Plant Module as a Single Generator Outage
- > Planning for New Transmission versus Involuntary Load Interruption

Guidelines:

New Special Protection Systems

Retirement of

San Francisco Greater Bay Area Generation Outage Standard:

- Eliminated requirements related to Hunters Point and Potrero
- > San Francisco reliability is independent of generation requirement
- New transmission infrastructure has reduced the Greater Bay Area's overall dependence on generation
- Additional planned transmission infrastructure will further diminish the Greater Bay Area's overall dependence on generation

No stakeholder comments received

Some standards were not changed

Combined Line and Generator Outage Standard:

One generator out of service followed by system readjustment and a single line outage should meet NERC TPL002 reliability standard for single contingencies

Specific Nuclear Unit Standards:

Respect Appendix E of the Transmission Control Agreement regarding nuclear power plants

http://www.caiso.com/docs/09003a6080/25/a3/09003a608025a3bd.pdf

No stakeholder comments received

California ISO

Old enforcement is now a standard

Loss of Combined Cycle Power Plant Module as a Single Generator Outage Standard:

- > ISO has consistently enforced this standard
- Measure is based on historical data and "greater than 1 event over a 3 year period"
- > Exceptions are possible
 - > After 2 years of operation
 - Supported by historical data
 - Addressed on a case by case base only

Stakeholder comments:

Add definition of Combine Cycle Power Plant Module - done

New standard is proposed

Voltage Standard:

- Common denominator is envisioned across ISO
- Low voltage and voltage deviation apply to load (including generator auxiliary load) buses
- High voltage apply to all buses
- Exceptions allowed if vetted through open process

Voltage level	Normal Conditions (TPL-001)		Contingency Conditions (TPL-002 & TPL-003)		Voltage Deviation	
	Vmin (pu)	Vmax (pu)	Vmin (pu)	Vmax (pu)	TPL-002	TPL-003
<= 200 kV	0.95	1.05	0.90	1.1	≤5%	≤10%
>= 200 kV	0.95	1.05	0.90	1.1	≤5%	≤10%
>= 500 kV	1.0	1.05	0.90	1.1	≤5%	≤10%

Stakeholder comments

Voltage Standard:

- > Upper voltage too high at 1.1 pu reduced to 1.05 pu
- Vmin needed for 500 kV since due to generator auxiliary loads done
- Exceptions are allowed done
- Impact of new standard ISO estimates small since it is a least common denominator
- Elaborate on process for exceptions done on a yearly bases and coordinated through regularly scheduled TPP stakeholder meetings
- Clarify that the per unit (pu) is based on nominal voltage done
- All have been addressed

Revised standard

Planning for New Transmission versus Involuntary Load Interruption Standard:

- Continues to rely on NERC standards and WECC regional criteria
- New write-up and changes will address:
 - Caps amount of involuntary load interruption based on WECC self imposed reporting requirements
 - Establishes a maximum level for radial substations
 - Establishes minimum sizing of back-tie(s) for radial loads
 - Allows justification of transmission reinforcements through BCR calculation on a case by case basis

Planning for New Transmission versus Involuntary Load Interruption Standard

1. No single contingency with load drop above 250 MW

- Cap NERC TPL002 footnote for single contingencies
- Avoids WECC reporting requirements for single contingencies

2. All substations of 100 MW or more need to be looped

- Standardize PTOs substations design
- Does not preclude substations with less then 100 MW from being looped in

Planning for New Transmission versus Involuntary Load Interruption Standard

3. Minimum size for back-tie(s)

California ISO

- Most stringent between 50% of peak load or 80% of the hours in the year (based on actual load shape for the area)
- Maintains a minimum level of back-tie(s) in order to assure a minimum level of service consistent across the system

4. Benefit to Cost Ratio > 1 may justify upgrades

- Allow elimination or reduction in load drop exposure if it has overall economic benefits
- BCR calculation to be supplied with the project through the open window and discussed in an open stakeholder process

Stakeholder comments

Planning for New Transmission versus Involuntary Load Interruption Standard:

- General concerns about magnitude and cost impact to ratepayers addressed by downgrading to a guideline for the first year, if impact is great this standard can be changed next year
- > Allow exceptions not needed in the first year (guideline)
- Needs definition of "available back-tie" under consideration
- Apply the 250 MW cap on category C as well and/or apply two different limits for category B (based on configuration) plus higher and different limits on category C outages (based on connecting voltage level – under further consideration and discussion maybe next year after the impact of current changes are available

This guideline was slightly modified

New Special Protection Systems Guideline:

- Small revisions to the existing guidelines
- Applies to new SPS for both load and generation
- Eliminated restriction on SPS for RMR units
- No changes to maximum arming amounts
- Increased the number of contingencies (single or double) that would trigger the operation of SPS from 4 to 6 local contingencies

Stakeholder comments

New Special Protection Systems Guideline :

- Open SPS performance review process part of regularly scheduled TPP stakeholder meetings
- Frequency of existing involuntary load trip may not be increased as a result of a new generation addition – ISO believes that impact is small and can be addressed during the SPS performance review
- Involuntary load tripping should be last resort done
- Refer to the WECC Remedial Action Scheme Design Guide done
- Evaluate SPS on a case-by-case bases ISO believes a guideline is required

Glossary

Here are a few examples:

- Bulk Electric System all facilities under ISO control
- Development of load models PTOs, UDCs and others
- Development of load forecast CEC
- Timed allowed for manual readjustment less than 30 minutes

Stakeholder comments:

- Keep NERC and WECC definition of Bulk Electric System under legal review
- Change "Time allowed for manual readjustment" to facility ratings ISO believes that we should hold our practices at or above what is required by and for our neighboring systems

Other stakeholder comments

- Explain why ISO needs to have any reliability standards
- Explain the need for each individual standard
- Add a "Critical T-1/G-1" standards as category B contingency
- Add a reactive margin criteria based on fixed MVAR quantity
- Add common "duct line" as credible C5 contingencies
- Include LCR and Deliverability Assessment under the Planning Standards
- Develop criteria for establishing uniform equipment rating criteria among PTOs
- Address modeling issues like: DG, DR or generator Pmin
- Add more time and iterations to this stakeholder process

Next Steps - Schedule

Overall timeline

- Post draft ISO Planning Standards April 25, 2011
- Stakeholder Meeting to discus changes May 2, 2011
- Submit comments by May 9, 2011
- Posting of second draft ISO Planning Standards May 13, 2011
- ISO Stakeholder conference call May 20, 2011
- Submit comments by May 27, 2011
- Finalize ISO Planning Standards June 2, 2011
- ISO Board of Governors June 29-30, 2011
- Implementation July 1, 2011

Your comments and questions are welcome.

For written comments, please send to: <u>RegionalTransmission@caiso.com</u>

