

Year 2008 LCR Study

Stockton Area in PG&E System

Summary of Findings

Prepared By

Catalin Micsa

Regional Transmission North - California ISO

March 21, 2007

CMMicsa / ISO Regional Transmission North / March 21, 2007

Sierra and Stockton LCR Areas

Stockton Area Load and Resources (MW)

2008

Load	=	1306
Transmission Losses	=	27
Total Load	=	1333
Market Generation	=	264
Muni Generation	=	190
QF Generation	=	82
Total Qualifying Capacity	=	536

CMMicsa / ISO Regional Transmission North / March 21, 2007

Tesla-Bellota Sub-area

California ISO

Contingency: Tesla-Tracy 115 kV line and Tesla-Kasson-Manteca 115 kV line.

- LCR: 565 MW (includes 195 MW of QF and Muni generation as well as 105 MW of Deficiency).
- Limiting component: Thermal overload on the Manteca-Ingram Creek section of the Tesla-Salado-Manteca 115 kV line.

Tesla-Bellota Sub-area – Category B

- Contingency: Tesla-Kasson-Manteca 115 kV line and the loss of Stanisls #1.
- LCR: 475 MW (includes 195 MW of QF and Muni generation as well as 15 MW of Deficiency).
- Limiting component: Thermal overload on the Manteca-Ingram Creek section of the Tesla-Salado-Manteca 115 kV line.

Tesla-Bellota 115 kV Area Transmission

Critical Stockton Area Contingencies Lockeford Sub-area

Lockeford Sub-area

Contingency: Lockeford-Industrial 60 kV line and Lockeford-Lodi #2 60 kV line

LCR: 72 MW (includes 28 MW of QF and Muni generation as well as 44 MW of Deficiency)

Limiting component: Thermal overload on the Lockeford-Lodi Jct. Section of the Lockeford-Lodi #3 60 kV line

Lockeford Sub-area – Category B

Contingency: None

LCR: 0 MW

Limiting component: None.

Lockeford 60 kV Area Transmission

Critical Stockton Area Contingencies Stagg Sub-area

Stagg Sub-area

Contingency: Tesla-Stagg 230 kV line and Tesla-Eight Mile 230 kV line

LCR: 150 MW (includes 50 MW of Muni generation as well as 100 MW of Deficiency)

Limiting component: Post-contingency steady-state voltages less than 0.9 p.u. at Stagg, Eight Mile Road and Lodi Stig 230 kV busses.

Stagg Sub-area – Category B

Contingency: None LCR: 0 MW Limiting component: None.

Stagg 230 kV Area Transmission

Critical Stockton Area Contingencies Aggregate

	QF (MW)	Muni (MW)	Market (MW)	Max. Qualifying Capacity (MW)	
Available generation	82	190	264	536	
	Existing Generation Capacity Needed (MW)) Deficient	ncy)	Total MW Requirement
Category B (Single)	460		15		475
Category C (Multiple)	536		250		786

Each unit is only counted once, regardless in how many sub-areas it is needed.

In order to come up with an aggregate deficiency, where applicable the deficiencies in each smaller sub-area has been accounted for (based on their effectiveness factors) toward the deficiency of a much larger sub-area.

Changes since the 2007 LCR study

Total LCR Need has increased

Mainly because of increase in load that has resulted in higher deficiency. In the Stagg sub-pocket for example the load increase results in much higher generation proxy needed because the load is the most effective in mitigating the low voltage problems.

Total Net Qualifying Capacity has decreased

Mainly because of updates to the historical output levels of QF generation in the area.

Stakeholder Comments

CMMicsa / ISO Regional Transmission North / March 21, 2007